Aptamers in Drug Design: An Emerging Weapon to Fight a Losing Battle

Author(s): Jobin Jose, Aaron Mathew Thomas, Darewin Mendonsa, Mohammad M. Al-Sanea, Md. Sahab Uddin, Della Grace Thomas Parambi, R Narayana Charyulu, Bijo Mathew*

Journal Name: Current Drug Targets

Volume 20 , Issue 16 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Implementation of novel and biocompatible polymers in drug design is an emerging and rapidly growing area of research. Even though we have a large number of polymer materials for various applications, the biocompatibility of these materials remains as a herculean task for researchers. Aptamers provide a vital and efficient solution to this problem. They are usually small (ranging from 20 to 60 nucleotides, single-stranded DNA or RNA oligonucleotides which are capable of binding to molecules possessing high affinity and other properties like specificity. This review focuses on different aspects of Aptamers in drug discovery, starting from its preparation methods and covering the recent scenario reported in the literature regarding their use in drug discovery. We address the limitations of Aptamers and provide valuable insights into their future potential in the areas regarding drug discovery research. Finally, we explained the major role of Aptamers like medical imaging techniques, application as synthetic antibodies, and the most recent application, which is in combination with nanomedicines.

Keywords: Aptamers, Drug design, Oligonucleotides, Nanomedicine, Synthetic antibodies, nucleotides.

Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 2017; 16(3): 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
Kim CM, Smolke CD. Biomedical applications of RNA-based devices. Curr Opin Biomed Eng 2017; 4: 106-15.
Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol Adv 2013; 31(8): 1260-74.
[http://dx.doi.org/10.1016/j.biotechadv.2013.04.007] [PMID: 23632375]
Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nat Rev Chem 2017. 1: 0076..
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249(4968): 505-10.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst (Lond) 2016; 141(5): 1551-68.
[http://dx.doi.org/10.1039/C5AN01824B] [PMID: 26864075]
Yoon S, Rossi JJ. Emerging cancer-specific therapeutic aptamers. Curr Opin Oncol 2017; 29(5): 366-74.
[http://dx.doi.org/10.1097/CCO.0000000000000389] [PMID: 28692589]
Wu YX, Kwon YJ. Aptamers: The “evolution” of SELEX. Methods 2016; 106: 21-8.
[http://dx.doi.org/10.1016/j.ymeth.2016.04.020] [PMID: 27109056]
Thiel K. Oligo oligarchy-the surprisingly small world of aptamers. Nat Biotechnol 2004; 22(6): 649-51.
[http://dx.doi.org/10.1038/nbt0604-649] [PMID: 15175673]
Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2013; 48(1-2): 259-71.
[http://dx.doi.org/10.1016/j.ejps.2012.10.014] [PMID: 23142634]
Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK. Aptamer-based point-of care diagnostic platforms. Sens Actuators B Chem 2017; 246: 535-53.
Ding F, Gao Y, He X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg Med Chem Lett 2017; 27(18): 4256-69.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.032] [PMID: 28803753]
Yigit MV, Mazumdar D, Kim HK, Lee JH, Odintsov B, Lu Y. Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. ChemBioChem 2007; 8(14): 1675-8.
[http://dx.doi.org/10.1002/cbic.200700323] [PMID: 17696177]
Wang AZ, Farokhzad OC. Current progress of aptamer-based molecular imaging. J Nucl Med 2014; 55(3): 353-6.
[http://dx.doi.org/10.2967/jnumed.113.126144] [PMID: 24525205]
Gijs M, Aerts A, Impens N, Baatout S, Luxen A. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol 2016; 43(4): 253-71.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.09.005] [PMID: 26746572]
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346(6287): 818-22.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
Chu TC, Marks JW III, Lavery LA, et al. Aptamer toxin conjugates that specifically target prostate tumor cells. Cancer Res 2006; 66(12): 5989-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4583] [PMID: 16778167]
Hernandez LI, Flenker KS, Hernandez FJ, Klingelhutz AJ, McNamara JO II, Giangrande PH. Methods for evaluating cell-specific, cell-internalizing rna aptamers. Pharmaceuticals (Basel) 2013; 6(3): 295-319.
