Pharmacological Advances in the Treatment of Age-related Macular Degeneration

Author(s): María Gil-Martínez, Paz Santos-Ramos, Maribel Fernández-Rodríguez, Maximino J. Abraldes, Maria José Rodríguez-Cid, María Santiago-Varela, Anxo Fernández-Ferreiro*, Francisco Gómez-Ulla*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 4 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Age-related macular degeneration is an acquired degenerative disease that is responsible for severe loss of vision in elderly people. There are two types: dry age-related macular degeneration and wet age-related macular degeneration. Its treatment has been improved and tries to be tailored in the future. The aim of this review is to summarize the pharmacological advances in the treatment of age-related macular degeneration. Regarding dry AMD, there is no effective treatment to reduce its progression. However, some molecules such as lampalizumab and eculizumab were under investigation, although they have shown low efficacy. Herein, in an attempt to prevent dry AMD progression, the most important studies suggested increasing the antioxidants intake and quitting the smoke habit. On the other hand, wet AMD has more developed treatment. Nowadays, the gold standard treatment is anti-VEGF injections. However, more effective molecules are currently under investigation. There are different molecules under research for dry AMD and wet AMD. This fact could help us treat our patients with more effective and lasting drugs but more clinical trials and safety studies are required in order to achieve an optimal treatment.

Keywords: Age-related macular degeneration, choroidal neovascularization, pharmacology, vascular endothelial growth factor, molecules, treatment.

[1]
Evans, J.R.; Fletcher, A.E.; Wormald, R.P.L. Causes of visual impairment in people aged 75 years and older in Britain: an add-on study to the MRC trial of assessment and management of older people in the community. Br. J. Ophthalmol., 2004, 88(3), 365-370.
[http://dx.doi.org/10.1136/bjo.2003.019927] [PMID: 14977771]
[2]
Luttrull, J.K.; Sinclair, S.H.; Elmann, S.; Glaser, B.M. Low incidence of choroidal neovascularization following subthreshold diode micropulse laser (SDM) in high-risk AMD. PLoS One, 2018, 13(8), e0202097
[http://dx.doi.org/10.1371/journal.pone.0202097] [PMID: 30138455]
[3]
Santarelli, M.; Diplotti, L.; Samassa, F.; Veritti, D.; Kuppermann, B.D.; Lanzetta, P. Advances in pharmacotherapy for wet age-related macular degeneration. Expert Opin. Pharmacother., 2015, 16(12), 1769-1781.
[http://dx.doi.org/10.1517/14656566.2015.1067679] [PMID: 26165696]
[4]
Al-Zamil, W.M.; Yassin, S.A. Recent developments in age-related macular degeneration: a review. Clin. Interv. Aging, 2017, 12, 1313-1330.
[http://dx.doi.org/10.2147/CIA.S143508] [PMID: 28860733]
[5]
Brandl, C.; Zimmermann, M.E.; Günther, F.; Barth, T.; Olden, M.; Schelter, S.C.; Kronenberg, F.; Loss, J.; Küchenhoff, H.; Helbig, H.; Weber, B.H.F.; Stark, K.J.; Heid, I.M. On the impact of different approaches to classify age-related macular degeneration: results from the German AugUR study. Sci. Rep., 2018, 8(1), 8675.
[http://dx.doi.org/10.1038/s41598-018-26629-5] [PMID: 29875478]
[6]
Ho, E.X.P.; Cheung, C.M.G.; Sim, S.; Chu, C.W.; Wilm, A.; Lin, C.B.; Mathur, R.; Wong, D.; Chan, C.M.; Bhagarva, M.; Laude, A.; Lim, T.H.; Wong, T.Y.; Cheng, C.Y.; Davila, S.; Hibberd, M. Human pharyngeal microbiota in age-related macular degeneration. PLoS One, 2018, 13(8), e0201768
[http://dx.doi.org/10.1371/journal.pone.0201768] [PMID: 30089174]
[7]
Garrity, S.T.; Sarraf, D.; Freund, K.B.; Sadda, S.R. Multimodal imaging of nonneovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2018, 59(4), AMD48-AMD64.
[http://dx.doi.org/10.1167/iovs.18-24158] [PMID: 30025107]
[8]
Shams Najafabadi, H.; Daftarian, N.; Ahmadieh, H.; Soheili, Z.S. Pharmacologic treatment of wet type age-related macular degeneration; current and evolving therapies. Arch. Iran Med., 2017, 20(8), 525-537.
[PMID: 28846017]
[9]
Davis, M.D.; Gangnon, R.E.; Lee, L.Y.; Hubbard, L.D.; Klein, B.E.K.; Klein, R.; Ferris, F.L.; Bressler, S.B.; Milton, R.C. Age-Related Eye Disease Study Group. The age-related eye disease study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch. Ophthalmol., 2005, 123(11), 1484-1498.
[http://dx.doi.org/10.1001/archopht.123.11.1484] [PMID: 16286610]
[10]
Ferris, F.L.; Davis, M.D.; Clemons, T.E.; Lee, L.Y.; Chew, E.Y.; Lindblad, A.S.; Milton, R.C.; Bressler, S.B.; Klein, R. Age-Related Eye Disease Study (AREDS) Research Group. A simplified severity scale for age-related macular degeneration: AREDS report No. 18. Arch. Ophthalmol., 2005, 123(11), 1570-1574.
