Generic placeholder image

Current Biochemical Engineering (Discontinued)

Editor-in-Chief

ISSN (Print): 2212-7119
ISSN (Online): 2212-7127

Review Article

Use of Nanoparticles in Medicine

Author(s): Puneet Utreja, Shivani Verma, Mahfoozur Rahman and Lalit Kumar *

Volume 6, Issue 1, 2020

Page: [7 - 24] Pages: 18

DOI: 10.2174/2212711906666190724145101

Abstract

Background: Nanotechnology involves the study of materials having dimensional range 1 to 100 nm. When the concept of nanotechnology is applied in the medical field, the resulting outcome is known as ‘Nanomedicine’. Nanomedicine generally includes nanoparticles, which are explored for various therapeutic applications. Various properties of nanoparticles like high reactivity, large surface area, and ultra small size make them highly efficient compared to conventional therapeutic agents.

Methods: Present review discloses applications of various nanoparticulate systems in drug delivery and therapeutics. We searched nanoparticulate systems like liposomes, polymeric nanoparticles, lipidic nanoparticles, dendrimers, carbon nanotubes, and gold nanoparticles using search engines like PubMed and Google Scholar.

Results: Results of a literature review regarding the use of nanoparticulate systems revealed their high preclinical efficacy, safety, and reduced toxicity compared to various traditional systems used for the delivery of various therapeutic agents. Implementation of targeting moieties like peptides, antibodies, or aptamers in nanoparticulate systems shows a synergistic effect in their efficacy.

Conclusion: Nanoparticulate systems have shown significant effects on different areas of the medical field. However, clinical exploration of various nanoparticulate systems is still a challenge and this fact should be taken into consideration by pharmaceutical scientists. Despite this, nanomedicine is expected to have a tremendous effect on various areas of the medical field in the future.

Keywords: Aptamers, carbon nanotubes, liposomes, nanomedicine, nanoparticles, nanotechnology.