[http://dx.doi.org/10.3390/ph6030295] [PMID: 23894227]
Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using ph-sensitive covalent linkages. Mol Ther Nucleic Acids 2013; 2e107
[http://dx.doi.org/10.1038/mtna.2013.37] [PMID: 23860551]
Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 2006; 45(48): 8149-52.
[http://dx.doi.org/10.1002/anie.200602251] [PMID: 17099918]
Toh SY, Citartan M, Gopinath SC, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 2015; 64: 392-403.
[http://dx.doi.org/10.1016/j.bios.2014.09.026] [PMID: 25278480]
Hasegawa H, Sode K, Ikebukuro K. Selection of DNA aptamers against VEGF165 using a protein competitor and the aptamer blotting method. Biotechnol Lett 2008; 30(5): 829-34.
[http://dx.doi.org/10.1007/s10529-007-9629-6] [PMID: 18175068]
Lollo B, Steele F, Gold L. Beyond antibodies: new affinity reagents to unlock the proteome. Proteomics 2014; 14(6): 638-44.
[http://dx.doi.org/10.1002/pmic.201300187] [PMID: 24395722]
Wu S, Li J, Liang H, et al. Aptamer-based self-assembled supramolecular vesicles for pH-responsive targeted drug delivery. Sci China Chem 2016; 60: 628-34.
Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst (Lond) 2016; 141(5): 1551-68.
[http://dx.doi.org/10.1039/C5AN01824B] [PMID: 26864075]
Meyer C, Hahn U, Rentmeister A. Cell-specific aptamers as emerging therapeutics. J Nucleic Acids 2011; •••2011904750
[http://dx.doi.org/10.4061/2011/904750] [PMID: 21904667]
Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5(2): 123-32.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
Hasanzadeh M, Zargami A, Baghban HN, Mokhtarzadeh A, Shadjou N, Mahboob S. Aptamer-based assay for monitoring genetic disorder phenylketonuria (PKU). Int J Biol Macromol 2018; 116: 735-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.028] [PMID: 29777816]
Mallikaratchy P. Evolution of complex target selex to identify aptamers against mammalian cell-surface antigens. Molecules 2017; 22(2): 215.
[http://dx.doi.org/10.3390/molecules22020215] [PMID: 28146093]
Bing T, Shangguan D, Wang Y. Facile discovery of cell-surface protein targets of cancer cell aptamers. Mol Cell Proteomics 2015; 14(10): 2692-700.
[http://dx.doi.org/10.1074/mcp.M115.051243] [PMID: 26199357]
Ostroff RM, Bigbee WL, Franklin W, et al. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer. PLoS One 2010; 5(12)e15003
[http://dx.doi.org/10.1371/journal.pone.0015003] [PMID: 21170350]
Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature 2008; 452(7187): 571-9.
[http://dx.doi.org/10.1038/nature06916] [PMID: 18385731]
Vinkenborg JL, Mayer G, Famulok M. Aptamer-based affinity labeling of proteins. Angew Chem Int Ed Engl 2012; 51(36): 9176-80.
[http://dx.doi.org/10.1002/anie.201204174] [PMID: 22865679]
Bi W, Bai X, Gao F, et al. DNA-templated aptamer probe for identification of target proteins. Anal Chem 2017; 89(7): 4071-6.
[http://dx.doi.org/10.1021/acs.analchem.6b04895] [PMID: 28267323]
Xiong H, Yan J, Cai S, et al. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol 2019; 132: 190-202.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.165] [PMID: 30926499]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology Nat Rev Chem 2017. 1: 0076
Kong D, Yeung W, Hili R. In vitro selection of diversely functionalized aptamers. J Am Chem Soc 2017; 139(40): 13977-80.