[http://dx.doi.org/10.1001/archopht.123.11.1570] [PMID: 16286620]
[11]
Farecki, M.L.; Gutfleisch, M.; Faatz, H.; Rothaus, K.; Heimes, B.; Spital, G.; Lommatzsch, A.; Pauleikhoff, D. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-Angiography. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(5), 913-921.
[http://dx.doi.org/10.1007/s00417-017-3588-y] [PMID: 28233061]
[12]
Spaide, R.F. Improving the age-related macular degeneration construct: a new classification system. Retina, 2018, 38(5), 891-899.
[http://dx.doi.org/10.1097/IAE.0000000000001732] [PMID: 28557901]
[13]
Teo, K.Y.C.; Gillies, M.; Fraser-Bell, S. The use of vascular endothelial growth factor inhibitors and complementary treatment options in polypoidal choroidal vasculopathy: a subtype of neovascular age-related macular degeneration. Int. J. Mol. Sci., 2018, 19(9), 2611.
[http://dx.doi.org/10.3390/ijms19092611] [PMID: 30177632]
[14]
Cheung, C.M.G.; Lee, W.K.; Koizumi, H.; Dansingani, K.; Lai, T.Y.Y.; Freund, K.B. Pachychoroid disease. Eye (Lond.), 2018, 33(1), 14-33.
[http://dx.doi.org/http://dx.doi.org/10.1038/s41433-018-0158-4] [PMID: 29995841]
[15]
Alshahrani, S.T.; Al Shamsi, H.N.; Kahtani, E.S.; Ghazi, N.G. Spectral-domain optical coherence tomography findings in polypoidal choroidal vasculopathy suggest a type 1 neovascular growth pattern. Clin. Ophthalmol., 2014, 8, 1689-1695.
[http://dx.doi.org/10.2147/OPTH.S68471] [PMID: 25214762]
[16]
Wright, C.B.; Ambati, J. Dry age-related macular degeneration pharmacology. Handb. Exp. Pharmacol., 2017, 242, 321-336.
[http://dx.doi.org/10.1007/164_2016_36] [PMID: 27900609]
[17]
Wong, P.; Markey, M.; Rapp, C.M.; Darrow, R.M.; Ziesel, A.; Organisciak, D.T. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration. Mol. Vis., 2017, 23, 718-739.
[PMID: 29062223]
[18]
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol., 2001, 119(10), 1417-1436.
[http://dx.doi.org/10.1001/archopht.119.10.1417] [PMID: 11594942]
[19]
Chew, E.Y.; Clemons, T.; SanGiovanni, J.P.; Danis, R.; Domalpally, A.; McBee, W.; Sperduto, R.; Ferris, F.L. AREDS2 Research Group. The age-related eye disease study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). Ophthalmology, 2012, 119(11), 2282-2289.
[http://dx.doi.org/10.1016/j.ophtha.2012.05.027] [PMID: 22840421]
[20]
Aronow, M.E.; Chew, E.Y. Age-related eye disease study 2: perspectives, recommendations, and unanswered questions. Curr. Opin. Ophthalmol., 2014, 25(3), 186-190.
[http://dx.doi.org/10.1097/ICU.0000000000000046] [PMID: 24614146]
[21]
Evans, J.R. Ginkgo biloba extract for age-related macular degeneration. Cochrane Database Syst. Rev., 2013, (1), CD001775
[http://dx.doi.org/10.1002/14651858.CD001775.pub2] [PMID: 23440785]
[22]
Pinazo-Durán, M.D.; Gómez-Ulla, F.; Arias, L.; Araiz, J.; Casaroli-Marano, R.; Gallego-Pinazo, R.; García-Medina, J.J.; López-Gálvez, M.I.; Manzanas, L.; Salas, A.; Zapata, M.; Diaz-Llopis, M.; García-Layana, A. Do nutritional supplements have a role in age macular degeneration prevention? J. Ophthalmol., 2014, 2014, 901686
[http://dx.doi.org/10.1155/2014/901686] [PMID: 24672708]
[23]
Velilla, S.; García-Medina, J.J.; García-Layana, A.; Dolz-Marco, R.; Pons-Vázquez, S.; Pinazo-Durán, M.D.; Gómez-Ulla, F.; Arévalo, J.F.; Díaz-Llopis, M.; Gallego-Pinazo, R. Smoking and age-related macular degeneration: review and update. J. Ophthalmol., 2013., 895147
[http://dx.doi.org/10.1155/2013/895147] [PMID: 24368940]
[24]
Yaspan, B.L.; Williams, D.F.; Holz, F.G.; Regillo, C.D.; Li, Z.; Dressen, A.; van Lookeren Campagne, M.; Le, K.N.; Graham, R.R.; Beres, T.; Bhangale, T.R.; Honigberg, L.A.; Smith, A.; Henry, E.C.; Ho, C.; Strauss, E.C. MAHALO Study Investigators. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci. Transl. Med., 2017, 9(395), eaaf1443
[http://dx.doi.org/10.1126/scitranslmed.aaf1443] [PMID: 28637922]
[25]
Holz, F.G.; Sadda, S.R.; Busbee, B.; Chew, E.Y.; Mitchell, P.; Tufail, A.; Brittain, C.; Ferrara, D.; Gray, S.; Honigberg, L.; Martin, J.; Tong, B.; Ehrlich, J.S.; Bressler, N.M. Chroma and Spectri Study Investigators. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri Phase 3 randomized clinical trials. JAMA Ophthalmol., 2018, 136(6), 666-677.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.1544] [PMID: 29801123]
[26]
Yehoshua, Z.; de Amorim Garcia Filho, C.A.; Nunes, R.P.; Gregori, G.; Penha, F.M.; Moshfeghi, A.A.; Zhang, K.; Sadda, S.; Feuer, W.; Rosenfeld, P.J. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology, 2014, 121(3), 693-701.
