Imaging in Suspected Cardiac Sarcoidosis: A Diagnostic Challenge

Author(s): Francis J. Ha*, Sharad Agarwal, Katharine Tweed, Sonny C. Palmer, Heath S. Adams, Muhunthan Thillai, Lynne Williams

Journal Name: Current Cardiology Reviews

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Cardiac Sarcoidosis (CS) represents a unique diagnostic dilemma. Guidelines have been recently revised to reflect the established role of sophisticated imaging techniques. Trans-thoracic Echocardiography (TTE) is widely adopted for initial screening of CS. Contemporary TTE techniques could enhance detection of subclinical Left Ventricular (LV) dysfunction, particularly LV global longitudinal strain assessment which predicts event-free survival (meta-analysis of 5 studies, hazard ratio 1.28, 95% confidence interval 1.18-1.37, p < 0.0001). However, despite the wide availability of TTE, it has limited sensitivity and specificity for CS diagnosis. Cardiac Magnetic resonance Imaging (CMR) is a crucial diagnostic modality for suspected CS. Presence of late gadolinium enhancement signifies myocardial scar and enables risk stratification. Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) coupled with myocardial perfusion imaging can identify active CS and guide immunosuppressant therapy. Gallium scintigraphy may be considered although FDG-PET is often preferred. While CMR and FDG-PET provide complementary information in CS evaluation, current guidelines do not recommend which imaging modalities are essential in suspected CS and if so, which modality should be performed first. The utility of hybrid imaging combining both advanced imaging modalities in a single scan is currently being explored, although not yet widely available. In view of recent, significant advances in cardiac imaging techniques, this review aims to discuss changes in guidelines for CS diagnosis, the role of various cardiac imaging modalities and the future direction in CS.

Keywords: Cardiac sarcoidosis, trans-thoracic echocardiography, LV dysfunction, magnetic resonance imaging, immunosuppressant therapy, FDG-PET.

Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007; 357(21): 2153-65.
[] [PMID: 18032765]
Ungprasert P, Carmona EM, Utz JP, Ryu JH, Crowson CS, Matteson EL. Epidemiology of sarcoidosis 1946-2013: A population-based study. Mayo Clin Proc 2016; 91(2): 183-8.
[] [PMID: 26727158]
Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: A clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 1978; 58(6): 1204-11.
[] [PMID: 709777]
Matsui Y, Iwai K, Tachibana T, et al. Clinicopathological study of fatal myocardial sarcoidosis. Ann N Y Acad Sci 1976; 278: 455-69.
[] [PMID: 1067031]
Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015; 131(7): 624-32.
[] [PMID: 25527698]
Mehta D, Lubitz SA, Frankel Z, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 2008; 133(6): 1426-35.
[] [PMID: 18339784]
Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11(7): 1305-23.
Terasaki F, Yoshinaga K. New guidelines for diagnosis of cardiac sarcoidosis in Japan annals of nuclear cardiology 2017.
Juneau D, Nery P, Russo J, et al. How common is isolated cardiac sarcoidosis? Extra-cardiac and cardiac findings on clinical examination and whole-body 18F-fluorodeoxyglucose positron emission tomography. Int J Cardiol 2018; 253: 189-93.
[] [PMID: 29306462]
Steger A, Weichert W, Ibrahim T, Rischpler C. Isolated cardiac sarcoidosis: the crucial role of multimodal imaging with positron emission tomography/magnetic resonance imaging in diagnosis and therapy surveillance. Eur Heart J 2018; 39(6): 488.
[] [PMID: 29182753]
Kouranos V, Tzelepis GE, Rapti A, et al. Complementary role of cmr to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. JACC Cardiovasc Imaging 2017; 10(12): 1437-47.
[] [PMID: 28330653]
Gorcsan J III, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 2011; 58(14): 1401-13.
[] [PMID: 21939821]
Sperry BW, Ibrahim A, Negishi K, et al. Incremental prognostic value of global longitudinal strain and 18f-fludeoxyglucose positron emission tomography in patients with systemic sarcoidosis. Am J Cardiol 2017; 119(10): 1663-9.
[] [PMID: 28343598]
Pizarro C, Kluenker F, Hammerstingl C, Skowasch D. Diagnostic value of speckle-tracking echocardiography in confirmed cardiac sarcoidosis. Clin Res Cardiol 2016; 105(10): 884-6.
[] [PMID: 27270760]
Murtagh G, Laffin LJ, Patel KV, et al. Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography 2016; 33(9): 1344-52.
[] [PMID: 27677642]
Joyce E, Ninaber MK, Katsanos S, et al. Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis. Eur J Heart Fail 2015; 17(1): 51-62.
[] [PMID: 25431267]
Schouver ED, Moceri P, Doyen D, et al. Early detection of cardiac involvement in sarcoidosis with 2-dimensional speckle-tracking echocardiography. Int J Cardiol 2017; 227: 711-6.
[] [PMID: 27836307]
Felekos I, Aggeli C, Gialafos E, et al. Global longitudinal strain and long-term outcomes in asymptomatic extracardiac sarcoid patients with no apparent cardiovascular disease. Echocardiography 2018; 35(6): 804-8.
Orii M, Hirata K, Tanimoto T, et al. Myocardial damage detected by two-dimensional speckle-tracking echocardiography in patients with extracardiac sarcoidosis: Comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2015; 28(6): 683-91.
[] [PMID: 25835340]
Satoh H, Sano M, Suwa K, et al. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis. World J Cardiol 2014; 6(7): 585-601.
[] [PMID: 25068019]
Smedema JP, Snoep G, van Kroonenburgh MP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 2005; 45(10): 1683-90.
[] [PMID: 15893188]
Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009; 120(20): 1969-77.
[] [PMID: 19884472]
Coleman GC, Shaw PW, Balfour PC Jr, et al. Prognostic value of myocardial scarring on cmr in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging 2017; 10(4): 411-20.
[] [PMID: 27450877]
Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: Risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2016; 9(1)e003738
[] [PMID: 26763280]
Ise T, Hasegawa T, Morita Y, et al. Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart 2014; 100(15): 1165-72.
[] [PMID: 24829369]
Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: An update. AJNR Am J Neuroradiol 2016; 37(7): 1192-8.
[] [PMID: 26659341]
Shinbane JS, Colletti PM, Shellock FG. Magnetic resonance imaging in patients with cardiac pacemakers: era of “MR Conditional” designs. J Cardiovasc Magn Reson 2011; 13(1): 63.
[] [PMID: 22032338]
Sasaki T, Hansford R, Zviman MM, et al. Quantitative assessment of artifacts on cardiac magnetic resonance imaging of patients with pacemakers and implantable cardioverter-defibrillators. Circ Cardiovasc Imaging 2011; 4(6): 662-70.
[] [PMID: 21946701]
Writing group; Document reading group; EACVI Reviewers: This document was reviewed by members of the EACVI Scientific Documents Committee for 2014-2016 and 2016-2018..
[] [PMID: 28984894]
Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63(4): 329-36.
[] [PMID: 24140661]
Skali H, Schulman AR, Dorbala S. (18)F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep 2013; 15(5): 352.
[] [PMID: 23504346]
Wicks EC, Menezes LJ, Barnes A, et al. Diagnostic accuracy and prognostic value of simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging 2018; 19(7): 757-67.
[] [PMID: 29319785]
Bravo PE, Raghu G, Rosenthal DG, et al. Risk assessment of patients with clinical manifestations of cardiac sarcoidosis with positron emission tomography and magnetic resonance imaging. Int J Cardiol 2017; 241: 457-62.
[] [PMID: 28318664]
Sperry BW, Tamarappoo BK, Oldan JD, et al. Prognostic impact of extent, severity, and heterogeneity of abnormalities on 18F-FDG PET scans for suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2018; 11(2 Pt 2): 336-45.
[] [PMID: 28823747]
Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med 2012; 53(2): 241-8.
[] [PMID: 22228794]
Jamar F, Buscombe J, Chiti A, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med 2013; 54(4): 647-58.
[] [PMID: 23359660]
Malinowska E, Doboszyńska A, Śliwińska A, et al. The use of 67Ga scintigraphy in patients with sarcoidosis. Nucl Med Rev Cent East Eur 2018; 21(1): 59-65.
[] [PMID: 29319141]
Vita T, Okada DR, Veillet-Chowdhury M, et al. Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis. Circ Cardiovasc Imaging 2018; 11(1)e007030
[] [PMID: 29335272]
Orii M, Hirata K, Tanimoto T, et al. Comparison of cardiac MRI and 18F-FDG positron emission tomography manifestations and regional response to corticosteroid therapy in newly diagnosed cardiac sarcoidosis with complet heart block. Heart Rhythm: The Off J Heart 2015; 12(12): 2477-85.
Soussan M, Brillet PY, Nunes H, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013; 20(1): 120-7.
Ohira H, Tsujino I, Ishimaru S, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008; 35(5): 933-41.
[] [PMID: 18084757]
Ju Lee N, Lee B, Litt H. Cardiac MRI vs. myocardial 18F-FDG PET/CT in patients with clinical concern for cardiac sarcoid. J Cardiovasc Magn Reson 2015; 17(Suppl. 1): O30.
Ohira H, Birnie DH, Pena E, et al. Comparison of (18)F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2016; 43(2): 259-69.
[] [PMID: 26359191]
Yodogawa K, Seino Y, Shiomura R, et al. Recovery of atrioventricular block following steroid therapy in patients with cardiac sarcoidosis. J Cardiol 2013; 62(5): 320-5.
[] [PMID: 24016620]
Chiu CZ, Nakatani S, Zhang G, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol 2005; 95(1): 143-6.
[] [PMID: 15619415]
Dweck MR, Abgral R, Trivieri MG, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging 2018; 11(1): 94-107.
[] [PMID: 28624396]
Hamzeh NY, Wamboldt FS, Weinberger HD. Management of cardiac sarcoidosis in the United States: A Delphi study. Chest 2012; 141(1): 154-62.
[] [PMID: 21737493]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [90 - 97]
Pages: 8
DOI: 10.2174/1573403X15666190725121246
Price: $65

Article Metrics

PDF: 22