Graphical Abstract
[1]
S. Rathor, D.C. Bhatt, S. Aamir, S.K. Singh, and V. Kumar, "A comprehensive review on role of nanoparticles in therapeutic delivery of medicine", Pharm. Nanotechnol., vol. 5, no. 4, pp. 263-275, 2017.
[PMID: 29141578]
[2]
S. Priyadarsini, S. Mukherjee, and M. Mishra, "Nanoparticles used in dentistry: A review", J. Oral Biol. Craniofac. Res., vol. 8, no. 1, pp. 58-67, 2018.
[http://dx.doi.org/10.1016/j.jobcr.2017.12.004] [PMID: 29556466]
[3]
M. Shaalan, M. Saleh, M. El-Mahdy, and M. El-Matbouli, "Recent progress in applications of nanoparticles in fish medicine: A review", Nanomedicine (Lond.), vol. 12, no. 3, pp. 701-710, 2016.
[http://dx.doi.org/10.1016/j.nano.2015.11.005] [PMID: 26656532]
[4]
D. Yohan, and B.D. Chithrani, "Applications of nanoparticles in nanomedicine", J. Biomed. Nanotechnol., vol. 10, no. 9, pp. 2371-2392, 2014.
[http://dx.doi.org/10.1166/jbn.2014.2015] [PMID: 25992462]
[5]
M. Youns, J.D. Hoheisel, and T. Efferth, "Therapeutic and diagnostic applications of nanoparticles", Curr. Drug Targets, vol. 12, no. 3, pp. 357-365, 2011.
[http://dx.doi.org/10.2174/138945011794815257] [PMID: 20955146]
[6]
S.C. Baetke, T. Lammers, and F. Kiessling, "Applications of nanoparticles for diagnosis and therapy of cancer", Br. J. Radiol., vol. 88, no. 1054, 2015.
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[7]
A. Alexiou, C. Vairaktarakis, V. Tsiamis, and G.M. Ashraf, "Application of efficient nanoparticles for early diagnosis and treatment of cancer", Curr. Drug Metab., vol. 16, no. 8, pp. 662-675, 2015.
[http://dx.doi.org/10.2174/1389200216666150602145310] [PMID: 26560321]
[8]
S. Bosselmann, and R.O. Williams, "Has nanotechnology led to improved therapeutic outcomes?", Drug Dev. Ind. Pharm., vol. 38, no. 2, pp. 158-170, 2012.
[http://dx.doi.org/10.3109/03639045.2011.597764] [PMID: 22191583]
[9]
B.E. Grottkau, X. Cai, J. Wang, X. Yang, and Y. Lin, "Polymeric nanoparticles for a drug delivery system", Curr. Drug Metab., vol. 14, no. 8, pp. 840-846, 2013.
[http://dx.doi.org/10.2174/138920021131400105] [PMID: 24016112]
[10]
T. Patel, J. Zhou, J.M. Piepmeier, and W.M. Saltzman, "Polymeric nanoparticles for drug delivery to the central nervous system", Adv. Drug Deliv. Rev., vol. 64, no. 7, pp. 701-705, 2012.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[11]
P. Fonte, S. Reis, and B. Sarmento, "Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery", J. Control. Release, vol. 225, pp. 75-86, 2016.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.034] [PMID: 26805517]
[12]
E. Blanco, A. Hsiao, A.P. Mann, M.G. Landry, F. Meric-Bernstam, and M. Ferrari, "Nanomedicine in cancer therapy: Innovative trends and prospects", Cancer Sci., vol. 102, no. 7, pp. 1247-1252, 2011.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01941.x] [PMID: 21447010]
[13]
E. Blanco, H. Shen, and M. Ferrari, "Principles of nanoparticle design for overcoming biological barriers to drug delivery", Nat. Biotechnol., vol. 33, no. 9, pp. 941-951, 2015.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[14]
S. Hassan, and A.V. Singh, "Biophysicochemical perspective of nanoparticle compatibility: A critically ignored parameter in nanomedicine", J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 402-414, 2014.
[http://dx.doi.org/10.1166/jnn.2014.8747] [PMID: 24730271]
[15]
C.S. Lee, W. Park, S.J. Park, and K. Na, "Endolysosomal environment-responsive photodynamic nanocarrier to enhance cytosolic drug delivery via photosensitizer-mediated membrane disruption", Biomaterials, vol. 34, no. 36, pp. 9227-9236, 2013.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.037] [PMID: 24008035]
[16]
P.K. Selbo, A. Weyergang, A. Høgset, O.J. Norum, M.B. Berstad, M. Vikdal, and K. Berg, "Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules", J. Control. Release, vol. 148, no. 1, pp. 2-12, 2010.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.008] [PMID: 20600406]
[17]
K. Berg, P.K. Selbo, L. Prasmickaite, T.E. Tjelle, K. Sandvig, J. Moan, G. Gaudernack, O. Fodstad, S. Kjølsrud, H. Anholt, G.H. Rodal, S.K. Rodal, and A. Høgset, "Photochemical internalization: A novel technology for delivery of macromolecules into cytosol", Cancer Res., vol. 59, no. 6, pp. 1180-1183, 1999.
[PMID: 10096543]
[18]
S.M. Moghimi, A.C. Hunter, and J.C. Murray, "Long-circulating and target-specific nanoparticles: theory to practice", Pharmacol. Rev., vol. 53, no. 2, pp. 283-318, 2001.
[PMID: 11356986]
[19]