[http://dx.doi.org/10.1016/j.ophtha.2013.09.044] [PMID: 24289920]
[27]
Luttrull, J.K.; Margolis, B.W.L. Functionally guided retinal protective therapy for dry age-related macular and inherited retinal degenerations: a pilot study. Invest. Ophthalmol. Vis. Sci., 2016, 57(1), 265-275.
[http://dx.doi.org/10.1167/iovs.15-18163] [PMID: 26818793]
[28]
Virgili, G.; Michelessi, M.; Parodi, M.B.; Bacherini, D.; Evans, J.R. Laser treatment of drusen to prevent progression to advanced age-related macular degeneration. Cochrane Database Syst. Rev., 2015, 10(3), CD006537
[http://dx.doi.org/10.1002/14651858.CD006537.pub3] [PMID: 26493180]
[29]
Mirshahi, A.; Azimi, P.; Abdolahi, A.; Mirshahi, R.; Abdollahian, M. Oral doxycycline reduces the total number of intraocular bevacizumab injections needed to control neovascular age-related macular degeneration. Med. Hypothesis Discov. Innov. Ophthalmol., 2017, 6(2), 23-29.
[PMID: 29367931]
[30]
Clinical study to evaluate treatment with oracea® for geographic atrophy (toga). Available at: https://clinicaltrials.gov/ct2/show/NCT01782989 (Accessed: September 5, 2018).
[31]
A Study of MTP-131 topical ophthalmic solution in subjects with diabetic macular edema and non-exudative intermediate age-related macular degeneration. Available at: https://clinicaltrials.gov/ct2/show/NCT02314299 (Accessed: September 5, 20180.
[32]
Chichagova, V.; Hallam, D.; Collin, J.; Zerti, D.; Dorgau, B.; Felemban, M.; Lako, M.; Steel, D.H. Cellular regeneration strategies for macular degeneration: past, present and future. Eye (Lond.), 2018, 32(5), 946-971.
[http://dx.doi.org/10.1038/s41433-018-0061-z] [PMID: 29503449]
[33]
Fine, S.L. Macular photocoagulation study. Arch. Ophthalmol., 1980, 1980(98), 832.
[http://dx.doi.org/10.1001/archopht.1980.01020030826002] [PMID: 6155116]
[34]
L.J.S. Miller M.D. Pharmacological treatments for AMD. Available at: https://www.reviewofophthalmology.com/article/pharmacological-treatments-for-amd (Accessed: August 11, 2018).
[35]
Su, Y.; Wu, J.; Gu, Y. Photodynamic therapy in combination with ranibizumab versus ranibizumab monotherapy for wet age-related macular degeneration: a systematic review and meta-analysis. Photodiagn. Photodyn. Ther., 2018, 22, 263-273.
[http://dx.doi.org/10.1016/j.pdpdt.2018.05.002] [PMID: 29753123]
[36]
Maguire, M.G.; Martin, D.F.; Ying, G.S.; Jaffe, G.J.; Daniel, E.; Grunwald, J.E.; Toth, C.A.; Ferris, F.L., III; Fine, S.L. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group. Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology, 2016, 123(8), 1751-1761.
[http://dx.doi.org/10.1016/j.ophtha.2016.03.045] [PMID: 27156698]
[37]
Radhika, M.; Mithal, K.; Bawdekar, A.; Dave, V.; Jindal, A.; Relhan, N.; Albini, T.; Pathengay, A.; Flynn, H.W. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J. Ophthalmic Inflamm. Infect., 2014, 4, 22.
[http://dx.doi.org/10.1186/s12348-014-0022-z] [PMID: 25667683]
[38]
Fernández-Ferreiro, A.; Silva-Rodríguez, J.; Otero-Espinar, F.J.; González-Barcia, M.; Lamas, M.J.; Ruibal, A.; Luaces-Rodriguez, A.; Vieites-Prado, A.; Sobrino, T.; Herranz, M.; García-Varela, L.; Blanco-Mendez, J.; Gil-Martínez, M.; Pardo, M.; Moscoso, A.; Medín-Aguerre, S.; Pardo-Montero, J.; Aguiar, P. Positron emission tomography for the development and characterization of corneal permanence of ophthalmic pharmaceutical formulations. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 772-780.
[http://dx.doi.org/10.1167/iovs.16-20766 https://doi.org/10.1167/iovs.16-20766] [PMID: 28146242]
[39]
Fernández-Ferreiro, A.; González-Barcia, M.; Otero Espinar, F.J.; Blanco Méndez, J.; Lamas, M.J. Ophthalmic formulations new goals. Farm. Hosp., 2016, 40(1), 1-2.
