Structure-Based Design, Synthesis, Biological Evaluation and Molecular Docking Study of 4-Hydroxy-N'-methylenebenzohydrazide Derivatives Acting as Tyrosinase Inhibitors with Potentiate Anti-Melanogenesis Activities

Author(s): Aida Iraji, Mahsima Khoshneviszadeh, Pegah Bakhshizadeh, Najmeh Edraki*, Mehdi Khoshneviszadeh*

Journal Name: Medicinal Chemistry

Volume 16 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Melanogenesis is a process of melanin synthesis, which is a primary response for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting step of the melanin formation. Natural products have shown potent inhibitors, but some of these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may lead to the potent anti– tyrosinase agents.

Objective: A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating potential have been evaluated.

Methods: Design and synthesized compounds were evaluated for activity against mushroom tyrosinase. The metal chelating capacity of the potent compound was examined using the mole ratio method. Molecular docking of the synthesized compounds was carried out into the tyrosine active site.

Results: Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase. Confirming in vitro results were performed via the molecular docking analysis demonstrating hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase. Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex.

Conclusion: The findings in the present study demonstrate that 4-Hydroxy-N'- methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase and can be used as an inspiration for further studies in this area.

Keywords: Structure-based design, tyrosinase inhibitor, 4-hydroxy-N'-methylene benzo hydrazide, molecular docking, metal chelation, L-DOPA.