[http://dx.doi.org/10.1021/jacs.7b07241] [PMID: 28938065]
Röthlisberger P, Gasse C, Hollenstein M. Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences and drug delivery. Int J Mol Sci 2017; 18(11): 2430.
[http://dx.doi.org/10.3390/ijms18112430] [PMID: 29144411]
Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 2013; 10(1): 13.
[http://dx.doi.org/10.1186/1559-0275-10-13] [PMID: 24088261]
Huang Y, Zhu H. Protein array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinformatics 2017; 15(2): 73-81.
[http://dx.doi.org/10.1016/j.gpb.2017.03.001] [PMID: 28392481]
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer’s and Parkinson’s diseases. J Neurochem 2018.
[PMID: 30474862]
Thomas S, Hao L, Ricke WA, Li L. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl 2016; 10(4): 358-70.
[http://dx.doi.org/10.1002/prca.201500102] [PMID: 26703953]
Kim D, Mun S, Lee J, et al. Proteomics analysis reveals differential pattern of widespread protein expression and novel role of histidine-rich glycoprotein and lipopolysaccharide-binding protein in rheumatoid arthritis. Int J Biol Macromol 2018; 109: 704-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.075] [PMID: 29246875]
Liotta LA, Petricoin EF. Mass Spectrometry-Based Protein Biomarker Discovery and Measurement: Sensitivity is the Greatest Hurdle. Clin Proteomics 2010; 6: 4-5.
Li Y, Geyer CR, Sen D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 1996; 35(21): 6911-22.
[http://dx.doi.org/10.1021/bi960038h] [PMID: 8639643]
Ruscito A, DeRosa MC. Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 2016; 4: 14.
[http://dx.doi.org/10.3389/fchem.2016.00014] [PMID: 27242994]
Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W. Development of DNA aptamers using Cell-SELEX. Nat Protoc 2010; 5(6): 1169-85.
[http://dx.doi.org/10.1038/nprot.2010.66] [PMID: 20539292]
Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 1992; 355(6363): 850-2.
[http://dx.doi.org/10.1038/355850a0] [PMID: 1538766]
Ye M, Hu J, Peng M, et al. Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci 2012; 13(3): 3341-53.
[http://dx.doi.org/10.3390/ijms13033341] [PMID: 22489154]
Yang J, Bowser MT. Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. Anal Chem 2013; 85: 1525e-30.
Oh SS, Qian J, Lou X, et al. Generation of highly specific aptamers via micromagnetic selection. Anal Chem 2011; 83: 1866-6.
[http://dx.doi.org/10.1021/ac200033t] [PMID: 19480397]
Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 2004; 126(1): 20-1.
[http://dx.doi.org/10.1021/ja037832s] [PMID: 14709039]
Nguyen Quang N, Perret G, Ducongé F. Applications of high-throughput sequencing for in vitro selection and characterization of aptamers. Pharmaceuticals (Basel) 2016; 9(4): 76.
[http://dx.doi.org/10.3390/ph9040076] [PMID: 27973417]
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008; 26(10): 1135-45.
[http://dx.doi.org/10.1038/nbt1486] [PMID: 18846087]
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11(1): 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30(9): 418-26.
[http://dx.doi.org/10.1016/j.tig.2014.07.001] [PMID: 25108476]
Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell 2015; 58(4): 586-97.
[http://dx.doi.org/10.1016/j.molcel.2015.05.004] [PMID: 26000844]
Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 2016; 45(9): 2583-602.
[http://dx.doi.org/10.1039/C5CS00645G] [PMID: 26954935]
Song Y, Zhu Z, An Y, et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 2013; 85(8): 4141-9.
[http://dx.doi.org/10.1021/ac400366b] [PMID: 23480100]
Cheng AC, Calabro V, Frankel AD. Design of RNA-binding proteins and ligands. Curr Opin Struct Biol 2001; 11(4): 478-84.