[http://dx.doi.org/10.7399/fh.2016.40.1.10417] [PMID: 26882828]
[40]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[41]
Fernández-Ferreiro, A.; Luaces-Rodríguez, A.; Aguiar, P.; Pardo-Montero, J.; González-Barcia, M.; García-Varela, L.; Herranz, M.; Silva-Rodríguez, J.; Gil-Martínez, M.; Bermúdez, M.A.; Vieites-Prado, A.; Blanco-Méndez, J.; Lamas, M.J.; Gómez-Ulla, F.; Ruibal, Á.; Otero-Espinar, F.J.; González, F. Preclinical PET study of intravitreal injections. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 2843-2851.
[http://dx.doi.org/10.1167/iovs.17-21812] [PMID: 28570736]
[42]
Luaces-Rodríguez, A.; González-Barcia, M.; Blanco-Teijeiro, M.J.; Gil-Martínez, M.; Gonzalez, F.; Gómez-Ulla, F.; Lamas, M.J.; Otero-Espinar, F.J.; Fernández-Ferreiro, A. Review of intraocular pharmacokinetics of anti-infectives commonly used in the treatment of infectious endophthalmitis. Pharmaceutics, 2018, 10(2), E66
[http://dx.doi.org/10.3390/pharmaceutics10020066] [PMID: 29844284]
[43]
Dossarps, D.; Bron, A.M.; Koehrer, P.; Aho-Glélé, L.S.; Creuzot-Garcher, C.; Berthon, L.; Maftouhi, Q.E.; Bakhti, A.; Conrath, J. FRCR net (French Retina specialists net). Endophthalmitis after intravitreal injections: incidence, presentation, management, and visual outcome. Am. J. Ophthalmol., 2015, 160(1), 17-25.
[http://dx.doi.org/10.1016/j.ajo.2015.04.013] [PMID: 25892127]
[44]
Ross, A.E.; Bengani, L.C.; Tulsan, R.; Maidana, D.E.; Salvador-Culla, B.; Kobashi, H.; Kolovou, P.E.; Zhai, H.; Taghizadeh, K.; Kuang, L.; Mehta, M.; Vavvas, D.G.; Kohane, D.S.; Ciolino, J.B. Topical sustained drug delivery to the retina with a drug-eluting contact lens. Biomaterials, 2019., 217119285
[http://dx.doi.org/10.1016/j.biomaterials.2019.119285] [PMID: 31299627]
[45]
Ramulu, P.Y.; Do, D.V.; Corcoran, K.J.; Corcoran, S.L.; Robin, A.L. Use of retinal procedures in medicare beneficiaries from 1997 to 2007. Arch. Ophthalmol., 2010, 128(10), 1335-1340.
[http://dx.doi.org/10.1001/archophthalmol.2010.224] [PMID: 20938004]
[46]
Schlottmann, P.G.; Alezzandrini, A.A.; Zas, M.; Rodriguez, F.J.; Luna, J.D.; Wu, L. New treatment modalities for neovascular age-related macular degeneration. Asia Pac. J. Ophthalmol. (Phila.), 2017, 6(6), 514-519.
[http://dx.doi.org/10.22608/APO.2017258] [PMID: 28933517]
[47]
Okada, M.; Kandasamy, R.; Chong, E.W.; McGuiness, M.; Guymer, R.H. The treat-and-extend injection regimen versus alternate dosing strategies in age-related macular degeneration: a systematic review and meta-analysis. Am. J. Ophthalmol., 2018, 192, 184-197.
[http://dx.doi.org/10.1016/j.ajo.2018.05.026] [PMID: 29885297]
[48]
Nguyen, C.L.; Oh, L.J.; Wong, E.; Wei, J.; Chilov, M. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration: a meta-analysis of randomized controlled trials. BMC Ophthalmol., 2018, 18(1), 130.
[http://dx.doi.org/10.1186/s12886-018-0785-3] [PMID: 29843663]
[49]
Doggrell, S.A. Pegaptanib: the first antiangiogenic agent approved for neovascular macular degeneration. Expert Opin. Pharmacother., 2005, 6(8), 1421-1423.
[http://dx.doi.org/10.1517/14656566.6.8.1421] [PMID: 16013991]
[50]
Jaffe, G.J.; Ying, G-S.; Toth, C.A.; Daniel, E.; Grunwald, J.E.; Martin, D.F.; Maguire, M.G. Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Macular morphology and visual acuity in year five of the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology, 2019, 126(2), 252-260.
[http://dx.doi.org/10.1016/j.ophtha.2018.08.035] [PMID: 30189282]
[51]
Patel, R.D.; Momi, R.S.; Hariprasad, S.M. Review of ranibizumab trials for neovascular age-related macular degeneration. Semin. Ophthalmol., 2011, 26(6), 372-379.
[http://dx.doi.org/10.3109/08820538.2011.570845] [PMID: 22044335]
[52]
Bressler, N.M.; Chang, T.S.; Suñer, I.J.; Fine, J.T.; Dolan, C.M.; Ward, J.; Ianchulev, T. MARINA and ANCHOR Research Groups. Vision-related function after ranibizumab treatment by better- or worse-seeing eye: clinical trial results from MARINA and ANCHOR. Ophthalmology, 2010, 117(4), 747-756.
