Identification of Phosphoinositide-3 Kinases Delta and Gamma Dual Inhibitors Based on the p110δ/γ Crystal Structure

Author(s): Wen-Qing Jia, Xiao-Yan Feng, Ya-Ya Liu, Zhen-Zhen Han, Zhi Jing, Wei-Ren Xu, Xian-Chao Cheng*

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 6 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Phosphoinositide-3 kinases (PI3Ks) are key signaling molecules that affect a diverse array of biological processes in cells, including proliferation, differentiation, survival, and metabolism. The abnormal activity of PI3K signals is closely related to the occurrence of many diseases, which has become a very promising drug target, especially for the treatment of cancer. PI3Kδ/γ inhibitors can reduce toxicity concerns for chronic indications such as asthma and rheumatoid arthritis compared with pan PI3Ks inhibitors.

Methods: With the aim of finding more effective PI3Kδ/γ dual inhibitors, virtual screening, ADMET prediction Molecular Dynamics (MD) simulations and MM-GBSA were executed based on the known p110δ/γ crystal structure. Compound ZINC28564067 with high docking score and low toxicity was obtained.

Results: By MD simulations and MM-GBSA, we could observe that ZINC28564067 had more favorable conformation binding to the PI3Kδ/γ than the original ligands.

Conclusion: The results provided a rapid approach for the discovery of novel PI3Kδ/γ dual inhibitors which might be a potential anti-tumor lead compound.

Keywords: Anti-tumor lead compound, ADMET, molecular dynamics, PI3Kδ/γ dual inhibitors, virtual screening, MM-GBSA, phosphoinositide-3 kinases.