S.M. Moghimi, C.J. Porter, I.S. Muir, L. Illum, and S.S. Davis, "Non-phagocytic uptake of intravenously injected microspheres in rat spleen: Influence of particle size and hydrophilic coating", Biochem. Biophys. Res. Commun., vol. 177, no. 2, pp. 861-866, 1991.
[http://dx.doi.org/10.1016/0006-291X(91)91869-E] [PMID: 2049107]
[20]
V.V. Khutoryanskiy, "Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials", Adv. Drug Deliv. Rev., vol. 124, pp. 140-149, 2018.
[http://dx.doi.org/10.1016/j.addr.2017.07.015] [PMID: 28736302]
[21]
J.T. Huckaby, and S.K. Lai, "PEGylation for enhancing nanoparticle diffusion in mucus", Adv. Drug Deliv. Rev., vol. 124, pp. 125-139, 2018.
[http://dx.doi.org/10.1016/j.addr.2017.08.010] [PMID: 28882703]
[22]
W. Park, and K. Na, "Advances in the synthesis and application of nanoparticles for drug delivery", Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., vol. 7, no. 4, pp. 494-508, 2015.
[http://dx.doi.org/10.1002/wnan.1325] [PMID: 25583540]
[23]
C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V.P. Chauhan, W. Jiang, Z. Popovic, R.K. Jain, M.G. Bawendi, and D. Fukumura, "Multistage nanoparticle delivery system for deep penetration into tumor tissue", Proc. Natl. Acad. Sci. USA, vol. 108, no. 6, pp. 2426-2431, 2011.
[http://dx.doi.org/10.1073/pnas.1018382108] [PMID: 21245339]
[24]
R. Tong, H.D. Hemmati, R. Langer, and D.S. Kohane, "Photoswitchable nanoparticles for triggered tissue penetration and drug delivery", J. Am. Chem. Soc., vol. 134, no. 21, pp. 8848-8855, 2012.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[25]
N. Sanvicens, and M.P. Marco, "Multifunctional nanoparticles--properties and prospects for their use in human medicine", Trends Biotechnol., vol. 26, no. 8, pp. 425-433, 2008.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[26]
M. Rahman, S. Beg, A. Verma, I. Kazmi, D.K. Patel, F. Anwar, F.A. Al Abbasi, and V. Kumar, "Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point", Curr. Drug Targets, vol. 18, no. 13, pp. 1558-1571, 2017.
[http://dx.doi.org/10.2174/1389450118666170414113926] [PMID: 28413980]
[27]
M. Rahman, V. Kumar, S. Beg, G. Sharma, O.P. Katare, and F. Anwar, "Emergence of liposome as targeted magic bullet for inflammatory disorders: Current state of the art", Artif. Cells Nanomed. Biotechnol., vol. 44, no. 7, pp. 1597-1608, 2016.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[28]
J. Ahmad, S. Akhter, M. Rizwanullah, S. Amin, M. Rahman, M.Z. Ahmad, M.A. Rizvi, M.A. Kamal, and F.J. Ahmad, "Nanotechnology-based inhalation treatments for lung cancer: State of the art", Nanotechnol. Sci. Appl., vol. 8, pp. 55-66, 2015.
[PMID: 26640374]
[29]
P. Aneja, M. Rahman, S. Beg, S. Aneja, V. Dhingra, and R. Chugh, "Cancer targeted magic bullets for effective treatment of cancer", Recent Pat. Antiinfect. Drug Discov., vol. 9, no. 2, pp. 121-135, 2014.
[http://dx.doi.org/10.2174/1574891X10666150415120506] [PMID: 25876849]
[30]
M. Rahman, M.Z. Ahmad, I. Kazmi, S. Akhter, M. Afzal, G. Gupta, and V.R. Sinha, "Emergence of nanomedicine as cancer targeted magic bullets: Recent development and need to address the toxicity apprehension", Curr. Drug Discov. Technol., vol. 9, no. 4, pp. 319-329, 2012.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[31]
P. Goyal, K. Goyal, S.G. Vijaya Kumar, A. Singh, O.P. Katare, and D.N. Mishra, "Liposomal drug delivery systems--clinical applications", Acta Pharm., vol. 55, no. 1, pp. 1-25, 2005.
[PMID: 15907221]
[32]
C. Spuch, and C. Navarro, "Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s Disease and Parkinson’s Disease", J. Drug Del.2011. Article ID 469679,
[http://dx.doi.org/10.1155/2011/469679]
[33]
S.R. Paliwal, R. Paliwal, H.C. Pal, A.K. Saxena, P.R. Sharma, P.N. Gupta, G.P. Agrawal, and S.P. Vyas, "Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy", Mol. Pharm., vol. 9, no. 1, pp. 176-186, 2012.
[http://dx.doi.org/10.1021/mp200439z] [PMID: 22091702]
[34]
G. Carneiro, D.C. Santos, M.C. Oliveira, A.P. Fernandes, L.S. Ferreira, G.A. Ramaldes, E.A. Nunan, and L.A. Ferreira, "Topical delivery and in vivo antileishmanial activity of paromomycin-loaded liposomes for treatment of cutaneous leishmaniasis", J. Liposome Res., vol. 20, no. 1, pp. 16-23, 2010.
[http://dx.doi.org/10.3109/08982100903015025] [PMID: 19530897]
[35]
P. Le Conte, V. Joly, L. Saint-Julien, J.M. Gillardin, C. Carbon, and P. Yeni, "Tissue distribution and antifungal effect of liposomal itraconazole in experimental cryptococcosis and pulmonary aspergillosis", Am. Rev. Respir. Dis.vol. 145, no. 2 Pt 1, pp. 424-429, 1992,
