A Concise Review of Nanomaterials for Drug Delivery and Release

Author(s): Alfonso Toro-Córdova, Beatriz Sanz, Gerardo F. Goya*.

Journal Name: Current Nanoscience

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


This review provides an updated vision about the recent developments in the field of drug vectorization using functional nanoparticles and other nanovectors. From a large number of these nanotechnology-based drug delivery systems that emerge nearly every week, only a tiny fraction reaches a pre-clinical or clinical phase study. In this report, we intend to provide contextual information about those nanocarriers and release methods that have shown the best outcomes at in vitro and in vivo experiments, highlighting those with proven therapeutic efficiency in humans. From silicabased porous nanoparticles to liposomes or polymeric nanoparticles, each one of these nanosystems has its advantages and drawbacks. We describe and discuss briefly those approaches that, in our criterion, have provided significant advancements over existing therapies at the in vivo level. This work also provides a general view of those commercially available nanovectors and their specific area of therapeutic action.

Keywords: Drug release, drug delivery system, nanoparticles, liposome, therapeutic drugs, targeting, in vivo drug delivery.

Nyström, C.; Bisrat, M. Coulter counter measurements of solubility and dissolution rate of sparingly soluble compounds using micellar solutions. J. Pharm. Pharmacol., 1986, 38(6), 420-425.
[http://dx.doi.org/10.1111/j.2042-7158.1986.tb04604.x] [PMID: 2873218]
Bazile, D.; Prud’homme, C.; Bassoullet, M.T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci., 1995, 84(4), 493-498.
[http://dx.doi.org/10.1002/jps.2600840420] [PMID: 7629743]
Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol., 1964, 8(5), 660-668.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
Mezei, M.; Gulasekharam, V. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci., 1980, 26(18), 1473-1477.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
Sarangi, B.; Jana, U.; Mohanta, G.P.; Manna, P.K. Drug release kinetics study of lovastatin loaded solid lipid nanoparticles for oral delivery. Curr. Nanosci., 2018, 14(4), 319-328.
Xing, H.; Hwang, K.; Lu, Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics, 2016, 6(9), 1336-1352.
[http://dx.doi.org/10.7150/thno.15464] [PMID: 27375783]
Soussan, E.; Cassel, S.; Blanzat, M.; Rico-Lattes, I. Drug delivery by soft matter: matrix and vesicular carriers. Angew. Chem. Int. Ed. Engl., 2009, 48(2), 274-288.
[http://dx.doi.org/10.1002/anie.200802453] [PMID: 19072808]
Armstrong, J.P.K.; Stevens, M.M. Strategic design of extracellular vesicle drug delivery systems. Adv. Drug Deliv. Rev., 2018, 130, 12-16.
[http://dx.doi.org/10.1016/j.addr.2018.06.017] [PMID: 29959959]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H-G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
E.L., Andaloussi S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, 12(5), 347-357.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res., 2015, 32(6), 2003-2014.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
Stoorvogel, W.; Kleijmeer, M.J.; Geuze, H.J.; Raposo, G. The biogenesis and functions of exosomes. Traffic, 2002, 3(5), 321-330.
[http://dx.doi.org/10.1034/j.1600-0854.2002.30502.x] [PMID: 11967126]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine (Lond.), 2018, 13(8), 929-952.
[http://dx.doi.org/10.2217/nnm-2017-0320] [PMID: 29546817]
Giannaccini, M.; Calatayud, M.P.; Poggetti, A.; Corbianco, S.; Novelli, M.; Paoli, M.; Battistini, P.; Castagna, M.; Dente, L.; Parchi, P.; Lisanti, M.; Cavallini, G.; Junquera, C.; Goya, G.F.; Raffa, V. Magnetic nanoparticles for efficient delivery of growth factors: Stimulation of peripheral nerve regeneration. Adv. Healthc. Mater., 2017, 6(7)
[http://dx.doi.org/10.1002/adhm.201601429] [PMID: 28156059]
Cao, Y.; Chen, Y.; Yu, T.; Guo, Y.; Liu, F.; Yao, Y.; Li, P.; Wang, D.; Wang, Z.; Chen, Y.; Ran, H. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics, 2018, 8(5), 1327-1339.
[http://dx.doi.org/10.7150/thno.21492] [PMID: 29507623]
Schroeder, A.; Avnir, Y.; Weisman, S.; Najajreh, Y.; Gabizon, A.; Talmon, Y.; Kost, J.; Barenholz, Y. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir, 2007, 23(7), 4019-4025.
