Overexpression of miR-340-5p Inhibits Skin Fibroblast Proliferation by Targeting Kruppel-like Factor 2

Author(s): Ling Chen, Qian Li, Xun Lu, Xiaohua Dong*, Jingyun Li*

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 13 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: MicroRNA (miR)-340-5p has been identified to play a key role in several cancers. However, the function of miR-340-5p in skin fibroblasts remains largely unknown.

Methods: Gain of function experiments were performed by infecting normal skin fibroblast cells with a lentivirus carrying 22-bp miR-340-5p. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. To uncover the mechanisms, mRNA-seq was used. Differentially expressed mRNAs were further determined by Gene Ontology and KEGG pathway analyses. The protein levels were analysed by Western blotting. A dual-luciferase reporter assay was used to detect the direct binding of miR-340-5p with the 3'UTR of Kruppel-like factor 2 (KLF2).

Results: MiR-340-5p lentivirus infection suppressed normal skin fibroblast proliferation. The mRNAseq data revealed that 41 mRNAs were differentially expressed, including 22 upregulated and 19 downregulated transcripts in the miR-340-5p overexpression group compared with those in the control group. Gene Ontology and KEGG pathway analyses revealed that miR-340-5p overexpression correlated with the macromolecule biosynthetic process, cellular macromolecule biosynthetic process, membrane, and MAPK signalling pathway. Bioinformatics analysis and luciferase reporter assays showed that miR-340-5p binds to the 3'UTR of KLF2. Forced expression of miR-340-5p decreased the expression of KLF2 in normal skin fibroblasts. Overexpression of KLF2 restored skin fibroblast proliferation in the miR-340-5p overexpression group.

Conclusion: This study demonstrates that miR-340-5p may suppress skin fibroblast proliferation, possibly through targeting KLF2. These findings could help us understand the function of miR-340-5p in skin fibroblasts. miR-340-5p could be a therapeutic target for preventing scarring.

Keywords: miR-340-5p, skin fibroblasts, cell growth, KLF2, microRNAs, fibroblast proliferation.