[http://dx.doi.org/10.1164/ajrccm/145.2_Pt_1.424] [PMID: 1310577]
[36]
X. Zhou, M. Zhang, B. Yung, H. Li, C. Zhou, L.J. Lee, and R.J. Lee, "Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma", Int. J. Nanomedicine, vol. 7, pp. 5465-5474, 2012.
[PMID: 23093902]
[37]
M. Wei, Y. Xu, Q. Zou, L. Tu, C. Tang, T. Xu, L. Deng, and C. Wu, "Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin", Eur. J. Pharm. Sci., vol. 46, no. 3, pp. 131-141, 2012.
[http://dx.doi.org/10.1016/j.ejps.2012.02.007] [PMID: 22369856]
[38]
J.S. Patil, V.K. Devi, K. Devi, and S. Sarasija, "A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis", Lung India, vol. 32, no. 4, pp. 331-338, 2015.
[http://dx.doi.org/10.4103/0970-2113.159559] [PMID: 26180381]
[39]
B. Isacchi, S. Arrigucci, G. la Marca, M.C. Bergonzi, M.G. Vannucchi, A. Novelli, and A.R. Bilia, "Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice", J. Liposome Res., vol. 21, no. 3, pp. 237-244, 2011.
[http://dx.doi.org/10.3109/08982104.2010.539185] [PMID: 21158702]
[40]
S.E. Jin, I.S. Kim, and C.K. Kim, "Comparative effects of PEG-containing liposomal formulations on in vivo pharmacokinetics of streptokinase", Arch. Pharm. Res., vol. 38, no. 10, pp. 1822-1829, 2015.
[http://dx.doi.org/10.1007/s12272-015-0594-7] [PMID: 25851624]
[41]
Z.H. Wu, Q.N. Ping, Y. Wei, and J.M. Lai, "Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice", Acta Pharmacol. Sin., vol. 25, no. 7, pp. 966-972, 2004.
[PMID: 15210073]
[42]
M. Rahman, M.Z. Ahmad, I. Kazmi, S. Akhter, M. Afzal, G. Gupta, F. Jalees Ahmed, and F. Anwar, "Advancement in multifunctional nanoparticles for the effective treatment of cancer", Expert Opin. Drug Deliv., vol. 9, no. 4, pp. 367-381, 2012.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[43]
R. Dinarvand, N. Sepehri, S. Manoochehri, H. Rouhani, and F. Atyabi, "Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents", Int. J. Nanomedicine, vol. 6, pp. 877-895, 2011.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[44]
M. Rahman, S. Beg, A. Ahmed, and S. Swain, "Emergence of functionalized nanomedicines in cancer chemotherapy: Recent advancements, current challenges and toxicity considerations", Recent Pat. Nanomed., vol. 2, pp. 128-139, 2013.
[45]
S. Krishnamurthy, R. Vaiyapuri, L. Zhang, and J.M. Chan, "Lipid-coated polymeric nanoparticles for cancer drug delivery", Biomater. Sci., vol. 3, no. 7, pp. 923-936, 2015.
[http://dx.doi.org/10.1039/C4BM00427B] [PMID: 26221931]
[46]
Y. Singh, A. Srinivas, M. Gangwar, J.G. Meher, S. Misra-Bhattacharya, and M.K. Chourasia, "Subcutaneously administered ultrafine PLGA nanoparticles containing doxycycline hydrochloride target lymphatic filarial parasites", Mol. Pharm., vol. 13, no. 6, pp. 2084-2094, 2016.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00206] [PMID: 27144397]
[47]
L. Zhao, B. Zhu, Y. Jia, W. Hou, and C. Su, "Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibioticdrug", Biomed. Res. Int. 2013, Article ID 236469
[48]
F. Akhtar, M.M. Rizvi, and S.K. Kar, "Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice", Biotechnol. Adv., vol. 30, no. 1, pp. 310-320, 2012.
[http://dx.doi.org/10.1016/j.biotechadv.2011.05.009] [PMID: 21619927]
[49]
A.A. Mahmoud, G.S. El-Feky, R. Kamel, and G.E. Awad, "Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery", Int. J. Pharm., vol. 413, no. 1-2, pp. 229-236, 2011.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.031] [PMID: 21540097]
[50]
Y. Guo, M. Chu, S. Tan, S. Zhao, H. Liu, B.O. Otieno, X. Yang, C. Xu, and Z. Zhang, "Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance", Mol. Pharm., vol. 11, no. 1, pp. 59-70, 2014.
[http://dx.doi.org/10.1021/mp400514t] [PMID: 24229050]
[51]
R. Kumar, G.C. Sahoo, K. Pandey, V.N.R. Das, R.K. Topno, M.Y. Ansari, S. Rana, and P. Das, "Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis", Mater. Sci. Eng. C, vol. 59, pp. 748-753, 2016.
[http://dx.doi.org/10.1016/j.msec.2015.10.083] [PMID: 26652429]
[52]
G. Joshi, A. Kumar, and K. Sawant, "Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles", Drug Deliv., vol. 23, no. 9, pp. 3492-3504, 2016.
[http://dx.doi.org/10.1080/10717544.2016.1199605] [PMID: 27297453]
[53]
N.P. Mistry, J.L. Desai, and H.P. Thakkar, "Formulation and evaluation of tacrolimus-loaded galactosylated Poly(lactic-co-glycolic acid) nanoparticles for liver targeting", J. Pharm. Pharmacol., vol. 67, no. 10, pp. 1337-1348, 2015.
[http://dx.doi.org/10.1111/jphp.12430] [PMID: 25944126]