[http://dx.doi.org/10.1021/la0631668] [PMID: 17319706]
Schwerdt, J.I.; Goya, G.F.; Calatayud, M.P.; Hereñú, C.B.; Reggiani, P.C.; Goya, R.G. Magnetic field-assisted gene delivery: achievements and therapeutic potential. Curr. Gene Ther., 2012, 12(2), 116-126.
[http://dx.doi.org/10.2174/156652312800099616] [PMID: 22348552]
McNamara, K.; Tofail, S.A.M. Nanoparticles in biomedical applications. Adv. Phys. X, 2017, 2(1), 54-88.
Noh, Y.W.; Lim, Y.T.; Chung, B.H. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J., 2008, 22(11), 3908-3918.
[http://dx.doi.org/10.1096/fj.08-112896] [PMID: 18682573]
Huang, L.; Wan, J.; Wei, X.; Liu, Y.; Huang, J.; Sun, X.; Zhang, R.; Gurav, D.D.; Vedarethinam, V.; Li, Y.; Chen, R.; Qian, K. Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun., 2017, 8(1), 220.
[http://dx.doi.org/10.1038/s41467-017-00220-4] [PMID: 28790311]
España-Sánchez, B.L.; Ávila-Orta, C.A.; Padilla-Vaca, L.F.; Barriga-Castro, E.D.; Soriano-Corral, F.; González-Morones, P.; Ramírez-Wong, D.G.; Luna-Bárcenas, G. Early stages of antibacterial damage of metallic nanoparticles by TEM and STEM-HAADF. Curr. Nanosci., 2017, 14(1), 54-61.
[http://dx.doi.org/10.2174/2468187307666170906150731] [PMID: 29399015]
Dykman, L.A.; Khlebtsov, N.G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials, 2016, 108, 13-34.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.040] [PMID: 27614818]
Panchapakesan, B.; Book-Newell, B.; Sethu, P.; Rao, M.; Irudayaraj, J. Gold nanoprobes for theranostics. Nanomedicine (Lond.), 2011, 6(10), 1787-1811.
[http://dx.doi.org/10.2217/nnm.11.155] [PMID: 22122586]
Koyani, R.; Perez-Robles, J.; Cadena-Nava, R.D.; Vazquez-Duhalt, R. Biomaterial-based nanoreactors, an alternative for enzyme delivery. Nanotechnol. Rev., 2017, 6(5), 405-419.
Torchi, A.; Simonelli, F.; Ferrando, R.; Rossi, G. Local enhancement of lipid membrane permeability induced by irradiated gold nanoparticles. ACS Nano, 2017, 11(12), 12553-12561.
[http://dx.doi.org/10.1021/acsnano.7b06690] [PMID: 29161019]
Jiang, B.; Li, C.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, M.S.A.; Islam, M.T.; Wood, K.; Henzie, J.; Yamauchi, Y. Mesoporous metallic rhodium nanoparticles. Nat. Commun., 2017, 8, 15581.
[http://dx.doi.org/10.1038/ncomms15581] [PMID: 28524873]
Figge, F.H.; Flower, G., Jr Method of administering therapeutic agents, A. Inc., Editor., 1969. AMP Inc.: USA
Thanh, N.T. Clinical Applications of Magnetic Nanoparticles: From Fabrication to Clinical Applications.; CRC Press, 2018.
Dobson, J.; El Haj, A.J.; Bin, H.; Markides, H.; Henstock, J.R. Applications of magnetic nanoparticles in tissue engineering and regenerative medicine. In: Donson, J.; Rinaldi, C., (Eds.). Nanomagnetic Actuation in Biomedicine; CRC Press, 2018; pp. 205-228.
Chiu-Lam, A.; Rinaldi, C. Nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields. Adv. Funct. Mater., 2016, 26(22), 3933-3941.
[http://dx.doi.org/10.1002/adfm.201505256] [PMID: 29225561]
Alphandery, E.; Haidar, D.A.; Seksek, O.; Thoreau, M.; Trautmann, A.; Bercovici, N.; Gazeau, F.; Guyot, F.; Chebbi, I. A Fluorescent nanoprobe for the detection of in situ temperature changes during hyperthermia treatment of tumors. Biophys. J., 2018, 114(3), 361a.