[1]
Zhang, J.; Li, Y.; Bai, X.; Li, Y.; Shi, J.; Hu, D. Recent advances in hypertrophic scar. Histol. Histopathol., 2018, 33(1), 27-39.
[PMID: 28560711]
[2]
Ray, S.; Ju, X.; Sun, H.; Finnerty, C.C.; Herndon, D.N.; Brasier, A.R. The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar. J. Invest. Dermatol., 2013, 133(5), 1212-1220.
[http://dx.doi.org/10.1038/jid.2012.499] [PMID: 23303450]
[3]
Zhou, X.; Xie, Y.; Xiao, H.; Deng, X.; Wang, Y.; Jiang, L.; Liu, C.; Zhou, R. MicroRNA-519d inhibits proliferation and induces apoptosis of human hypertrophic scar fibroblasts through targeting Sirtuin 7. Biomed. Pharmacother., 2018, 100, 184-190.
[http://dx.doi.org/10.1016/j.biopha.2018.01.158] [PMID: 29428666]
[4]
Wu, X.; Li, J.; Yang, X.; Bai, X.; Shi, J.; Gao, J.; Li, Y.; Han, S.; Zhang, Y.; Han, F.; Liu, Y.; Li, X.; Wang, K.; Zhang, J.; Wang, Z.; Tao, K.; Hu, D. miR-155 inhibits the formation of hypertrophic scar fibroblasts by targeting HIF-1α via PI3K/AKT pathway. J. Mol. Histol., 2018, 49(4), 377-387.
[http://dx.doi.org/10.1007/s10735-018-9778-z] [PMID: 29785488]
[5]
Xiao, Y.Y.; Fan, P.J.; Lei, S.R.; Qi, M.; Yang, X.H. MiR-138/peroxisome proliferator-activated receptor β signaling regulates human hypertrophic scar fibroblast proliferation and movement in vitro. J. Dermatol., 2015, 42(5), 485-495.
[http://dx.doi.org/10.1111/1346-8138.12792] [PMID: 25752881]
[6]
Guo, J.; Lin, Q.; Shao, Y.; Rong, L.; Zhang, D. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway. Can. J. Physiol. Pharmacol., 2017, 95(4), 437-442.
[http://dx.doi.org/10.1139/cjpp-2016-0248] [PMID: 28092445]
[7]
Bi, S.; Chai, L.; Yuan, X.; Cao, C.; Li, S. MicroRNA-98 inhibits the cell proliferation of human hypertrophic scar fibroblasts via targeting Col1A1. Biol. Res., 2017, 50(1), 22.
[http://dx.doi.org/10.1186/s40659-017-0127-6] [PMID: 28629444]
[8]
Gras, C.; Ratuszny, D.; Hadamitzky, C.; Zhang, H.; Blasczyk, R.; Figueiredo, C. miR-145 contributes to hypertrophic scarring of the skin by inducing myofibroblast activity. Mol. Med., 2015, 21, 296-304.
[http://dx.doi.org/10.2119/molmed.2014.00172] [PMID: 25876136]
[9]
Ruan, J.; Zheng, L.; Hu, N.; Guan, G.; Chen, J.; Zhou, X.; Li, M. Long noncoding RNA SNHG6 promotes osteosarcoma cell proliferation through regulating p21 and KLF2. Arch. Biochem. Biophys., 2018, 646, 128-136.
[http://dx.doi.org/10.1016/j.abb.2018.03.036] [PMID: 29608878]
[10]
Zou, K.; Lu, X.; Ye, K.; Wang, C.; You, T.; Chen, J. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol. Ther., 2016, 17(1), 20-26.
[http://dx.doi.org/10.1080/15384047.2015.1108484] [PMID: 26853883]
[11]
Wu, Z.S.; Wu, Q.; Wang, C.Q.; Wang, X.N.; Huang, J.; Zhao, J.J.; Mao, S.S.; Zhang, G.H.; Xu, X.C.; Zhang, N. miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer, 2011, 117(13), 2842-2852.
[http://dx.doi.org/10.1002/cncr.25860] [PMID: 21692045]
[12]
Schroeder, M.; Jakovcevski, M.; Polacheck, T.; Drori, Y.; Luoni, A.; Röh, S.; Zaugg, J.; Ben-Dor, S.; Albrecht, C.; Chen, A. Placental miR-340 mediates vulnerability to activity based anorexia in mice. Nat. Commun., 2018, 9(1), 1596.
[http://dx.doi.org/10.1038/s41467-018-03836-2] [PMID: 29686286]
[13]
Wozniak, M.; Sztiller-Sikorska, M.; Czyz, M. Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp. Mol. Pathol., 2015, 99(3), 707-716.
[http://dx.doi.org/10.1016/j.yexmp.2015.11.014] [PMID: 26554847]
[14]
Yan, H.; Zhang, B.; Fang, C.; Chen, L. miR-340 alleviates chemoresistance of osteosarcoma cells by targeting ZEB1. Anticancer Drugs, 2018, 29(5), 440-448.
[http://dx.doi.org/10.1097/CAD.0000000000000614] [PMID: 29494357]
[15]
Xie, L.; Chen, Z.; Liu, H.; Guan, L.; Wang, Z.; Li, W. Effects of miR-340 on hepatocellular carcinoma by targeting the DcR3 gene. Dig. Liver Dis., 2018, 50(3), 291-296.
[http://dx.doi.org/10.1016/j.dld.2017.10.024] [PMID: 29311025]
[16]
Xiao, H.; Yu, L.; Li, F.; Wang, H.; Li, W.; He, X. MiR-340 suppresses the metastasis by targeting EphA3 in cervical cancer. Cell Biol. Int., 2018, 42(9), 1115-1123.
[http://dx.doi.org/10.1002/cbin.10974] [PMID: 29660208]
[17]
Chen, L.; Li, J.; Li, Q.; Li, X.; Gao, Y.; Hua, X.; Zhou, B.; Li, J. Overexpression of LncRNA AC067945.2 down-regulates collagen expression in skin fibroblasts and possibly correlates with the VEGF and Wnt signalling pathways. Cell. Physiol. Biochem., 2018, 45(2), 761-771.
[http://dx.doi.org/10.1159/000487167] [PMID: 29414824]
[18]