[http://dx.doi.org/10.1016/S0959-440X(00)00236-0] [PMID: 11495742]
Lakhin AV, Tarantul VZ, Gening LV. Aptamers: problems, solutions and prospects. Acta Naturae 2013; 5(4): 34-43.
[PMID: 24455181]
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2019; 37(1): 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2019; 37(1): 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
Tseng YT, Harroun SG, Wu CW, Mao JY, Chang HT, Huang CC. Satellite-like gold nanocomposites for targeted mass spectrometry imaging of tumor tissues. Nanotheranostics 2017; 1(2): 141-53.
[http://dx.doi.org/10.7150/ntno.18897] [PMID: 29071183]
Wu X, Zhao Z, Bai H, et al. DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for in vivo Imaging and Clinical Tissue Recognition. Theranostics 2015; 5(9): 985-94.
[http://dx.doi.org/10.7150/thno.11938] [PMID: 26155314]
Li WM, Bing T, Wei JY, Chen ZZ, Shangguan DH, Fang J. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 2014; 35(25): 6998-7007.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.112] [PMID: 24857291]
Yigit MV, Mazumdar D, Lu Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 2008; 19(2): 412-7.
[http://dx.doi.org/10.1021/bc7003928] [PMID: 18173225]
Kaur H, Yung LY. Probing high affinity sequences of DNA aptamer against VEGF165. PLoS One 2012; 7(2)e31196
[http://dx.doi.org/10.1371/journal.pone.0031196] [PMID: 22359573]
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010; 9(7): 537-50.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
Lee YJ, Kim IS, Park SA, et al. Periostin-binding DNA aptamer inhibits breast cancer growth and metastasis. Mol Ther 2013; 21(5): 1004-13.
[http://dx.doi.org/10.1038/mt.2013.30] [PMID: 23511245]
Duan M, Long Y, Yang C, et al. Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget 2016; 7(24): 36436-46.
[http://dx.doi.org/10.18632/oncotarget.9262] [PMID: 27183906]
Li WM, Bing T, Wei JY, Chen ZZ, Shangguan DH, Fang J. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 2014; 35(25): 6998-7007.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.112] [PMID: 24857291]
Cai S, Chen M, Liu M, et al. A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker. Biosens Bioelectron 2016; 85: 184-9.
[http://dx.doi.org/10.1016/j.bios.2016.05.003] [PMID: 27176917]
Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev 2017; 117(19): 12133-64.
[http://dx.doi.org/10.1021/acs.chemrev.7b00013] [PMID: 28898067]
Lao YH, Phua KKL, Leong KW. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 2015; 9(3): 2235-54.
[http://dx.doi.org/10.1021/nn507494p] [PMID: 25731717]
Luo YL, Shiao YS, Huang YF. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 2011; 5(10): 7796-804.
[http://dx.doi.org/10.1021/nn201592s] [PMID: 21942498]
Dam DH, Culver KS, Sisco PN, Odom TW. Shining light on nuclear-targeted therapy using gold nanostar constructs. Ther Deliv 2012; 3(11): 1263-7.
[http://dx.doi.org/10.4155/tde.12.107] [PMID: 23259247]
Ara MN, Matsuda T, Hyodo M, et al. Construction of an aptamer modified liposomal system targeted to tumor endothelial cells. Biol Pharm Bull 2014; 37(11): 1742-9.
[http://dx.doi.org/10.1248/bpb.b14-00338] [PMID: 25366480]
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 2007; 107(9): 3715-43.
[http://dx.doi.org/10.1021/cr0306743] [PMID: 17715981]
Plourde K, Derbali RM, Desrosiers A, Dubath C, Vallée-Bélisle A, Leblond J. Aptamer-based liposomes improve specific drug loading and release. J Control Release 2017; 251: 82-91.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.026] [PMID: 28238787]
Yang L, Zhang X, Ye M, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 2011; 63(14-15): 1361-70.