Hayashi, K.; Ono, K.; Suzuki, H.; Sawada, M.; Moriya, M.; Sakamoto, W.; Yogo, T. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl. Mater. Interfaces, 2010, 2(7), 1903-1911.
[http://dx.doi.org/10.1021/am100237p] [PMID: 20568697]
Hernández, R.; Sacristán, J.; Asín, L.; Torres, T.E.; Ibarra, M.R.; Goya, G.F.; Mijangos, C. Magnetic hydrogels derived from polysaccharides with improved specific power absorption: potential devices for remotely triggered drug delivery. J. Phys. Chem. B, 2010, 114(37), 12002-12007.
[http://dx.doi.org/10.1021/jp105556e] [PMID: 20806925]
Criado, M.; Sanz, B.; Goya, G.F.; Mijangos, C.; Hernández, R. Magnetically responsive biopolymeric multilayer films for local hyperthermia. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(43), 8570-8578.
Valdiglesias, V.; Fernández-Bertólez, N.; Kiliç, G.; Costa, C.; Costa, S.; Fraga, S.; Bessa, M.J.; Pásaro, E.; Teixeira, J.P.; Laffon, B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J. Trace Elem. Med. Biol., 2016, 38, 53-63.
[http://dx.doi.org/10.1016/j.jtemb.2016.03.017] [PMID: 27056797]
Patil, U.S.; Adireddy, S.; Jaiswal, A.; Mandava, S.; Lee, B.R.; Chrisey, D.B. In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int. J. Mol. Sci., 2015, 16(10), 24417-24450.
[http://dx.doi.org/10.3390/ijms161024417] [PMID: 26501258]
Li, W.; Hou, W.; Guo, X.; Luo, L.; Li, Q.; Zhu, C.; Yang, J.; Zhu, J.; Du, Y.; You, J. Temperature-controlled, phase-transition ultrasound imaging-guided photothermal-chemotherapy triggered by NIR light. Theranostics, 2018, 8(11), 3059-3073.
[http://dx.doi.org/10.7150/thno.23885] [PMID: 29896302]
Guo, Y.; Zhang, Y.; Ma, J.; Li, Q.; Li, Y.; Zhou, X.; Zhao, D.; Song, H.; Chen, Q.; Zhu, X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J. Control. Release, 2018, 272, 145-158.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.028] [PMID: 28442407]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
Paixão, P.; Gouveia, L.F.; Silva, N.; Morais, J.A.G. Evaluation of dissolution profile similarity - Comparison between the f2, the multivariate statistical distance and the f2 bootstrapping methods. Eur. J. Pharm. Biopharm., 2017, 112, 67-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.026] [PMID: 27865857]
Bibby, D.C.; Davies, N.M.; Tucker, I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm., 2000, 197(1-2), 1-11.
[http://dx.doi.org/10.1016/S0378-5173(00)00335-5] [PMID: 10704788]
Chiou, W.L.; Riegelman, S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci., 1971, 60(9), 1281-1302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
Juarez, J.M.; Cussa, J.; Gomez Costa, M.B.; Anunziata, O.A. Nanostructured ketorolac-tromethamine/MCF: Synthesis, characterization and application in drug release system. Curr. Nanosci., 2018, 14(5), 432-439.
Corrigan, O.I. Mechanisms of dissolution of fast release solid dispersions. Drug Dev. Ind. Pharm., 1985, 11(2-3), 697-724.
Craig, D.Q. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm., 2002, 231(2), 131-144.
[http://dx.doi.org/10.1016/S0378-5173(01)00891-2] [PMID: 11755266]
Quaglia, F.; Varricchio, G.; Miro, A.; La Rotonda, M.I.; Larobina, D.; Mensitieri, G. Modulation of drug release from hydrogels by using cyclodextrins: the case of nicardipine/beta-cyclodextrin system in crosslinked polyethylenglycol. J. Control. Release, 2001, 71(3), 329-337.
[http://dx.doi.org/10.1016/S0168-3659(01)00242-5] [PMID: 11295225]
Aloisio, C.; Gomes de Oliveira, A.; Longhi, M. Characterization, inclusion mode, phase-solubility and in vitro release studies of inclusion binary complexes with cyclodextrins and meglumine using sulfamerazine as model drug. Drug Dev. Ind. Pharm., 2014, 40(7), 919-928.
[http://dx.doi.org/10.3109/03639045.2013.790408] [PMID: 23627444]
Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery - a review. Pharm. Sci. Technol. Today, 2000, 3(4), 138-145.
