MSIT: Malonylation Sites Identification Tree

Author(s): Wenzheng Bao*, De-Shuang Huang, Yue-Hui Chen.

Journal Name: Current Bioinformatics

Volume 15 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aims: Post-Translational Modifications (PTMs), which include more than 450 types, can be regarded as the fundamental cellular regulation.

Background: Recently, experiments demonstrated that the lysine malonylation modification is a significant process in several organisms and cells. Meanwhile, malonylation plays an important role in the regulation of protein subcellular localization, stability, translocation to lipid rafts and many other protein functions.

Objective: Identification of malonylation will contribute to understanding the molecular mechanism in the field of biology. Nevertheless, several existing experimental approaches, which can hardly meet the need of the high speed data generation, are expensive and time-consuming. Moreover, some machine learning methods can hardly meet the high-accuracy need in this issue.

Methods: In this study, we proposed a method, named MSIT that means malonylation sites identification tree, utilized the amino acid residues and profile information to identify the lysine malonylation sites with the tree structural neural network in the peptides sequence level.

Results: The proposed algorithm can get 0.8699 of F1 score and 89.34% in true positive ratio in E. coli. MSIT outperformed existing malonylation site identification methods and features on different species datasets.

Conclusion: Based on these measures, it can be demonstrated that MSIT will be helpful in identifying candidate malonylation sites.

Keywords: Post translational modification, modification sites identification, flexible neural tree, malonylation, subcellular, localization, amino acid.