[http://dx.doi.org/10.1016/j.ophtha.2009.09.002] [PMID: 20189654]
[53]
Chang, T.S.; Bressler, N.M.; Fine, J.T.; Dolan, C.M.; Ward, J.; Klesert, T.R. MARINA Study Group. Improved vision-related function after ranibizumab treatment of neovascular age-related macular degeneration: results of a randomized clinical trial. Arch. Ophthalmol., 2007, 125(11), 1460-1469.
[http://dx.doi.org/10.1001/archopht.125.11.1460] [PMID: 17998507]
[54]
Bhisitkul, R.B.; Mendes, T.S.; Rofagha, S.; Enanoria, W.; Boyer, D.S.; Sadda, S.R.; Zhang, K. Macular atrophy progression and 7-year vision outcomes in subjects from the ANCHOR, MARINA, and HORIZON studies: the SEVENUP study. Am. J. Ophthalmol, 2015, 159(5), 915-924.
[http://dx.doi.org/10.1016/j.ajo.2015.01.032] [PMID: 25640411]
[55]
Arias, L.; Ruiz-Moreno, J.M.; Gómez-Ulla, F.; Fernández, M.; Montero, J. A 1-year retrospective review of ranibizumab for naive nonsubfoveal choroidal neovascularization secondary to age-related macular degeneration. Retina, 2009, 29(10), 1444-1449.
[http://dx.doi.org/10.1097/IAE.0b013e3181ae712d] [PMID: 19730163]
[56]
García-Layana, A.; Figueroa, M.S.; Araiz, J.; Ruiz-Moreno, J.M.; Gómez-Ulla, F.; Arias-Barquet, L.; Reiter, N. Treatment of exudative age-related macular degeneration: focus on aflibercept. Drugs Aging, 2015, 32(10), 797-807.
[http://dx.doi.org/10.1007/s40266-015-0300-y] [PMID: 26442858]
[57]
Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J-F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; Stahl, N.; Vitti, R.; Berliner, A.J.; Soo, Y.; Anderesi, M.; Groetzbach, G.; Sommerauer, B.; Sandbrink, R.; Simader, C.; Schmidt-Erfurth, U. VIEW 1 and VIEW 2 Study Groups. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology, 2012, 119(12), 2537-2548.
[http://dx.doi.org/10.1016/j.ophtha.2012.09.006] [PMID: 23084240]
[58]
Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2011, 364(20), 1897-1908.
[http://dx.doi.org/10.1056/NEJMoa1102673] [PMID: 21526923]
[59]
Gillies, M.C.; Hunyor, A.P.; Arnold, J.J.; Guymer, R.H.; Wolf, S.; Ng, P.; Pecheur, F.L.; McAllister, I.L. Effect of ranibizumab and aflibercept on best-corrected visual acuity in treat-and-extend for neovascular age-related macular degeneration: a randomized clinical trial. JAMA Ophthalmol., 2019, 137(4), 372-379.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.6776] [PMID: 30676617]
[60]
Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Wordsworth, S.; Reeves, B.C. IVAN Study Investigators. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology, 2012, 119(7), 1399-1411.
[http://dx.doi.org/10.1016/j.ophtha.2012.04.015] [PMID: 22578446]
[61]
Schmidt-Erfurth, U.; Garcia-Arumi, J.; Bandello, F.; Berg, K.; Chakravarthy, U.; Gerendas, B.S.; Jonas, J.; Larsen, M.; Tadayoni, R.; Loewenstein, A. Guidelines for the management of diabetic macular edema by the European society of retina specialists (EURETINA). Ophthalmologica, 2017, 237(4), 185-222.
[http://dx.doi.org/10.1159/000458539] [PMID: 28423385]
[62]
García-Layana, A.; Figueroa, M.S.; Arias, L.; Araiz, J.; Ruiz-Moreno, J.M.; García-Arumí, J.; Gómez-Ulla, F.; López-Gálvez, M.I.; Cabrera-López, F.; García-Campos, J.M.; Monés, J.; Cervera, E.; Armadá, F.; Gallego-Pinazo, R. Individualized therapy with ranibizumab in wet age-related macular degeneration. J. Ophthalmol., 2015, 2015, 412903
[http://dx.doi.org/10.1155/2015/412903] [PMID: 26491550]
[63]
Haga, A.; Kawaji, T.; Ideta, R.; Inomata, Y.; Tanihara, H. Treat-and-extend versus every-other-month regimens with aflibercept in age-related macular degeneration. Acta Ophthalmol., 2018, 96(3), e393-e398.
[http://dx.doi.org/10.1111/aos.13607] [PMID: 29220114]
[64]
Parvin, P.; Zola, M.; Dirani, A.; Ambresin, A.; Mantel, I. Two-year outcome of an observe-and-plan regimen for neovascular age-related macular degeneration treated with Aflibercept. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(11), 2127-2134.
[http://dx.doi.org/10.1007/s00417-017-3762-2] [PMID: 28798980]
[65]
Two-year outcome of an observe-and-plan regimen for neovascular age-related macular degeneration treated with Aflibercept. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640735/ (Accessed: September 23, 2018).
[66]
Future perspectives, A.M.D. New promising drugs., Available at: www.amdbook.org/content/amd-future-perspec-tives-new-promising-drugs (Accessed September 22, 2018).
[67]
Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G. HAWK and HARRIER: Phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology, 2020, 127(1), 72-84.