[http://dx.doi.org/10.1016/S1461-5347(00)00247-9] [PMID: 10754543]
Lee, S.S.; Lim, C.B.; Pai, C.M.; Lee, S.; Park, I.; Seo, M.G.; Park, H. Composition and pharmaceutical dosage form for colonic drug delivery using polysaccharides. US6413494B1, July 02 2002.
Wang, Y.; Kohane, D.S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater., 2017, 2, 17020.
Meers, P. Enzyme-activated targeting of liposomes. Adv. Drug Deliv. Rev., 2001, 53(3), 265-272.
[http://dx.doi.org/10.1016/S0169-409X(01)00205-8] [PMID: 11744171]
Burke, C.; Dreher, M.R.; Negussie, A.H.; Mikhail, A.S.; Yarmolenko, P.; Patel, A.; Skilskyj, B.; Wood, B.J.; Haemmerich, D. Drug release kinetics of temperature sensitive liposomes measured at high-temporal resolution with a millifluidic device. Int. J. Hyperthermia, 2018, 34(6), 786-794.
[http://dx.doi.org/10.1080/02656736.2017.1412504] [PMID: 29284329]
Vankayala, R.; Hwang, K.C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: An emerging paradigm for cancer treatment. Adv. Mater., 2018, 30(23) e1706320
[http://dx.doi.org/10.1002/adma.201706320] [PMID: 29577458]
Hoare, T.; Timko, B.P.; Santamaria, J.; Goya, G.F.; Irusta, S.; Lau, S.; Stefanescu, C.F.; Lin, D.; Langer, R.; Kohane, D.S. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett., 2011, 11(3), 1395-1400.
[http://dx.doi.org/10.1021/nl200494t] [PMID: 21344911]
Salkho, N.M.; Turki, R.Z.; Guessoum, O.; Martins, A.M.; Vitor, R.F.; Husseini, G.A. Liposomes as a promising ultrasound-triggered drug delivery system in cancer treatment. Curr. Mol. Med., 2017, 17(10), 668-688.
[http://dx.doi.org/10.2174/1566524018666180416100142] [PMID: 29663885]
Soltys, M.; Kovatcik, P.; Lhotka, M.; Ulbrich, P.; Zadrazil, A.; Stepanek, F. Radiofrequency controlled release from mesoporous silica nano-carriers. Microporous Mesoporous Mater., 2016, 229, 14-21.
Cezar, C.A.; Kennedy, S.M.; Mehta, M.; Weaver, J.C.; Gu, L.; Vandenburgh, H.; Mooney, D.J. Biphasic ferrogels for triggered drug and cell delivery. Adv. Healthc. Mater., 2014, 3(11), 1869-1876.
[http://dx.doi.org/10.1002/adhm.201400095] [PMID: 24862232]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
Nappini, S.; Bombelli, F.B.; Bonini, M.; Norden, B.; Baglioni, P. Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter, 2010, 6(1), 154-162.
Budhwani, K.I.; Dettmann, M.A.; Saleh, M.N.; Thomas, V. Nano and microbubble systems for on-demand cancer drug delivery. Curr. Nanosci., 2018, 14(1), 33-41.
Huang, S.L.; Hamilton, A.J.; Nagaraj, A.; Tiukinhoy, S.D.; Klegerman, M.E.; McPherson, D.D.; Macdonald, R.C. Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J. Pharm. Sci., 2001, 90(12), 1917-1926.
[http://dx.doi.org/10.1002/jps.1142] [PMID: 11745750]
Centelles, M.N.; Wright, M.; So, P-W.; Amrahli, M.; Xu, X.Y.; Stebbing, J.; Miller, A.D.; Gedroyc, W.; Thanou, M. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: Using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J. Control. Release, 2018, 280, 87-98.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.047] [PMID: 29723616]
Fite, B.Z.; Kheirolomoom, A.; Foiret, J.L.; Seo, J.W.; Mahakian, L.M.; Ingham, E.S.; Tam, S.M.; Borowsky, A.D.; Curry, F.E.; Ferrara, K.W. Dynamic contrast enhanced MRI detects changes in vascular transport rate constants following treatment with thermally-sensitive liposomal doxorubicin. J. Control. Release, 2017, 256, 203-213.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.007] [PMID: 28395970]
Klibanov, A.L. Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug. Chem., 2005, 16(1), 9-17.