[1]
Liu, X.; Jing, Z.; Jia, W.Q.; Wang, S.Q.; Ma, Y.; Xu, W.R.; Liu, J.W.; Cheng, X.C. Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2018, 36(11), 2988-3002.
[http://dx.doi.org/10.1080/07391102.2017.1373706] [PMID: 28853334]
[2]
Thapa, N.; Choi, S.; Tan, X.; Wise, T.; Anderson, R.A. Phosphatidylinositol Phosphate 5-Kinase Iγ and Phosphoinositide 3-Kinase/Akt Signaling Couple to Promote Oncogenic Growth. J. Biol. Chem., 2015, 290(30), 18843-18854.
[http://dx.doi.org/10.1074/jbc.M114.596742] [PMID: 26070568]
[3]
Liu, Y.; Wan, W.Z.; Li, Y.; Zhou, G.L.; Liu, X.G. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Oncotarget, 2017, 8(4), 7181-7200.
[http://dx.doi.org/10.18632/oncotarget.12742] [PMID: 27769061]
[4]
Maira, S-M.; Voliva, C.; Garcia-Echeverria, C. Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Expert Opin. Ther. Targets, 2008, 12(2), 223-238.
[http://dx.doi.org/10.1517/14728222.12.2.223] [PMID: 18208370]
[5]
Ameriks, M.K.; Venable, J.D. Small molecule inhibitors of phosphoinositide 3-kinase (PI3K) δ and γ. Curr. Top. Med. Chem., 2009, 9(8), 738-753.
[http://dx.doi.org/10.2174/156802609789044434] [PMID: 19689378]
[6]
Rewcastle, G.W.; Gamage, S.A.; Flanagan, J.U.; Frederick, R.; Denny, W.A.; Baguley, B.C.; Kestell, P.; Singh, R.; Kendall, J.D.; Marshall, E.S.; Lill, C.L.; Lee, W.J.; Kolekar, S.; Buchanan, C.M.; Jamieson, S.M.; Shepherd, P.R. Synthesis and biological evaluation of novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474). J. Med. Chem., 2011, 54(20), 7105-7126.
[http://dx.doi.org/10.1021/jm200688y] [PMID: 21882832]
[7]
Kong, D.; Yamori, T. Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci., 2008, 99(9), 1734-1740.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00891.x] [PMID: 18616528]
[8]
Okkenhaug, K.; Bilancio, A.; Farjot, G.; Priddle, H.; Sancho, S.; Peskett, E.; Pearce, W.; Meek, S.E.; Salpekar, A.; Waterfield, M.D.; Smith, A.J.H.; Vanhaesebroeck, B. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science, 2002, 297(5583), 1031-1034.
[http://dx.doi.org/10.1126/science.1073560] [PMID: 12130661]
[9]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[10]
Ferguson, F.M.; Ni, J.; Zhang, T.; Tesar, B.; Sim, T.; Kim, N.D.; Deng, X.; Brown, J.R.; Zhao, J.J.; Gray, N.S. Discovery of a Series of 5,11-Dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-ones as Selective PI3K-δ/γ Inhibitors. ACS Med. Chem. Lett., 2016, 7(10), 908-912.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00209] [PMID: 27774127]
[11]
Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; Kelly, V.M.; Allen, K.; Douglas, M.; Sweeney, J.; Kelly, P.; Horwitz, S. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood, 2018, 131(8), 877-887.
[http://dx.doi.org/10.1182/blood-2017-05-786566] [PMID: 29191916]
[12]
Reif, K.; Okkenhaug, K.; Sasaki, T.; Penninger, J.M.; Vanhaesebroeck, B.; Cyster, J.G. Cutting edge: differential roles for phosphoinositide 3-kinases, p110γ and p110δ, in lymphocyte chemotaxis and homing. J. Immunol., 2004, 173(4), 2236-2240.
[http://dx.doi.org/10.4049/jimmunol.173.4.2236] [PMID: 15294934]
[13]
Markham, A. Copanlisib: First Global Approval. Drugs, 2017, 77(18), 2057-2062.
[http://dx.doi.org/10.1007/s40265-017-0838-6] [PMID: 29127587]
[14]
Scott, W.J.; Hentemann, M.F.; Rowley, R.B.; Bull, C.O.; Jenkins, S.; Bullion, A.M.; Johnson, J.; Redman, A.; Robbins, A.H.; Esler, W.; Fracasso, R.P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J.E.; Wilkie, D.P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR of Novel 2,3-Dihydroimidazo[1,2-c]quinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80-6946). ChemMedChem, 2016, 11(14), 1517-1530.
[http://dx.doi.org/10.1002/cmdc.201600148] [PMID: 27310202]
[15]
Singh, A.; Thatikonda, T.; Kumar, A.; Wazir, P.; v, V.; Nandi, U.; Singh, P.P.; Singh, S.; Gupta, A.P.; Tikoo, M.K.; Singh, G.; Vishwakarma, R. Determination of ZSTK474, a novel Pan PI3K inhibitor in mouse plasma by LC-MS/MS and its application to Pharmacokinetics. J. Pharm. Biomed. Anal., 2018, 149, 387-393.
[http://dx.doi.org/10.1016/j.jpba.2017.11.031] [PMID: 29175554]
[16]
Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst., 2006, 98(8), 545-556.
[http://dx.doi.org/10.1093/jnci/djj133] [PMID: 16622124]
[17]