[1]
Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods 2007; 4(10): 798-806.
[http://dx.doi.org/10.1038/nmeth1100] [PMID: 17901869]
[2]
Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005; 44(45): 7342-72.
[http://dx.doi.org/10.1002/anie.200501023] [PMID: 16267872]
[3]
Conrads TP, Zhou M, Petricoin EF III, Liotta L, Veenstra TD. Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn 2003; 3(4): 411-20.
[http://dx.doi.org/10.1586/14737159.3.4.411] [PMID: 12877381]
[4]
Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC. Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers--are they the cause or the consequence of the disease? Clin Biochem 2010; 43(10-11): 793-804.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.03.015] [PMID: 20381482]
[5]
Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods 2005; 2(1): 17-25.
[http://dx.doi.org/10.1038/nmeth731] [PMID: 15789031]
[6]
Denu JM, Dixon JE. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 1998; 2(5): 633-41.
[http://dx.doi.org/10.1016/S1367-5931(98)80095-1] [PMID: 9818190]
[7]
Ghosh G, Adams JA. Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J 2011; 278(4): 587-97.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07992.x] [PMID: 21205204]
[8]
Ellerbroek SM, Wennerberg K, Burridge K. Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 2003; 278(21): 19023-31.
[http://dx.doi.org/10.1074/jbc.M213066200] [PMID: 12654918]
[9]
McCubrey JA, May WS, Duronio V, Mufson A. Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14(1): 9-21.
[http://dx.doi.org/10.1038/sj.leu.2401657] [PMID: 10637471]
[10]
Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I. Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 2007; 32(2): 86-94.
[http://dx.doi.org/10.1016/j.tibs.2006.12.004] [PMID: 17208443]
[11]
Puttick J, Baker EN, Delbaere LTJ. Histidine phosphorylation in biological systems. Biochim Biophys Acta 2008; 1784(1): 100-5.
[http://dx.doi.org/10.1016/j.bbapap.2007.07.008] [PMID: 17728195]
[12]
Robertson EF, Hoyt JC, Reeves HC. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli. J Biol Chem 1988; 263(5): 2477-82.
[PMID: 3276689]
[13]
Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765): 41-5.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[14]
Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93(18): 9821-6.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[15]
Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18(1): 621-63.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.621] [PMID: 10837071]
[16]
Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 2007; 72(1): 483-8.
[http://dx.doi.org/10.1101/sqb.2007.72.024] [PMID: 18419308]
[17]
Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005; 6(11): 838-49.
[http://dx.doi.org/10.1038/nrm1761] [PMID: 16261189]
[18]
Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme Mol Cell Proteomics 2011; 10(12): M111.012658.
[http://dx.doi.org/10.1074/mcp.M111.012658]
[19]
Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 2011; 7(1): 58-63.
[http://dx.doi.org/10.1038/nchembio.495] [PMID: 21151122]
[20]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[21]
Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 2010; 16(11): 528-36.
[http://dx.doi.org/10.1016/j.molmed.2010.09.002] [PMID: 20932800]
[22]
Garcia BA, Shabanowitz J, Hunt DF. Characterization of histones and their post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2007; 11(1): 66-73.
[http://dx.doi.org/10.1016/j.cbpa.2006.11.022] [PMID: 17157550]
[23]
Lewis BA, Hanover JA. O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 2014; 289(50): 34440-8.
[http://dx.doi.org/10.1074/jbc.R114.595439] [PMID: 25336654]
[24]
Kruse JP, Gu W. SnapShot: p53 posttranslational modifications. Cell 2008; 133(5): 930-30.e1.
[http://dx.doi.org/10.1016/j.cell.2008.05.020] [PMID: 18510935 ]
[25]
Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 2007; 8(12): 983-94.
[http://dx.doi.org/10.1038/nrm2298] [PMID: 18037899]
[26]
Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 2007; 19(3): 266-72.
[http://dx.doi.org/10.1016/j.ceb.2007.04.002] [PMID: 17466502]
[27]
Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 2006; 442(7098): 86-90.
[http://dx.doi.org/10.1038/nature04815] [PMID: 16728976]
[28]
Wysocka J, Swigut T, Milne TA, et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 2005; 121(6): 859-72.
[http://dx.doi.org/10.1016/j.cell.2005.03.036] [PMID: 15960974]
[29]
Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett 2002; 513(1): 124-8.
[http://dx.doi.org/10.1016/S0014-5793(01)03309-9] [PMID: 11911891]
[30]
Jarome TJ, Lubin FD. Histone lysine methylation: critical regulator of memory and behavior. Rev Neurosci 2013; 24(4): 375-87.
[http://dx.doi.org/10.1515/revneuro-2013-0008] [PMID: 23729618]
[31]
Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074-80.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[32]
Zhang X, Wen H, Shi X. Lysine methylation: beyond histones. Acta Biochim Biophys Sin 2012; 44(1): 14-27.
[http://dx.doi.org/10.1093/abbs/gmr100] [PMID: 22194010]
[33]
Sims RJ III, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet 2003; 19(11): 629-39.
[http://dx.doi.org/10.1016/j.tig.2003.09.007] [PMID: 14585615]
[34]
Heintzman ND, Stuart RK, Hon G, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39(3): 311-8.
[http://dx.doi.org/10.1038/ng1966] [PMID: 17277777]
[35]
Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012; 13(4): 225-38.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[36]
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16(10): 4623-35.
[http://dx.doi.org/10.1091/mbc.e05-01-0033] [PMID: 16079181]
[37]
Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 2006; 126(5): 941-54.
[http://dx.doi.org/10.1016/j.cell.2006.06.057] [PMID: 16959573]
[38]
Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452(7186): 492-6.
[http://dx.doi.org/10.1038/nature06736] [PMID: 18337721]
[39]
Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005; 280(22): 21313-20.
[http://dx.doi.org/10.1074/jbc.M413296200] [PMID: 15795229]
[40]
Schuetz A, Min J, Antoshenko T, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007; 15(3): 377-89.
[http://dx.doi.org/10.1016/j.str.2007.02.002] [PMID: 17355872]
[41]
Bao X, Zhao Q, Yang T, Fung YME, Li XD. A chemical probe for lysine malonylation. Angew Chem Int Ed Engl 2013; 52(18): 4883-6.
[http://dx.doi.org/10.1002/anie.201300252] [PMID: 23533089]
[42]
Hirschey MD, Zhao Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol Cell Proteomics 2015; 14(9): 2308-15.
[http://dx.doi.org/10.1074/mcp.R114.046664] [PMID: 25717114]
[43]
Bao W, Wang D, Chen Y. Classification of protein structure classes on flexible neutral tree. IEEE/ACM Trans Comput Biol Bioinformatics 2016; 1122-33.
[PMID: 28113983]
[44]
Huang DS, Yu HJ. Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans Comput Biol Bioinformatics 2013; 10(2): 457-67.
[http://dx.doi.org/10.1109/TCBB.2013.10] [PMID: 23929869]
[45]
Tang Y, Salakhutdinov R. Learning Stochastic Feedforward Neural Networks in neural information processing systems. Neural Comput 2013; 530-8.
[46]
Zheng CH, Zhang L, Ng VTY, Shiu SC, Huang DS. Molecular pattern discovery based on penalized matrix decomposition. IEEE/ACM Trans Comput Biol Bioinformatics 2011; 8(6): 1592-603.
[http://dx.doi.org/10.1109/TCBB.2011.79] [PMID: 21519114]
[47]
Deng SP, Zhu L, Huang DS. Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans Comput Biol Bioinformatics 2016; 13(1): 27-35.
[http://dx.doi.org/10.1109/TCBB.2015.2476790] [PMID: 26415208]
[48]
Gao J, Thelen JJ, Dunker AK, Xu D. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 2010; 9(12): 2586-600.
[http://dx.doi.org/10.1074/mcp.M110.001388] [PMID: 20702892]
[49]
Cao W, Sumikoshi K, Nakamura S, Terada T, Shimizu K. Prediction of N-myristoylation modification of proteins by SVM. Bioinformation 2011; 6(5): 204-6.
[http://dx.doi.org/10.6026/97320630006204] [PMID: 21738315]
[50]
Li F, Li C, Wang M, et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 2015; 31(9): 1411-9.
[http://dx.doi.org/10.1093/bioinformatics/btu852] [PMID: 25568279]
[51]
Kawashima S, Ogata H, Kanehisa M. AAindex: Amino acid index database. Nucleic Acids Res 1999; 27(1): 368-9.
[http://dx.doi.org/10.1093/nar/27.1.368] [PMID: 9847231]
[52]
Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated data. Nat Preced 2010.
[http://dx.doi.org/10.1038/npre.2010.5092.1]
[53]
Yip YL, Scheib H, Diemand AV, et al. The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat 2004; 23(5): 464-70.
[http://dx.doi.org/10.1002/humu.20021] [PMID: 15108278]
[54]
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database: its relevance to human molecular medical research. J Mol Med 1997; 75(5): 312-6.
[PMID: 9181472]
[55]
Wang LN, Shi SP, Xu HD, Wen PP, Qiu JD. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy. Bioinformatics 2017; 33(10): 1457-63.
[PMID: 28025199]
[56]
Xu Y, Ding YX, Ding J, Wu LY, Xue Y. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection. Sci Rep 2016; 6(1): 38318-27.
[http://dx.doi.org/10.1038/srep38318] [PMID: 27910954]
[57]
Li F, Li C, Wang M, et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 2015; 31(9): 1411-9.
[http://dx.doi.org/10.1093/bioinformatics/btu852] [PMID: 25568279]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2020
Page: [59 - 67]
Pages: 9
DOI: 10.2174/1574893614666190730110747
Price: $65

Article Metrics

PDF: 22
HTML: 5
EPUB: 1
PRC: 1