[http://dx.doi.org/10.1021/bc049898y] [PMID: 15656569]
Lin, Z.; Zhou, D.; Hoag, S.; Qiu, Y. Influence of drug properties and formulation on in vitro drug release and biowaiver regulation of oral extended release dosage forms. AAPS J., 2016, 18(2), 333-345.
[http://dx.doi.org/10.1208/s12248-015-9861-2] [PMID: 26769249]
Mukherjee, S.; Shunmugam, R. Polymer based nano-assemblies: Very efficient carrier in the field of cancer chemotherapy. J. Nanomed. Res., 2017, 5(6), 00137.
Olden, B.R.; Cheng, Y.; Yu, J.L.; Pun, S.H. Cationic polymers for non-viral gene delivery to human T cells. J. Control. Release, 2018, 282, 140-147.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.043] [PMID: 29518467]
Khoshnejad, M.; Parhiz, H.; Shuvaev, V.V.; Dmochowski, I.J.; Muzykantov, V.R. Ferritin-based drug delivery systems: Hybrid nanocarriers for vascular immunotargeting. J. Control. Release, 2018, 282, 13-24.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.042] [PMID: 29522833]
Zhang, L.; Li, L.; Di Penta, A.; Carmona, U.; Yang, F.; Schöps, R.; Brandsch, M.; Zugaza, J.L.; Knez, M. H-chain ferritin: A natural nuclei targeting and bioactive delivery nanovector. Adv. Healthc. Mater., 2015, 4(9), 1305-1310.
[http://dx.doi.org/10.1002/adhm.201500226] [PMID: 25973730]
Kim, S.; Kim, G.S.; Seo, J.; Gowri Rangaswamy, G.; So, I.S.; Park, R.W.; Lee, B.H.; Kim, I.S. Double-chambered ferritin platform: Dual-function payloads of cytotoxic peptides and fluorescent protein. Biomacromolecules, 2016, 17(1), 12-19.
[http://dx.doi.org/10.1021/acs.biomac.5b01134] [PMID: 26646195]
Jing, Y.; Xiong, X.; Ming, Y.; Zhao, J.; Guo, X.; Yang, G.; Zhou, S. A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv. Healthc. Mater., 2018, 7(7)e1700974
[http://dx.doi.org/10.1002/adhm.201700974] [PMID: 29334189]
Deshpande, P.; Jhaveri, A.; Pattni, B.; Biswas, S.; Torchilin, V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv., 2018, 25(1), 517-532.
[http://dx.doi.org/10.1080/10717544.2018.1435747] [PMID: 29433357]
Patil, Y.; Shmeeda, H.; Amitay, Y.; Ohana, P.; Kumar, S.; Gabizon, A. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine, 2018, 14(4), 1407-1416.
Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.008] [PMID: 28329728]
Hardiansyah, A.; Yang, M-C.; Liu, T-Y.; Kuo, C-Y.; Huang, L-Y.; Chan, T-Y. Hydrophobic drug-loaded PEGylated magnetic liposomes for drug-controlled release. Nanoscale Res. Lett., 2017, 12(1), 355.
[http://dx.doi.org/10.1186/s11671-017-2119-4] [PMID: 28525950]
Hernández Montoto, A.; Montes, R.; Samadi, A.; Gorbe, M.; Terrés, J.M.; Cao-Milán, R.; Aznar, E.; Ibañez, J.; Masot, R.; Marcos, M.D.; Orzáez, M.; Sancenón, F.; Oddershede, L.B.; Martínez-Máñez, R. Gold nanostars coated with mesoporous silica are effective and nontoxic photothermal agents capable of gate keeping and laser-induced drug release. ACS Appl. Mater. Interfaces, 2018, 10(33), 27644-27656.
[http://dx.doi.org/10.1021/acsami.8b08395] [PMID: 30040374]
Khutale, G.V.; Casey, A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm., 2017, 119, 372-380.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.009] [PMID: 28736333]
Rodrigues, R.O.; Baldi, G.; Doumett, S.; Garcia-Hevia, L.; Gallo, J.; Bañobre-López, M.; Dražić, G.; Calhelha, R.C.; Ferreira, I.C.F.R.; Lima, R.; Gomes, H.T.; Silva, A.M.T. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng. C, 2018, 93, 206-217.