Gamage, S.A.; Giddens, A.C.; Tsang, K.Y.; Flanagan, J.U.; Kendall, J.D.; Lee, W.J.; Baguley, B.C.; Buchanan, C.M.; Jamieson, S.M.F.; Shepherd, P.R.; Denny, W.A.; Rewcastle, G.W. Synthesis and biological evaluation of sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474. Bioorg. Med. Chem., 2017, 25(20), 5859-5874.
[http://dx.doi.org/10.1016/j.bmc.2017.09.025] [PMID: 28958845]
[18]
Patnaik, A.; Appleman, L.J.; Tolcher, A.W.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Weiss, G.J.; Sachdev, J.C.; Chadha, M.; Fulk, M.; Ejadi, S.; Mountz, J.M.; Lotze, M.T.; Toledo, F.G.; Chu, E.; Jeffers, M.; Peña, C.; Xia, C.; Reif, S.; Genvresse, I.; Ramanathan, R.K. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann. Oncol., 2016, 27, 1928-1940.
[http://dx.doi.org/10.1093/annonc/mdw282] [PMID: 27672108]
[19]
Berndt, A.; Miller, S.; Williams, O.; Le, D.D.; Houseman, B.T.; Pacold, J.I.; Gorrec, F.; Hon, W.C.; Liu, Y.; Rommel, C.; Gaillard, P.; Rückle, T.; Schwarz, M.K.; Shokat, K.M.; Shaw, J.P.; Williams, R.L. The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat. Chem. Biol., 2010, 6(2), 117-124.
[http://dx.doi.org/10.1038/nchembio.293] [PMID: 20081827]
[20]
Miller, M.S.; Mountford, S.J.; Pinson, J-A.; Zheng, Z.; Künzli, M.; Patel, V.; Hogg, S.J.; Shortt, J.; Jennings, I.G.; Thompson, P.E. Development of single and mixed isoform selectivity PI3Kδ inhibitors by targeting Asn836 of PI3Kδ. Bioorg. Med. Chem. Lett., 2016, 26(19), 4790-4794.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.028] [PMID: 27561716]
[21]
Zhang, J.; Liu, X.; Wang, S.Q.; Fu, J.W.; Xu, W.R.; Cheng, X.C.; Wang, R.L. Identification of Novel PPARα/γ Dual Agonists by Virtual Screening of Specs Database. Comb. Chem. High Throughput Screen., 2016, 19(8), 644-655.
[http://dx.doi.org/10.2174/1386207319666160615013027] [PMID: 27316369]
[22]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[23]
Thangapandian, S.; John, S.; Lee, Y.; Kim, S.; Lee, K.W. Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Int. J. Mol. Sci., 2011, 12(12), 9440-9462.
[http://dx.doi.org/10.3390/ijms12129440] [PMID: 22272142]
[24]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[25]
Hasan, M.A.; Mazumder, M.H.H.; Chowdhury, A.S.; Datta, A.; Khan, M.A. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code Biol. Med., 2015, 10, 7.
[http://dx.doi.org/10.1186/s13029-015-0037-3] [PMID: 26089981]
[26]
Rajamanikandan, S.; Srinivasan, P. Pharmacophore modeling and structure-based virtual screening to identify potent inhibitors targeting LuxP of Vibrio harveyi. J. Recept. Signal Transduct. Res., 2016, 36(6), 617-632.
[http://dx.doi.org/10.3109/10799893.2016.1155063] [PMID: 27049472]
[27]
Wang, X.J.; Zhang, J.; Wang, S.Q.; Xu, W.R.; Cheng, X.C.; Wang, R.L. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. Drug Des. Devel. Ther., 2014, 8, 2255-2262.
[PMID: 25422585]
[28]
Ahmad, S.; Khan, M.F.; Parvez, S.; Akhtar, M.; Raisuddin, S. Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway. J. Appl. Toxicol., 2017, 37(3), 265-277.
[http://dx.doi.org/10.1002/jat.3355] [PMID: 27427409]
[29]
Allen, B.K.; Mehta, S.; Ember, S.W.J.; Zhu, J-Y.; Schönbrunn, E.; Ayad, N.G.; Schürer, S.C. Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations. ACS Omega, 2017, 2(8), 4760-4771.
[http://dx.doi.org/10.1021/acsomega.7b00553] [PMID: 28884163]
[30]
Umamaheswari, A.; Pradhan, D.; Hemanthkumar, M. Identification of potential Leptospira phosphoheptose isomerase inhibitors through virtual high-throughput screening. Genomics Proteomics Bioinformatics, 2010, 8(4), 246-255.
[http://dx.doi.org/10.1016/S1672-0229(10)60026-5] [PMID: 21382593]
[31]
Jia, W.Q.; Jing, Z.; Liu, X.; Feng, X.Y.; Liu, Y.Y.; Wang, S.Q.; Xu, W.R.; Liu, J.W.; Cheng, X.C. Virtual identification of novel PPARα/γ dual agonists by scaffold hopping of saroglitazar. J. Biomol. Struct. Dyn., 2018, 36(13), 3496-3512.
[http://dx.doi.org/10.1080/07391102.2017.1392363] [PMID: 29081262]
[32]
Puratchikody, A.; Sriram, D.; Umamaheswari, A.; Irfan, N. 3-D structural interactions and quantitative structural toxicity studies of tyrosine derivatives intended for safe potent inflammation treatment. Chem. Cent. J., 2016, 10, 24.
[http://dx.doi.org/10.1186/s13065-016-0169-9] [PMID: 27141229]
[33]
Ahmad, A.; Ahmad, A.; Sudhakar, R.; Varshney, H.; Subbarao, N.; Ansari, S.; Rauf, A.; Khan, A.U. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters. J. Biomol. Struct. Dyn., 2017, 35(15), 3412-3431.