[54]
F. Esmaeili, M. Hosseini-Nasr, M. Rad-Malekshahi, N. Samadi, F. Atyabi, and R. Dinarvand, "Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles", Nanomedicine (Lond.), vol. 3, no. 2, pp. 161-167, 2007.
[http://dx.doi.org/10.1016/j.nano.2007.03.003] [PMID: 17468055]
[55]
P. Pandey, M. Rahman, P.C. Bhatt, S. Beg, B. Paul, A. Hafeez, F.A. Al-Abbasi, M.S. Nadeem, O. Baothman, F. Anwar, and V. Kumar, "Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin", Nanomedicine (Lond.), vol. 13, no. 8, pp. 849-870, 2018.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[56]
J. Pardeike, A. Hommoss, and R.H. Müller, "Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products", Int. J. Pharm., vol. 366, no. 1-2, pp. 170-184, 2009.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[57]
S.S. Shidhaye, R. Vaidya, S. Sutar, A. Patwardhan, and V.J. Kadam, "Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers", Curr. Drug Deliv., vol. 5, no. 4, pp. 324-331, 2008.
[http://dx.doi.org/10.2174/156720108785915087] [PMID: 18855604]
[58]
R.H. Müller, R.D. Petersen, A. Hommoss, and J. Pardeike, "Nanostructured lipid carriers (NLC) in cosmetic dermal products", Adv. Drug Deliv. Rev., vol. 59, no. 6, pp. 522-530, 2007.
[http://dx.doi.org/10.1016/j.addr.2007.04.012] [PMID: 17602783]
[59]
M. Lucia, "Lipid-Based nanoparticles as carriers for dermal delivery of antioxidants", Curr. Drug Metab., vol. 18, no. 5, pp. 469-480, 2017.
[http://dx.doi.org/10.2174/1389200218666170222152038] [PMID: 28228079]
[60]
M. Rahman, M.Z. Ahmed, and I. Kazmi, "Novel approach for the treatment of cancer: Theranostic nanomedicines", Pharmacologia, vol. 3, pp. 371-376, 2012.
[http://dx.doi.org/10.5567/pharmacologia.2012.371.376]
[61]
N. Naseri, H. Valizadeh, and P. Zakeri-Milani, "Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application", Adv. Pharm. Bull., vol. 5, no. 3, pp. 305-313, 2015.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[62]
K. Raza, B. Singh, S. Singla, S. Wadhwa, B. Garg, S. Chhibber, and O.P. Katare, "Nanocolloidal carriers of isotretinoin: antimicrobial activity against Propionibacterium acnes and dermatokinetic modeling", Mol. Pharm., vol. 10, no. 5, pp. 1958-1963, 2013.
[http://dx.doi.org/10.1021/mp300722f] [PMID: 23544848]
[63]
P.K. Sahu, D.K. Mishra, N. Jain, V. Rajoriya, and A.K. Jain, "Mannosylated solid lipid nanoparticles for lung-targeted delivery of Paclitaxel", Drug Dev. Ind. Pharm., vol. 41, no. 4, pp. 640-649, 2015.
[http://dx.doi.org/10.3109/03639045.2014.891130] [PMID: 24564799]
[64]
D. Liu, Z. Liu, L. Wang, C. Zhang, and N. Zhang, "Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel", Colloids Surf. B Biointerfaces, vol. 85, no. 2, pp. 262-269, 2011.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[65]
S. Zhang, C. Lu, X. Zhang, J. Li, and H. Jiang, "Targeted delivery of etoposide to cancer cells by folate-modified nanostructured lipid drug delivery system", Drug Deliv., vol. 23, no. 5, pp. 1838-1845, 2016.
[http://dx.doi.org/10.3109/10717544.2016.1141258] [PMID: 26879035]
[66]
P. Ekambaram, and H.S. Abdul, "Formulation and evaluation of solid lipid nanoparticles of ramipril", J. Young Pharm., vol. 3, no. 3, pp. 216-220, 2011.
[http://dx.doi.org/10.4103/0975-1483.83765] [PMID: 21897661]
[67]
P.O. Nnamani, S. Hansen, M. Windbergs, and C.M. Lehr, "Development of artemether-loaded nanostructured lipid carrier (NLC) formulation for topical application", Int. J. Pharm., vol. 477, no. 1-2, pp. 208-217, 2014.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.004] [PMID: 25290810]
[68]
H. Singh, S. Jindal, M. Singh, G. Sharma, and I.P. Kaur, "Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety", Int. J. Pharm., vol. 485, no. 1-2, pp. 138-151, 2015.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.050] [PMID: 25769294]
[69]
N. Kar, S. Chakraborty, A.K. De, S. Ghosh, and T. Bera, "Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes", Eur. J. Pharm. Sci., vol. 104, pp. 196-211, 2017.
[http://dx.doi.org/10.1016/j.ejps.2017.03.046] [PMID: 28400285]
[70]
D.P. Gaspar, V. Faria, L.M. Gonçalves, P. Taboada, C. Remuñán-López, and A.J. Almeida, "Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies", Int. J. Pharm., vol. 497, no. 1-2, pp. 199-209, 2016.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.050] [PMID: 26656946]
[71]
S. Somani, and C. Dufès, "Applications of dendrimers for brain delivery and cancer therapy", Nanomedicine (Lond.), vol. 9, no. 15, pp. 2403-2414, 2014.