[http://dx.doi.org/10.1016/j.addr.2011.10.002] [PMID: 22016112]
Boomer RM, Lewis SD, Healy JM, Kurz M, Wilson C, McCauley TG. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues. Oligonucleotides 2005; 15(3): 183-95.
[http://dx.doi.org/10.1089/oli.2005.15.183] [PMID: 16201906]
Guo X, Zhu X, Gao J, Liu D, Dong C, Jin X. PLGA nanoparticles with CD133 aptamers for targeted delivery and sustained release of propranolol to hemangioma. Nanomedicine (Lond) 2017; 12(21): 2611-24.
[http://dx.doi.org/10.2217/nnm-2017-0130] [PMID: 28960167]
Jafari R, Majidi Zolbanin N, Majidi J, et al. Anti-Mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran Biomed J 2019; 23(1): 21-33.
[http://dx.doi.org/10.29252/ibj.23.1.21] [PMID: 30041514]
Xie X, Li F, Zhang H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 2016; 83: 28-35.
[http://dx.doi.org/10.1016/j.ejps.2015.12.014] [PMID: 26690044]
Das M, Duan W, Sahoo SK. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine (Lond) 2015; 11(2): 379-89.
[http://dx.doi.org/10.1016/j.nano.2014.09.002] [PMID: 25240596]
Roy K, Kanwar RK, Kanwar JR. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials 2015; 71: 84-99.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.055] [PMID: 26318819]
Wang J, Sefah K, Altman MB, et al. Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem Asian J 2013; 8(10): 2417-22.
[http://dx.doi.org/10.1002/asia.201300375] [PMID: 23757285]
Tan J, Yang N, Zhong L, et al. A new theranostic system based on endoglin aptamer conjugated fluorescent silica nanoparticles. Theranostics 2017; 7(19): 4862-76.
[http://dx.doi.org/10.7150/thno.19101] [PMID: 29187909]
Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 2011; 83(3): 727-34.
[http://dx.doi.org/10.1021/ac102263v] [PMID: 21218774]
Gedi V, Kim YP. Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates. Sensors (Basel) 2014; 14(10): 18302-27.
[http://dx.doi.org/10.3390/s141018302] [PMID: 25268922]
Zhang CY, Johnson LW. Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 2009; 81(8): 3051-5.
[http://dx.doi.org/10.1021/ac802737b] [PMID: 19298058]
Gallina ME, Zhou Y, Johnson CJ, et al. Aptamer-conjugated, fluorescent gold nanorods as potential cancer theradiagnostic agents. Mater Sci Eng C 2016; 59: 324-32.
[http://dx.doi.org/10.1016/j.msec.2015.09.101] [PMID: 26652380]
Zhuo Z, Yu Y, Wang M, et al. Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci 2017; 18(10)E2142
[http://dx.doi.org/10.3390/ijms18102142] [PMID: 29036890]
Saleh T, Soudi T, Shojaosadati SA. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int J Biol Macromol 2019; 130: 109-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.129] [PMID: 30802519]
Vorobyeva M, Timoshenko V, Vorobjev P, Venyaminova A. Aptamers against immunologic targets: diagnostic and therapeutic prospects. Nucleic Acid Ther 2016; 26(1): 52-65.
[http://dx.doi.org/10.1089/nat.2015.0568] [PMID: 26643948]
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017; 12: 5879-92.
[http://dx.doi.org/10.2147/IJN.S123437] [PMID: 28860754]
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9(9): 1998-2011.
[http://dx.doi.org/10.1002/cmdc.201402163] [PMID: 25130604]
Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006; 3(3): 311-24.
[http://dx.doi.org/10.1517/17425247.3.3.311] [PMID: 16640493]
Tseng CY, Ashrafuzzaman M, Mane JY, Kapty J, Mercer JR, Tuszynski JA. Entropic fragment-based approach to aptamer design. Chem Biol Drug Des 2011; 78(1): 1-13.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01125.x] [PMID: 21496214]
Ashrafuzzaman M, Tuszynski J. Regulation of channel function due to coupling with a lipid bilayer. J Comput Theor Nanosci 2012; 9(4): 564-70.