[http://dx.doi.org/10.1080/07391102.2016.1255260] [PMID: 27801287]
[34]
Yadava, U.; Gupta, H.; Roychoudhury, M. Stabilization of microtubules by taxane diterpenoids: insight from docking and MD simulations. J. Biol. Phys., 2015, 41(2), 117-133.
[http://dx.doi.org/10.1007/s10867-014-9369-5] [PMID: 25542396]
[35]
Katari, S.K.; Natarajan, P.; Swargam, S.; Kanipakam, H.; Pasala, C.; Umamaheswari, A. Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. J. Recept. Signal Transduct. Res., 2016, 36(6), 558-571.
[http://dx.doi.org/10.3109/10799893.2016.1141955] [PMID: 26906522]
[36]
Kallubai, M.; Amineni, U.; Mallavarapu, M.; Kadiyala, V. In Silico Approach to Support that p-Nitrophenol Monooxygenase from Arthrobacter sp. Strain JS443 Catalyzes the Initial Two Sequential Monooxygenations. Interdiscip. Sci., 2015, 7(2), 157-167.
[http://dx.doi.org/10.1007/s12539-015-0018-x] [PMID: 26272475]
[37]
Huang, Y.; Chen, W.; Wallace, J.A.; Shen, J. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water. J. Chem. Theory Comput., 2016, 12(11), 5411-5421.
[http://dx.doi.org/10.1021/acs.jctc.6b00552] [PMID: 27709966]
[38]
Hayes, J.M.; Skamnaki, V.T.; Archontis, G.; Lamprakis, C.; Sarrou, J.; Bischler, N.; Skaltsounis, A.L.; Zographos, S.E.; Oikonomakos, N.G. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Proteins, 2011, 79(3), 703-719.
[http://dx.doi.org/10.1002/prot.22890] [PMID: 21287607]
[39]
Pradhan, D.; Priyadarshini, V.; Munikumar, M.; Swargam, S.; Umamaheswari, A.; Bitla, A. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: homology modeling, docking, and molecular dynamics study. J. Biomol. Struct. Dyn., 2014, 32(2), 171-185.
[http://dx.doi.org/10.1080/07391102.2012.758056] [PMID: 23383626]
[40]
Jatana, N.; Jangid, S.; Khare, G.; Tyagi, A.K.; Latha, N. Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis--a potential target for the development of antitubercular drugs. J. Mol. Model., 2011, 17(2), 301-313.
[http://dx.doi.org/10.1007/s00894-010-0727-3] [PMID: 20454815]
[41]
Vilar, S.; Karpiak, J.; Berk, B.; Costanzi, S. In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor. J. Mol. Graph. Model., 2011, 29(6), 809-817.
[http://dx.doi.org/10.1016/j.jmgm.2011.01.005] [PMID: 21334234]
[42]
Knight, Z.A.; Feldman, M.E.; Balla, A.; Balla, T.; Shokat, K.M. A membrane capture assay for lipid kinase activity. Nat. Protoc., 2007, 2(10), 2459-2466.
[http://dx.doi.org/10.1038/nprot.2007.361] [PMID: 17947987]
[43]
Vangapandu, H.V.; Jain, N.; Gandhi, V. Duvelisib: a phosphoinositide-3 kinase δ/γ inhibitor for chronic lymphocytic leukemia. Expert Opin. Investig. Drugs, 2017, 26(5), 625-632.
[http://dx.doi.org/10.1080/13543784.2017.1312338] [PMID: 28388280]
[44]
Hossain, M.U.; Khan, M.A.; Rakib-Uz-Zaman, S.M.; Ali, M.T.; Islam, M.S.; Keya, C.A.; Salimullah, M. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein. BioMed Res. Int., 2016, 20163187647
[http://dx.doi.org/10.1155/2016/3187647] [PMID: 27034931]
[45]
Gholami, S.; Bordbar, A.K.; Lohrasebi, A. Identifying binding modes of two synthetic derivatives of adrenalin to the α2C-adrenoceptor by using molecular modeling; insights into the α2C-adrenoceptor activation. Biophys. Chem., 2017, 223, 17-24.
[http://dx.doi.org/10.1016/j.bpc.2017.01.005] [PMID: 28187351]
[46]
Yokoyama, M.; Fujisaki, S.; Shirakura, M.; Watanabe, S.; Odagiri, T.; Ito, K.; Sato, H. Molecular Dynamics Simulation of the Influenza A(H3N2) Hemagglutinin Trimer Reveals the Structural Basis for Adaptive Evolution of the Recent Epidemic Clade 3C.2a. Front. Microbiol., 2017, 8, 584.
[http://dx.doi.org/10.3389/fmicb.2017.00584] [PMID: 28443077]
[47]
Sharma, V.K.; Abbat, S.; Bharatam, P.V. Pharmacoinformatic Study on the Selective Inhibition of the Protozoan Dihydrofolate Reductase Enzymes. Mol. Inform., 2017, 36(11)1600156
[http://dx.doi.org/10.1002/minf.201600156] [PMID: 28605138]
[48]
Cruz, J.N.; Costa, J.F.S.; Khayat, A.S.; Kuca, K.; Barros, C.A.L.; Neto, A.M.J.C. Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis Polyketide Synthase 13. J. Biomol. Struct. Dyn., 2019, 37(6), 1616-1627.
[http://dx.doi.org/10.1080/07391102.2018.1462734] [PMID: 29633908]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 6
Year: 2020
Page: [772 - 786]
Pages: 15
DOI: 10.2174/1570180816666190730163431

Article Metrics

PDF: 16
HTML: 1