[http://dx.doi.org/10.2217/nnm.14.130] [PMID: 25413857]
[72]
P. Kesharwani, and A.K. Iyer, "Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery", Drug Discov. Today, vol. 20, no. 5, pp. 536-547, 2015.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012] [PMID: 25555748]
[73]
M. Kalomiraki, K. Thermos, and N.A. Chaniotakis, "Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications", Int. J. Nanomedicine, vol. 11, pp. 1-12, 2015.
[PMID: 26730187]
[74]
S.P. Chaplot, and I.D. Rupenthal, "Dendrimers for gene delivery--a potential approach for ocular therapy?", J. Pharm. Pharmacol., vol. 66, no. 4, pp. 542-556, 2014.
[http://dx.doi.org/10.1111/jphp.12104] [PMID: 24635556]
[75]
L.P. Wu, M. Ficker, J.B. Christensen, P.N. Trohopoulos, and S.M. Moghimi, "Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges", Bioconjug. Chem., vol. 26, no. 7, pp. 1198-1211, 2015.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00031] [PMID: 25654320]
[76]
D.A. Tomalia, "Starburst dendrimers-nanoscopic macromolecules according to dendritic rules and principles", Macromol. Symp., vol. 101, pp. 243-255, 1996.
[http://dx.doi.org/10.1002/masy.19961010128]
[77]
Y. Gao, G. Gao, Y. He, T. Liu, and R. Qi, "Recent advances of dendrimers in delivery of genes and drugs", Mini Rev. Med. Chem., vol. 8, no. 9, pp. 889-900, 2008.
[http://dx.doi.org/10.2174/138955708785132729] [PMID: 18691146]
[78]
P. Singh, U. Gupta, A. Asthana, and N.K. Jain, "Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice", Bioconjug. Chem., vol. 19, no. 11, pp. 2239-2252, 2008.
[http://dx.doi.org/10.1021/bc800125u] [PMID: 18950215]
[79]
E. Murugan, D.P. Geetha Rani, and V. Yogaraj, "Drug delivery investigations of quaternised poly(propylene imine) dendrimer using nimesulide as a model drug", Colloids Surf. B Biointerfaces, vol. 114, pp. 121-129, 2014.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.002] [PMID: 24184533]
[80]
M.K. Mishra, K. Kotta, M. Hali, S. Wykes, H.C. Gerard, A.P. Hudson, J.A. Whittum-Hudson, and R.M. Kannan, "PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections", Nanomedicine (Lond.), vol. 7, no. 6, pp. 935-944, 2011.
[http://dx.doi.org/10.1016/j.nano.2011.04.008] [PMID: 21658474]
[81]
A. Bosnjakovic, M.K. Mishra, W. Ren, Y.E. Kurtoglu, T. Shi, D. Fan, and R.M. Kannan, "Poly(amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation", Nanomedicine (Lond.), vol. 7, no. 3, pp. 284-294, 2011.
[http://dx.doi.org/10.1016/j.nano.2010.10.008] [PMID: 21059404]
[82]
S.K. Yandrapu, P. Kanujia, K.B. Chalasani, L. Mangamoori, R.V. Kolapalli, and A. Chauhan, "Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: An acyclovir model formulation", Nanomedicine (Lond.), vol. 9, no. 4, pp. 514-522, 2013.
[http://dx.doi.org/10.1016/j.nano.2012.10.005] [PMID: 23117047]
[83]
Z. Gu, M. Wang, Q. Fang, H. Zheng, F. Wu, D. Lin, Y. Xu, and Y. Jin, "Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery", Drug Dev. Ind. Pharm., vol. 41, no. 5, pp. 812-818, 2015.
[http://dx.doi.org/10.3109/03639045.2014.908899] [PMID: 24745851]
[84]
H. Yang, and S.T. Lopina, "Stealth dendrimers for antiarrhythmic quinidine delivery", J. Mater. Sci. Mater. Med., vol. 18, no. 10, pp. 2061-2065, 2007.
[http://dx.doi.org/10.1007/s10856-007-3144-0] [PMID: 17558476]
[85]
P.V. Kumar, A. Asthana, T. Dutta, and N.K. Jain, "Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers", J. Drug Target., vol. 14, no. 8, pp. 546-556, 2006.
[http://dx.doi.org/10.1080/10611860600825159] [PMID: 17050121]
[86]
K. Jain, A.K. Verma, P.R. Mishra, and N.K. Jain, "Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers", Nanomedicine (Lond.), vol. 11, no. 3, pp. 705-713, 2015.
[http://dx.doi.org/10.1016/j.nano.2014.11.008] [PMID: 25596078]
[87]
B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, and G. Pastorin, "Carbon nanotubes for delivery of small molecule drugs", Adv. Drug Deliv. Rev., vol. 65, no. 15, pp. 1964-2015, 2013.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[88]
F. Liang, and B. Chen, "A review on biomedical applications of single-walled carbon nanotubes", Curr. Med. Chem., vol. 17, no. 1, pp. 10-24, 2010.
[http://dx.doi.org/10.2174/092986710789957742] [PMID: 19941481]
[89]
D.A. Stout, "Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering", Curr. Pharm. Des., vol. 21, no. 15, pp. 2037-2044, 2015.
[http://dx.doi.org/10.2174/1381612821666150302153406] [PMID: 25732658]
[90]
N. Sinha, and J.T. Yeow, "Carbon nanotubes for biomedical applications", IEEE Trans. Nanobioscience, vol. 4, no. 2, pp. 180-195, 2005.