[http://dx.doi.org/10.1016/j.ophtha.2019.04.017] [PMID: 30986442]
[68]
Dugel, P.U.; Jaffe, G.J.; Sallstig, P.; Warburton, J.; Weichselberger, A.; Wieland, M.; Singerman, L. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology, 2017, 124(9), 1296-1304.
[http://dx.doi.org/10.1016/j.ophtha.2017.03.057] [PMID: 28551167]
[69]
Stewart, M.W. Extended duration vascular endothelial growth factor inhibition in the eye: failures, successes, and future possibilities. Pharmaceutics, 2018, 10(1), E21
[http://dx.doi.org/10.3390/pharmaceutics10010021] [PMID: 29382038]
[70]
Li, X.; Xu, G.; Wang, Y.; Xu, X.; Liu, X.; Tang, S.; Zhang, F.; Zhang, J.; Tang, L.; Wu, Q.; Luo, D.; Ke, X. AURORA Study Group. Safety and efficacy of conbercept in neovascular age-related macular degeneration: results from a 12-month randomized phase 2 study: AURORA study. Ophthalmology, 2014, 121(9), 1740-1747.
[http://dx.doi.org/10.1016/j.ophtha.2014.03.026] [PMID: 24793528]
[71]
Lu, X.; Sun, X. Profile of conbercept in the treatment of neovascular age-related macular degeneration. Drug Des. Devel. Ther., 2015, 9, 2311-2320.
[http://dx.doi.org/10.2147/DDDT.S67536] [PMID: 25960634]
[72]
Mansour, A.M.; Ashraf, M.; Charbaji, A.; Younis, M.H.; Souka, A.A.; Dogra, A.; Mansour, H.A.; Chhablani, J. Ziv-aflibercept study group investigators. Two-year outcomes of intravitreal ziv-aflibercept. Br. J. Ophthalmol., 2018, 102(10), 1387-1390.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311591] [PMID: 29317400]
[73]
Hussain, R.M.; Ciulla, T.A. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin. Emerg. Drugs, 2017, 22(3), 235-246.
[http://dx.doi.org/10.1080/14728214.2017.1362390] [PMID: 28756707]
[74]
A dose ranging study of OPT-302 With ranibizumab in neovascular (wet) AMD. Available at: https://clinical-trials.gov/ct2/show/NCT03345082 (Accessed: September 22, 2018).
[75]
Jackson, T.L.; Boyer, D.; Brown, D.M.; Chaudhry, N.; Elman, M.; Liang, C.; O’Shaughnessy, D.; Parsons, E.C.; Patel, S.; Slakter, J.S.; Rosenfeld, P.J. Oral tyrosine kinase inhibitor for neovascular age-related macular degeneration: a phase 1 dose-escalation study. JAMA Ophthalmol., 2017, 135(7), 761-767.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.1571] [PMID: 28570723]
[76]
Pecen, P.E.; Kaiser, P.K. Current phase 1/2 research for neovascular age-related macular degeneration. Curr. Opin. Ophthalmol., 2015, 26(3), 188-193.
[http://dx.doi.org/10.1097/ICU.0000000000000147] [PMID: 25822255]
[77]
Study of PAN-90806 Eye Drops. Suspension for Neovascular AMD., Available at: https://clinicaltrials.gov/ct2/show/record/NCT03479372 (Accessed: September 23, 2018).
[78]
Zimmermann, T.; Höchel, J.; Becka, M.; Boettger, M.K.; Rohde, B.; Schug, B.; Kunert, K.S.; Donath, F. Topical administration of regorafenib eye drops: phase I dose-escalation study in healthy volunteers. Br. J. Clin. Pharmacol., 2018, 84(5), 865-875.
[http://dx.doi.org/10.1111/bcp.13502] [PMID: 29315699]
[79]
Regorafenib eye drops: investigation of efficacy and safety in neovascular age related macular degeneration - study results. Available at: https://clinicaltrials.gov/ct2/show/results/NCT02222207 (Accessed: September 23, 2018).
[80]
LHA510 Proof-of-concept study as a maintenance therapy for patients with wet age-related macular degeneration - study results. Available at: https://clinicaltrials.gov/ct2/show/results/NCT02355028 (Accessed: September 23, 2018).
[81]
Malamos, P.; Tservakis, I.; Kanakis, M.; Koutsiouki, C.; Kiskira, E.; Mylonas, G.; Lakoumentas, J.; Georgalas, I. Long-term results of combination treatment with single-dose ranibizumab plus photodynamic therapy for retinal angiomatous proliferation. Ophthalmologica, 2018, 240(4), 213-221.
[http://dx.doi.org/10.1159/000487610] [PMID: 29768269]
[82]
Arias, L.; Gómez-Ulla, F.; Ruiz-Moreno, J.M. Ranibizumab in monotherapy and combined with photodynamic therapy for retinal angiomatous proliferation. Clin. Ophthalmol., 2016, 10, 861-869.
[http://dx.doi.org/10.2147/OPTH.S106092] [PMID: 27274190]
[83]
Lee, W.K.; Iida, T.; Ogura, Y.; Chen, S-J.; Wong, T.Y.; Mitchell, P.; Cheung, G.C.M.; Zhang, Z.; Leal, S.; Ishibashi, T. PLANET Investigators. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET Study: a randomized clinical trial. JAMA Ophthalmol., 2018, 136(7), 786-793.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.1804] [PMID: 29801063]
[84]
Freiberg, F.J.; Michels, S.; Muldrew, A.; Slakter, J.; O’Shaughnessy, D.; Czeszynski, A.; Danielson, L.; Jackson, T.L.; Chakravarthy, U. Microvascular abnormalities secondary to radiation therapy in neovascular age-related macular degeneration: findings from the INTREPID clinical trial. Br. J. Ophthalmol., 2019, 103(4), 469-474.