Eissa S, Zourob M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens Bioelectron 2017; 91: 169-74.
[http://dx.doi.org/10.1016/j.bios.2016.12.020] [PMID: 28006685]
Zhang A, Chang D, Zhang Z, et al. In vitro selection of dna aptamers that binds geniposide. Molecules 2017; 22(3)E383
[http://dx.doi.org/10.3390/molecules22030383] [PMID: 28264528]
Mathew B, Adeniyi AA, Dev S, et al. Pharmacophore based 3D-QSAR analysis of thienyl chalcone as new class of human MAO-B inhibitors. Investigation of combined quantum chemical and molecular dynamics approach. J Phys Chem B 2017; 121(6): 1186-203.
[http://dx.doi.org/10.1021/acs.jpcb.6b09451] [PMID: 28084742]
Mathew B, Dev S, Joy M, Mathew GE. Refining the structural features of chromones as Selective MAO-B Inhibitors: Exploration of combined pharmacophore based 3D-QSAR and quantum chemical studies. ChemistrySelect 2017; 2: 11645-52.
Lakshminarayana B, Baek SC, Kannappan N, et al. Ethoxylated head of chalcones as a new class of Multi-targeted MAO inhibitors. ChemistrySelect 2019; 4: 6614-9.
Mathew B, Baek SC, Thomas Parambi DG, et al. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352(4)e1800309
[http://dx.doi.org/10.1002/ardp.201800309] [PMID: 30663112]
Maddela S, Makula A, Galigniana MD, et al. Fe3 O4 nanoparticles mediated synthesis of novel spirooxindole-dihydropyrimidinone molecules as Hsp90 inhibitors. Arch Pharm (Weinheim) 2019; 352(1)e1800174
[PMID: 30485473]
Ashrafuzzaman M, Tseng CY, Duszyk M, Tuszynski JA. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids. Chem Biol Drug Des 2012; 80(6): 992-1002.
[http://dx.doi.org/10.1111/cbdd.12060] [PMID: 23006796]
Skouridou V, Schubert T, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O’Sullivan CK. Aptatope mapping of the binding site of a progesterone aptamer on the steroid ring structure. Anal Biochem 2017; 531: 8-11.
[http://dx.doi.org/10.1016/j.ab.2017.05.010] [PMID: 28499498]
Ren X, Gelinas AD, von Carlowitz I, Janjic N, Pyle AM. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nat Commun 2017; 8(1): 810.
[http://dx.doi.org/10.1038/s41467-017-00864-2] [PMID: 28993621]
Huzil JT, Mane J, Tuszynski JA. Computer assisted design of second-generation colchicine derivatives. Interdiscip Sci 2010; 2(2): 169-74.
[http://dx.doi.org/10.1007/s12539-010-0076-z] [PMID: 20640786]
Albada HB, Golub E, Willner I. Computational docking simulations of a DNA-aptamer for argininamide and related ligands. J Comput Aided Mol Des 2015; 29(7): 643-54.
[http://dx.doi.org/10.1007/s10822-015-9844-5] [PMID: 25877490]
Rockey WM, Hernandez FJ, Huang SY, et al. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic Acid Ther 2011; 21(5): 299-314.
[http://dx.doi.org/10.1089/nat.2011.0313] [PMID: 22004414]
Ashrafuzzaman M, Tseng CY, Kapty J, Mercer JR, Tuszynski JA. A computationally designed DNA aptamer template with specific binding to phosphatidylserine. Nucleic Acid Ther 2013; 23(6): 418-26.
[http://dx.doi.org/10.1089/nat.2013.0415] [PMID: 24279298]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 13 November, 2019
Page: [1624 - 1635]
Pages: 12
DOI: 10.2174/1389450120666190729121747
Price: $65

Article Metrics

PDF: 56