[http://dx.doi.org/10.1109/TNB.2005.850478] [PMID: 16117026]
[91]
X. Zhang, L. Meng, Q. Lu, Z. Fei, and P.J. Dyson, "Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes", Biomaterials, vol. 30, no. 30, pp. 6041-6047, 2009.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.025] [PMID: 19643474]
[92]
N.H. Levi-Polyachenko, E.J. Merkel, B.T. Jones, D.L. Carroll, and J.H. Stewart IV, "Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes", Mol. Pharm., vol. 6, no. 4, pp. 1092-1099, 2009.
[http://dx.doi.org/10.1021/mp800250e] [PMID: 19545174]
[93]
S. Hampel, D. Kunze, D. Haase, K. Krämer, M. Rauschenbach, M. Ritschel, A. Leonhardt, J. Thomas, S. Oswald, V. Hoffmann, and B. Büchner, "Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth", Nanomedicine (Lond.), vol. 3, no. 2, pp. 175-182, 2008.
[http://dx.doi.org/10.2217/17435889.3.2.175] [PMID: 18373424]
[94]
W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.P. Briand, R. Gennaro, M. Prato, and A. Bianco, "Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes", Angew. Chem. Int. Ed. Engl., vol. 44, no. 39, pp. 6358-6362, 2005.
[http://dx.doi.org/10.1002/anie.200501613] [PMID: 16138384]
[95]
X. Dong, L. Liu, D. Zhu, H. Zhang, and X. Leng, "Transactivator of transcription (TAT) peptide- chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy", Int. J. Nanomedicine, vol. 10, pp. 3829-3840, 2015.
[PMID: 26082633]
[96]
D. Iannazzo, A. Mazzaglia, A. Scala, A. Pistone, S. Galvagno, M. Lanza, C. Riccucci, G.M. Ingo, I. Colao, M.T. Sciortino, F. Valle, A. Piperno, and G. Grassi, "β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs", Colloids Surf. B Biointerfaces, vol. 123, pp. 264-270, 2014.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.025] [PMID: 25300473]
[97]
S. Lohan, K. Raza, S. Singla, S. Chhibber, S. Wadhwa, O.P. Katare, P. Kumar, and B. Singh, "Studies on enhancement of anti-microbial activity of pristine MWCNTs against pathogens", AAPS PharmSciTech, vol. 17, no. 5, pp. 1042-1048, 2016.
[http://dx.doi.org/10.1208/s12249-015-0430-x] [PMID: 26729535]
[98]
S.R. Datir, M. Das, R.P. Singh, and S. Jain, "Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin", Bioconjug. Chem., vol. 23, no. 11, pp. 2201-2213, 2012.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[99]
E. Boisselier, and D. Astruc, "Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity", Chem. Soc. Rev., vol. 38, no. 6, pp. 1759-1782, 2009.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[100]
S. Akhter, Z. Ahmad, A. Singh, I. Ahmad, M. Rahman, M. Anwar, G.K. Jain, F.J. Ahmad, and R.K. Khar, "Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern", Curr. Pharm. Des., vol. 17, no. 18, pp. 1834-1850, 2011.
[http://dx.doi.org/10.2174/138161211796391001] [PMID: 21568874]
[101]
M.Z. Ahmad, S. Akhter, G.K. Jain, M. Rahman, S.A. Pathan, F.J. Ahmad, and R.K. Khar, "Metallic nanoparticles: Technology overview & drug delivery applications in oncology", Expert Opin. Drug Deliv., vol. 7, no. 8, pp. 927-942, 2010.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[102]
S. Akhter, M.Z. Ahmad, F.J. Ahmad, G. Storm, and R.J. Kok, "Gold nanoparticles in theranostic oncology: current state-of-the-art", Expert Opin. Drug Deliv., vol. 9, no. 10, pp. 1225-1243, 2012.
[http://dx.doi.org/10.1517/17425247.2012.716824] [PMID: 22897613]
[103]
S. Verma, P. Utreja, M. Rahman, and L. Kumar, "Gold nanoparticles and their applications in cancer treatment", Curr. Nanomed., vol. 8, pp. 1-18, 2018.
[104]
M.A. Safwat, G.M. Soliman, D. Sayed, and M.A. Attia, "Fluorouracil-Loaded gold nanoparticles for the treatment of skin cancer: development, in Vitro characterization, and in Vivo evaluation in a mouse skin cancer xenograft model", Mol. Pharm., vol. 15, no. 6, pp. 2194-2205, 2018.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00047] [PMID: 29701979]
[105]
A. Ahangari, M. Salouti, Z. Heidari, A.R. Kazemizadeh, and A.A. Safari, "Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci", Drug Deliv., vol. 20, no. 1, pp. 34-39, 2013.
[http://dx.doi.org/10.3109/10717544.2012.746402] [PMID: 23311651]
[106]
A.M. Paul, Y. Shi, D. Acharya, J.R. Douglas, A. Cooley, J.F. Anderson, F. Huang, and F. Bai, "Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro", J. Gen. Virol.vol. 95, no. Pt 8, pp. 1712-1722, 2014,
[http://dx.doi.org/10.1099/vir.0.066084-0] [PMID: 24828333]
[107]
M.Y. Lee, J.A. Yang, H.S. Jung, S. Beack, J.E. Choi, W. Hur, H. Koo, K. Kim, S.K. Yoon, and S.K. Hahn, "Hyaluronic acid-gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection", ACS Nano, vol. 6, no. 11, pp. 9522-9531, 2012.