[http://dx.doi.org/10.1136/bjophthalmol-2018-311865] [PMID: 29930098]
[85]
Arslan, J.; Baird, P.N. Changing vision: a review of pharmacogenetic studies for treatment response in age-related macular degeneration patients. Pharmacogenomics, 2018, 19(5), 435-461.
[http://dx.doi.org/10.2217/pgs-2017-0183] [PMID: 29577807]
[86]
Cobos, E.; Recalde, S.; Anter, J.; Hernandez-Sanchez, M.; Barreales, C.; Olavarrieta, L.; Valverde, A.; Suarez-Figueroa, M.; Cruz, F.; Abraldes, M.; Pérez-Pérez, J.; Fernández-Robredo, P.; Arias, L.; García-Layana, A. Association between CFH, CFB, ARMS2, SERPINF1, VEGFR1 and VEGF polymorphisms and anatomical and functional response to ranibizumab treatment in neovascular age-related macular degeneration. Acta Ophthalmol., 2018, 96(2), e201-e212.
[http://dx.doi.org/10.1111/aos.13519] [PMID: 28926193]
[87]
Ueda-Consolvo, T.; Hayashi, A.; Ozaki, M.; Nakamura, T.; Yagou, T.; Abe, S. The relationship between vascular endothelial dysfunction and treatment frequency in neovascular age-related macular degeneration. Jpn. J. Ophthalmol., 2017, 61(4), 347-353.
[http://dx.doi.org/10.1007/s10384-017-0515-z] [PMID: 28447271]
[88]
Lorés-Motta, L.; Riaz, M.; Grunin, M.; Corominas, J.; van Asten, F.; Pauper, M.; Leenders, M.; Richardson, A.J.; Muether, P.; Cree, A.J.; Griffiths, H.L.; Pham, C.; Belanger, M-C.; Meester-Smoor, M.A.; Ali, M.; Heid, I.M.; Fritsche, L.G.; Chakravarthy, U.; Gale, R.; McKibbin, M.; Inglehearn, C.F.; Schlingemann, R.O.; Omar, A.; Chen, J.; Koenekoop, R.K.; Fauser, S.; Guymer, R.H.; Hoyng, C.B.; de Jong, E.K.; Lotery, A.J.; Mitchell, P.; den Hollander, A.I.; Baird, P.N.; Chowers, I. Association of genetic variants with response to anti-vascular endothelial growth factor therapy in age-related macular degeneration. JAMA Ophthalmol., 2018, 136(8), 875-884.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.2019] [PMID: 29852030]
[89]
Valverde-Megías, A.; Veganzones-de-Castro, S.; Donate-López, J.; Maestro-de-Las-Casas, M.L.; Megías-Fresno, A.; García-Feijoo, J. ARMS2 A69S polymorphism is associated with the number of ranibizumab injections needed for exudative age-related macular degeneration in a pro re nata regimen during 4 years of follow-up. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(11), 2091-2098.
[http://dx.doi.org/10.1007/s00417-017-3748-0] [PMID: 28744656]
[90]
Brión, M.; Sanchez-Salorio, M.; Cortón, M.; de la Fuente, M.; Pazos, B.; Othman, M.; Swaroop, A.; Abecasis, G.; Sobrino, B.; Carracedo, A. Spanish multi-centre group of AMD. Genetic association study of age-related macular degeneration in the Spanish population. Acta Ophthalmol., 2011, 89(1), e12-e22.
[http://dx.doi.org/10.1111/j.1755-3768.2010.02040.x] [PMID: 21106043]
[91]
García-Quintanilla, L.; Maroñas, O.; Luaces-Rodriguez, A.; Fernández-Ferreiro, A.; LaTorre Pellicer, A.; Abraldes, M.; Lamas, M.; Carracedo, A. Anti-VEGF treatment and response in age-related macular degeneration: disease’s susceptibility, pharmacogenetics, and pharmacokinetics. Curr. Med. Chem., In Press
[http://dx.doi.org/10.2174/0929867326666190711105325] [PMID: 31296152]
[92]
Guzman-Aranguez, A.; Loma, P.; Pintor, J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br. J. Pharmacol., 2013, 170(4), 730-747.
[http://dx.doi.org/10.1111/bph.12330] [PMID: 23937539]
[93]
Safety efficacy study evaluating the combination of bevasiranib lucentis therapy in wet AMD - Study Results - Clinical Trials. Available at: https://clinicaltrials.gov/ct2/show/results/NCT00499590 (Accessed September 23, 2018)
[94]
Hernández-Zimbrón, L.F.; Zamora-Alvarado, R.; Ochoa-De la Paz, L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-related macular degeneration: new paradigms for treat-ment and management of AMD. Oxid. Med. Cell. Longev., 2018, 2018, 8374647
[http://dx.doi.org/https://doi.org/10.1155/2018/8374647] [PMID: 29484106]
[95]
Kaiser, P.K.; Symons, R.C.A.; Shah, S.M.; Quinlan, E.J.; Tabandeh, H.; Do, D.V.; Reisen, G.; Lockridge, J.A.; Short, B.; Guerciolini, R.; Nguyen, Q.D. Sirna-027 Study Investigators. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am. J. Ophthalmol., 2010, 150(1), 33-39.