[http://dx.doi.org/10.1016/j.msec.2018.07.060] [PMID: 30274052]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Kheiri Manjili, H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.033] [PMID: 29310081]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
Karthivashan, G.; Ganesan, P.; Park, S.Y.; Kim, J.S.; Choi, D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv., 2018, 25(1), 307-320.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
Dos Santos Rodrigues, B.; Oue, H.; Banerjee, A.; Kanekiyo, T.; Singh, J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J. Control. Release, 2018, 286, 264-278.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.043] [PMID: 30071253]
Shahin, S.A.; Wang, R.; Simargi, S.I.; Contreras, A.; Parra Echavarria, L.; Qu, L.; Wen, W.; Dellinger, T.; Unternaehrer, J.; Tamanoi, F.; Zink, J.I.; Glackin, C.A. Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine (Lond.), 2018, 14(4), 1381-1394.
[http://dx.doi.org/10.1016/j.nano.2018.04.008] [PMID: 29665439]
Song, S.; Mao, G.; Du, J.; Zhu, X. Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv., 2016, 23(4), 1404-1408.
[http://dx.doi.org/10.3109/10717544.2015.1064186] [PMID: 26203687]
Kalaydina, R.V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine, 2018, 13, 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
Lim, E.K.; Chung, B.H.; Chung, S.J. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr. Drug Targets, 2018, 19(4), 300-317.
[http://dx.doi.org/10.2174/1389450117666160602202339] [PMID: 27262486]
Mai, B.T.; Fernandes, S.; Balakrishnan, P.B.; Pellegrino, T. Nanosystems based on magnetic nanoparticles and thermo- or pH-responsive polymers: An update and future perspectives. Acc. Chem. Res., 2018, 51(5), 999-1013.
[http://dx.doi.org/10.1021/acs.accounts.7b00549] [PMID: 29733199]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
Toro-Cordova, A.; Flores-Cruz, M.; Santoyo-Salazar, J.; Carrillo-Nava, E.; Jurado, R.; Figueroa-Rodriguez, P.A.; Lopez-Sanchez, P.; Medina, L.A.; Garcia-Lopez, P. Liposomes loaded with cisplatin and magnetic nanoparticles: Physicochemical characterization, pharmacokinetics, and in-vitro efficacy. Molecules, 2018, 23(9) E2272
[http://dx.doi.org/10.3390/molecules23092272] [PMID: 30200551]
Di Corato, R.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A.K.; Ménager, C.; Wilhelm, C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano, 2015, 9(3), 2904-2916.
[http://dx.doi.org/10.1021/nn506949t] [PMID: 25695371]
Yang, R.; Tang, Q.; Miao, F.; An, Y.; Li, M.; Han, Y.; Wang, X.; Wang, J.; Liu, P.; Chen, R. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice. Int. J. Nanomedicine, 2015, 10, 7345-7358.
[http://dx.doi.org/10.2147/IJN.S93758] [PMID: 26677324]
Gao, M.; Meng, X.; Guo, X.; Zhu, J.; Fan, A.; Wang, Z.; Zhao, Y. All-active antitumor micelles via triggered lipid peroxidation. J. Control. Release, 2018, 286, 381-393.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.003] [PMID: 30098375]
Shi, J.; Liu, W.; Fu, Y.; Yin, N.; Zhang, H.; Chang, J.; Zhang, Z. “US-detonated nano bombs” facilitate targeting treatment of resistant breast cancer. J. Control. Release, 2018, 274, 9-23.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.030] [PMID: 29408184]
Liu, M.; Du, H.; Khan, A.R.; Ji, J.; Yu, A.; Zhai, G. Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydr. Polym., 2018, 184, 82-93.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.047] [PMID: 29352946]
Marchal, S.; El Hor, A.; Millard, M.; Gillon, V.; Bezdetnaya, L. Anti-cancer drug delivery: An update on clinically applied nanotherapeutics. Drugs, 2015, 75(14), 1601-1611.
[http://dx.doi.org/10.1007/s40265-015-0453-3] [PMID: 26323338]
Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release, 2014, 190, 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
Kralj, S.; Potrc, T.; Kocbek, P.; Marchesan, S.; Makovec, D. Design and fabrication of magnetically responsive nanocarriers for drug delivery. Curr. Med. Chem., 2017, 24(5), 454-469.
[http://dx.doi.org/10.2174/0929867323666160813211736] [PMID: 27528059]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [399 - 412]
Pages: 14
DOI: 10.2174/1573413715666190724150816

Article Metrics

PDF: 18