[http://dx.doi.org/10.1021/nn302538y] [PMID: 23092111]
[108]
H. Lee, D.H. Dam, J.W. Ha, J. Yue, and T.W. Odom, "Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs", ACS Nano, vol. 9, no. 10, pp. 9859-9867, 2015.
[http://dx.doi.org/10.1021/acsnano.5b05138] [PMID: 26335372]
[109]
M.A. Shaker, and M.I. Shaaban, "Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study", Int. J. Pharm., vol. 525, no. 1, pp. 71-84, 2017.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.019] [PMID: 28411141]
[110]
F. Rahimi-Moghaddam, N. Azarpira, and N. Sattarahmady, "Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: An in vitro and animal model investigation", Lasers Med. Sci., vol. 33, no. 8, pp. 1769-1779, 2018.
[http://dx.doi.org/10.1007/s10103-018-2538-1] [PMID: 29790012]
[111]
Z. Wang, L. Chen, Z. Chu, C. Huang, Y. Huang, and N. Jia, "Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging", Mater. Sci. Eng. C, vol. 89, pp. 106-118, 2018.
[http://dx.doi.org/10.1016/j.msec.2018.03.025] [PMID: 29752079]
[112]
Y. Zhang, B. Liu, H. Wu, B. Li, J. Xu, L. Duan, C. Jiang, X. Zhao, Y. Yuan, G. Zhang, and X. Zeng, "Anti-tumor activity of verbascoside loaded gold nanoparticles", J. Biomed. Nanotechnol., vol. 10, no. 12, pp. 3638-3646, 2014.
[http://dx.doi.org/10.1166/jbn.2014.2052] [PMID: 26000377]
[113]
S. Beg, M. Rahman, A. Jain, S. Saini, P. Midoux, C. Pichon, F.J. Ahmad, and S. Akhter, "Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications", Drug Discov. Today, vol. 22, no. 4, pp. 625-637, 2017.
[http://dx.doi.org/10.1016/j.drudis.2016.10.001] [PMID: 27742533]
[114]
J. Ahmad, S. Amin, M. Rahman, R.A. Rub, M. Singhal, M.Z. Ahmad, Z. Rahman, R.T. Addo, F.J. Ahmad, G. Mushtaq, M.A. Kamal, and S. Akhter, "Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: Applications and pharmacokinetics", Curr. Drug Metab., vol. 16, no. 8, pp. 633-644, 2015.
[http://dx.doi.org/10.2174/1389200216666150812122128] [PMID: 26264206]
[115]
M. Rahman, S. Akhter, M.Z. Ahmad, J. Ahmad, R.T. Addo, F.J. Ahmad, and C. Pichon, "Emerging advances in cancer nanotheranostics with graphene nanocomposites: Opportunities and challenges", Nanomedicine (Lond.), vol. 10, no. 15, pp. 2405-2422, 2015.
[http://dx.doi.org/10.2217/nnm.15.68] [PMID: 26252175]
[116]
M. Rahman, M.Z. Ahmad, J. Ahmad, J. Firdous, F.J. Ahmad, G. Mushtaq, M.A. Kamal, and S. Akhter, "Role of graphene nano-composites in cancer therapy: Theranostic applications, metabolic fate and toxicity issues", Curr. Drug Metab., vol. 16, no. 5, pp. 397-409, 2015.
[http://dx.doi.org/10.2174/1389200215666141125120633] [PMID: 25429670]
[117]
V. Kumar, P.C. Bhatt, M. Rahman, G. Kaithwas, H. Choudhry, F.A. Al-Abbasi, F. Anwar, and A. Verma, "Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies", Int. J. Nanomedicine, vol. 12, pp. 6747-6758, 2017.
[http://dx.doi.org/10.2147/IJN.S136629] [PMID: 28932118]
[118]
D. Drummond, and D. Kirpotin, Liposomes useful for drug delivery to the brain. U.S. Patent 8658203 B2.
[119]
K.Y. Hostetler, and D.D. Richman, Liposomal nucleoside analogues for treating AIDS. W.O. Patent 1989002733 A1.
[120]
A.R.C. Braden, J.K. Vishwanatha, and E. Kafka, Formulation of Active Agent Loaded Activated PLGA Nanoparticles for Targeted Cancer Nano-Therapeutics. U.S. Patent 9023395 B2.
[121]
C. Destache, A. Date, and A. Shibata, Polymeric nanoparticles in a thermosensitive gel for coital-independent vaginal prophylaxis of HIV. W.O. Patent 2014039185 A1.
[122]
L. Xiang, Docetaxel solid lipid nanoparticle and preparation method thereof. C.N. Patent 102579341 A.
[123]
D. Yongzhong, J. Youyou, H. Fuqiang, and H. Yuan, Use of nano structured lipid carrier drug feeding system. C.N. Patent 101129335 B.
[124]
M.E.H. El-Sayed, W. Ensminger, and D. Shewach, Targeted dendrimer-drug conjugates. U.S. Patent 9345781 B2.
[125]
S. Xiangyang, C. Xueyan, S. Mingwu, W. Hao, and G. Ru, Method for loading anti-cancer drug based on multifunctional polyamidoamine dendrimer. C.N. Patent 101927001 B.
[126]
F. Atyabi, M. Adeli, Z. Sobhani, R. Dinarvand, and H.M. Ghahremani, Poly (citric acid) functionalized carbon nanotube drug delivery system. U.S. Patent 8460711 B2.
[127]
D.G.I. Kingston, S. Cao, J. Zhao, M. Hodge, G.F. Paciotti, and M.S. Huhta, Thiolated paclitaxels for reaction with gold nanoparticles as drug delivery agents. W.O. Patent 2009062138 A1.

© 2024 Bentham Science Publishers | Privacy Policy