[http://dx.doi.org/10.1016/j.ajo.2010.02.006] [PMID: 20609706]
[96]
Nguyen, Q.D.; Schachar, R.A.; Nduaka, C.I.; Sperling, M.; Klamerus, K.J.; Chi-Burris, K.; Yan, E.; Paggiarino, D.A.; Rosenblatt, I.; Aitchison, R.; Erlich, S.S. MONET Clinical Study Group. Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study). Ophthalmology, 2012, 119(9), 1867-1873.
[http://dx.doi.org/10.1016/j.ophtha.2012.03.043] [PMID: 22683252]
[97]
A depot formulation of sunitinib malate (GB-102) in subjects with neovascular (Wet) age-related macular degeneration. Available at: https://clinicaltrials.gov/ct2/show/NCT03249740 (Accessed: September 23, 2018).
[98]
Study of the intravitreal implantation of NT-503-3 encapsulated cell technology (ECT) for the treatment of recurrent choroidal neovascularization (CNV) secondary to agerelated macular degeneration (AMD). Available at: https://clinicaltrials.gov/ct2/show/NCT02228304 (Accessed: September 23, 2018)
[99]
Guerrero-Naranjo, J.L.; Quiroz-Mercado, H.; Sanchez-Bermudez, G.; Schoonewolff, F.; Longoria, S.S.; Vera, R.R.; Tao, W.; Beckman, R.; Morales-Canton, V. Safety of implantation of the NT-503 device in patients with choroidal neovascularization secondary to age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2013, 54(15), 3298-3298.
[100]
Adamson, P.; Wilde, T.; Dobrzynski, E.; Sychterz, C.; Polsky, R.; Kurali, E.; Haworth, R.; Tang, C-M.; Korczynska, J.; Cook, F.; Papanicolaou, I.; Tsikna, L.; Roberts, C.; Hughes-Thomas, Z.; Walford, J.; Gibson, D.; Warrack, J.; Smal, J.; Verrijk, R.; Miller, P.E.; Nork, T.M.; Prusakiewicz, J.; Streit, T.; Sorden, S.; Struble, C.; Christian, B.; Catchpole, I.R. Single ocular injection of a sustainedrelease anti-VEGF de-livers 6months pharmacokinetics and efficacy in a primate laser CNV model. J. Control. Release, 2016, 244(Pt A), 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.026] [PMID: 27810558]
[101]
House, S.E.D.W. House, S.E.D.W. Preclinical studies show pSivida’s Durasert implant delivering TKI just as effective as injection of FDA-approved biologic in wet AMD; shares up 5%, Seek-ing Alpha. (400AD). Available at: https://seekingalpha.com/news/3191730-preclinical-studies-show-psividas-durasert-implant-delivering-tki-just-effective-injection (Accessed: September 23, 2018)
[102]
Chakravarthy, U.; Bailey, C.; Brown, D.; Campochiaro, P.; Chittum, M.; Csaky, K.; Tufail, A.; Yates, P.; Cech, P.; Giraudon, M.; Delmar, P.; Szczesny, P.; Sahni, J.; Boulay, A.; Nagel, S.; Fürst-Recktenwald, S.; Schwab, D.; Phase, I. Trial of anti-vascular endothelial growth factor/anti-angiopoietin 2 bispecific antibody RG7716 for neovascular age-related macular degeneration. Ophthalmol. Retina, 2017, 1(6), 474-485.
[http://dx.doi.org/10.1016/j.oret.2017.03.003] [PMID: 31047438]
[103]
CLN-0046: treatment of amd subjects with OTX-TKI. Available at: https://clinicaltrials.gov/ct2/show/NCT03630315 (Accessed: October 2, 2018).
[104]
Rempel, V.; Fuchs, A.; Hinz, S.; Karcz, T.; Lehr, M.; Koetter, U.; Müller, C.E. Magnolia extract, magnolol, and metabolites: activation of cannabinoid cb2 receptors and blockade of the related GPR55. ACS Med. Chem. Lett., 2012, 4(1), 41-45.
[http://dx.doi.org/10.1021/ml300235q] [PMID: 24900561]
[105]
Safety and efficacy of IONIS-FB-Lrx in up to 120 Patients 55 and older with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). Available at: https://clinicaltrials.gov/ct2/show/NCT03446144 (Accessed: October 2, 2018).
[106]
McKenzie, J.A.G.; Fruttiger, M.; Abraham, S.; Lange, C.A.K.; Stone, J.; Gandhi, P.; Wang, X.; Bainbridge, J.; Moss, S.E.; Greenwood, J. Apelin is required for non-neovascular remodeling in the retina. Am. J. Pathol., 2012, 180(1), 399-409.
[http://dx.doi.org/10.1016/j.ajpath.2011.09.035] [PMID: 22067912]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 4
Year: 2020
Page: [583 - 598]
Pages: 16
DOI: 10.2174/0929867326666190726121711
Price: $65

Article Metrics

PDF: 47
HTML: 8
EPUB: 1