Li, J.; Long, W.; Li, Q.; Zhou, Q.; Wang, Y.; Wang, H.; Zhou, B.; Li, J. Distinct expression profiles of lncRNAs between regressive and mature scars. Cell. Physiol. Biochem., 2015, 35(2), 663-675.
[http://dx.doi.org/10.1159/000369727] [PMID: 25613406]
[19]
Gao, Y.; Cao, Y.; Cui, X.; Wang, X.; Zhou, Y.; Huang, F.; Wang, X.; Wen, J.; Xie, K.; Xu, P.; Guo, X.; You, L.; Ji, C. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Mol. Cell. Endocrinol., 2018, 476, 155-164.
[http://dx.doi.org/10.1016/j.mce.2018.05.005] [PMID: 29753771]
[20]
Chen, L.; Li, J.; Li, Q.; Yan, H.; Zhou, B.; Gao, Y.; Li, J. Non-coding RNAs: The new insight on hypertrophic scar. J. Cell. Biochem., 2017, 118(8), 1965-1968.
[http://dx.doi.org/10.1002/jcb.25873] [PMID: 28067426]
[21]
Wang, X.; Zhang, Y.; Jiang, B.H.; Zhang, Q.; Zhou, R.P.; Zhang, L.; Wang, C. Study on the role of Hsa-miR-31-5p in hypertrophic scar formation and the mechanism. Exp. Cell Res., 2017, 361(2), 201-209.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.009] [PMID: 29056521]
[22]
Li, P.; He, Q.Y.; Luo, C.Q. Overexpression of miR-200b inhibits the cell proliferation and promotes apoptosis of human hypertrophic scar fibroblasts in vitro. J. Dermatol., 2014, 41(10), 903-911.
[http://dx.doi.org/10.1111/1346-8138.12600] [PMID: 25228082]
[23]
Xiao, L.; Tang, T.; Huang, Y.; Guo, J. MiR-564 promotes hypertrophic scar via up-regulating TGF-beta1. G. Ital. Dermatol. Venereol., 2017.
[24]
Xiao, C.; Hong, H.; Yu, H.; Yuan, J.; Guo, C.; Cao, H.; Li, W. MiR-340 affects gastric cancer cell proliferation, cycle, and apoptosis through regulating SOCS3/JAK-STAT signaling pathway. Immunopharmacol. Immunotoxicol., 2018, 40(4), 278-283.
[http://dx.doi.org/10.1080/08923973.2018.1455208] [PMID: 29658372]
[25]
Qin, Y.; Zhou, X.; Huang, C.; Li, L.; Liu, H.; Liang, N.; Chen, Y.; Ma, D.; Han, Z.; Xu, X.; He, J.; Li, S. Lower miR-340 expression predicts poor prognosis of non-small cell lung cancer and promotes cell proliferation by targeting CDK4. Gene, 2018, 675, 278-284.
[http://dx.doi.org/10.1016/j.gene.2018.06.062] [PMID: 29935356]
[26]
Huang, T.; Zhou, Y.; Zhang, J.; Wong, C.C.; Li, W.; Kwan, J.S.H.; Yang, R.; Chan, A.K.Y.; Dong, Y.; Wu, F.; Zhang, B.; Cheung, A.H.K.; Wu, W.K.K.; Cheng, A.S.L.; Yu, J.; Wong, N.; Kang, W.; To, K.F. SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene, 2018, 37(9), 1159-1174.
[http://dx.doi.org/10.1038/s41388-017-0029-7] [PMID: 29234151]
[27]
Sood, R.F.; Arbabi, S.; Honari, S.; Gibran, N.S. Missense variant in MAPK inactivator PTPN5 is associated with decreased severity of post-burn hypertrophic scarring. PLoS One, 2016, 11(2)e0149206
[http://dx.doi.org/10.1371/journal.pone.0149206] [PMID: 26872063]
[28]
Wang, X.; Song, Y. MicroRNA-340 inhibits the growth and invasion of angiosarcoma cells by targeting SIRT7. Biomed. Pharmacother., 2018, 103, 1061-1068.
[http://dx.doi.org/10.1016/j.biopha.2018.04.148] [PMID: 29710664]
[29]
Kaczynski, J.; Cook, T.; Urrutia, R. Sp1- and Krüppel-like transcription factors. Genome Biol., 2003, 4(2), 206.
[http://dx.doi.org/10.1186/gb-2003-4-2-206] [PMID: 12620113]
[30]
Xu, T.P.; Liu, X.X.; Xia, R.; Yin, L.; Kong, R.; Chen, W.M.; Huang, M.D.; Shu, Y.Q. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene, 2015, 34(45), 5648-5661.
[http://dx.doi.org/10.1038/onc.2015.18] [PMID: 25728677]
[31]
Li, X.; Li, Z.; Liu, Z.; Xiao, J.; Yu, S.; Song, Y. Long non-coding RNA DLEU1 predicts poor prognosis of gastric cancer and contributes to cell proliferation by epigenetically suppressing KLF2. Cancer Gene Ther., 2018, 25(3-4), 58-67.
[http://dx.doi.org/10.1038/s41417-017-0007-9] [PMID: 29282356]
[32]
Wang, W.; Wang, J.; Yan, M.; Jiang, J.; Bian, A. MiRNA-92a protects pancreatic B-cell function by targeting KLF2 in diabetes mellitus. Biochem. Biophys. Res. Commun., 2018, 500(3), 577-582.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.097] [PMID: 29660330]
[33]
Serr, I.; Fürst, R.W.; Ott, V.B.; Scherm, M.G.; Nikolaev, A.; Gökmen, F.; Kälin, S.; Zillmer, S.; Bunk, M.; Weigmann, B.; Kunschke, N.; Loretz, B.; Lehr, C.M.; Kirchner, B.; Haase, B.; Pfaffl, M.; Waisman, A.; Willis, R.A.; Ziegler, A.G.; Daniel, C. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc. Natl. Acad. Sci. USA, 2016, 113(43), E6659-E6668.
[http://dx.doi.org/10.1073/pnas.1606646113] [PMID: 27791035]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 13
Year: 2019
Page: [1147 - 1154]
Pages: 8
DOI: 10.2174/1389201020666190725112304
Price: $65

Article Metrics

PDF: 28
HTML: 5