[1]
Matos, M.; Varela, C.; Vilar, S.; Hripcsak, G.; Borges, F.; Santana, L.; Uriarte, E.; Fais, A.; Di Petrillo, A.; Pintus, F. Design and discovery of tyrosinase inhibitors based on a coumarin scaffold. RSC Advances, 2015, 5(114), 94227-94235.
[http://dx.doi.org/10.1039/C5RA14465E]
[2]
Kim, Y-J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci., 2005, 62(15), 1707-1723.
[http://dx.doi.org/10.1007/s00018-005-5054-y] [PMID: 15968468]
[3]
Zhang, X.; van Leeuwen, J.; Wichers, H.J.; Flurkey, W.H. Characterization of tyrosinase from the cap flesh of portabella mushrooms. J. Agric. Food Chem., 1999, 47(2), 374-378.
[http://dx.doi.org/10.1021/jf980874t] [PMID: 10563903]
[4]
Shao, L-L.; Wang, X-L.; Chen, K.; Dong, X-W.; Kong, L-M.; Zhao, D-Y.; Hider, R.C.; Zhou, T. Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chem., 2018, 242, 174-181.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.054] [PMID: 29037675]
[5]
Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, 84(3), 539-549.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[6]
Glagoleva, A.Y.; Shoeva, O.Y.; Khlestkina, E.K. Melanin pigment in plants: Current knowledge and future perspectives. Front. Plant Sci., 2020, 11, 770.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[7]
Rao, A.R.; Sindhuja, H.N.; Dharmesh, S.M.; Sankar, K.U.; Sarada, R.; Ravishankar, G.A. Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J. Agric. Food Chem., 2013, 61(16), 3842-3851.
[http://dx.doi.org/10.1021/jf304609j] [PMID: 23473626]
[8]
Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176.
[http://dx.doi.org/10.1007/BF03033137] [PMID: 12835121]
[9]
Chen, Y-R.; Robin, Y-Y.; Lin, T-Y.; Huang, C-P.; Tang, W-C.; Chen, S-T.; Lin, S-B. Identification of an Alkylhydroquinone from Rhus succedanea as an Inhibitor of Tyrosinase and Melanogenesis. J. Agric. Food Chem., 2009, 57(6), 2200-2205.
[http://dx.doi.org/10.1021/jf802617a] [PMID: 19159217]
[10]
Sasaki, A.; Yamano, Y.; Sugimoto, S.; Otsuka, H.; Matsunami, K.; Shinzato, T. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. J. Nat. Med., 2018, 72(2), 381-389.
[http://dx.doi.org/10.1007/s11418-017-1148-8] [PMID: 29264846]
[11]
Zhang, L.; Tao, G.; Chen, J.; Zheng, Z.P. Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of Morus alba L. Molecules, 2016, 21(9), E1130.
[http://dx.doi.org/10.3390/molecules21091130] [PMID: 27598113]
[12]
Wang, Y.; Curtis-Long, M.J.; Lee, B.W.; Yuk, H.J.; Kim, D.W.; Tan, X.F.; Park, K.H. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg. Med. Chem., 2014, 22(3), 1115-1120.
[http://dx.doi.org/10.1016/j.bmc.2013.12.047] [PMID: 24412339]
[13]
Lopes, T.I.B.; Coelho, R.G.; Honda, N.K. Inhibition of mushroom tyrosinase activity by orsellinates. Chem. Pharm. Bull. (Tokyo), 2018, 66(1), 61-64.
[http://dx.doi.org/10.1248/cpb.c17-00502] [PMID: 29311513]
[14]
Lin, Y.F.; Hu, Y.H.; Lin, H.T.; Liu, X.; Chen, Y.H.; Zhang, S.; Chen, Q.X. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. J. Agric. Food Chem., 2013, 61(11), 2889-2895.
[http://dx.doi.org/10.1021/jf305481h] [PMID: 23427826]
[15]
Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer, 2010, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[16]
Takahashi, M.; Takara, K.; Toyozato, T.; Wada, K. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J. Oleo Sci., 2012, 61(10), 585-592.
[http://dx.doi.org/10.5650/jos.61.585] [PMID: 23018855]
[17]
Niesen, D.B.; Ma, H.; Yuan, T.; Bach, A.C., II; Henry, G.E.; Seeram, N.P. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat. Prod. Commun., 2015, 10(3), 491-493.
[http://dx.doi.org/10.1177/1934578X1501000328] [PMID: 25924536]
[18]
Revoltella, S.; Rainer, B.; Waltenberger, B.; Pagitz, K.; Schwaiger, S.; Stuppner, H. HPTLC autography based screening and isolation of mushroom tyrosinase inhibitors of european plant species. Chem. Biodiv., 2019, 16(3), e1800541.
[http://dx.doi.org/10.1002/cbdv.201800541] [PMID: 30556957]
[19]
Lehbili, M.; Alabdul Magid, A.; Hubert, J.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Renault, J-H.; Nuzillard, J-M.; Morjani, H.; Abedini, A.; Gangloff, S.C.; Kabouche, Z. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia, 2018, 125, 41-48.
[http://dx.doi.org/10.1016/j.fitote.2017.12.018] [PMID: 29273413]
[20]
Ashraf, Z.; Rafiq, M.; Nadeem, H.; Hassan, M.; Afzal, S.; Waseem, M.; Afzal, K.; Latip, J. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One, 2017, 12(5), e0178069.
[http://dx.doi.org/10.1371/journal.pone.0178069] [PMID: 28542395]
[21]
Lam, K.W.; Syahida, A.; Ul-Haq, Z.; Abdul Rahman, M.B.; Lajis, N.H. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3755-3759.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.067] [PMID: 20493688]
[22]
Ghani, U.; Ullah, N. New potent inhibitors of tyrosinase: novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorg. Med. Chem., 2010, 18(11), 4042-4048.
[http://dx.doi.org/10.1016/j.bmc.2010.04.021] [PMID: 20452224]
[23]
Ha, Y.M.; Park, Y.J.; Lee, J.Y.; Park, D.; Choi, Y.J.; Lee, E.K.; Kim, J.M.; Kim, J-A.; Park, J.Y.; Lee, H.J.; Moon, H.R.; Chung, H.Y. Design, synthesis and biological evaluation of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. Biochimie, 2012, 94(2), 533-540.
[http://dx.doi.org/10.1016/j.biochi.2011.09.002] [PMID: 21945595]
[24]
Lee, K-C.; Thanigaimalai, P.; Sharma, V.K.; Kim, M-S.; Roh, E.; Hwang, B-Y.; Kim, Y.; Jung, S-H. Structural characteristics of thiosemicarbazones as inhibitors of melanogenesis. Bioorg. Med. Chem. Lett., 2010, 20(22), 6794-6796.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.114] [PMID: 20863702]
[25]
Yi, W.; Dubois, C.; Yahiaoui, S.; Haudecoeur, R.; Belle, C.; Song, H.; Hardré, R.; Réglier, M.; Boumendjel, A. Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur. J. Med. Chem., 2011, 46(9), 4330-4335.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.003] [PMID: 21777998]
[26]
Tehrani, M.B.; Emani, P.; Rezaei, Z.; Khoshneviszadeh, M.; Ebrahimi, M.; Edraki, N.; Mahdavi, M.; Larijani, B.; Ranjbar, S.; Foroumadi, A.; Khoshneviszadeh, M. Phthalimide-1,2,3-triazole hybrid compounds as tyrosinase inhibitors; synthesis, biological evaluation and molecular docking analysis. J. Mol. Struct., 2019, 1176, 86-93.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.033]
[27]
Akın, Ş.; Demir, E.A.; Colak, A.; Kolcuoglu, Y.; Yildirim, N.; Bekircan, O. Synthesis, biological activities and molecular docking studies of some novel 2,4,5-trisubstituted-1,2,4-triazole-3-one derivatives as potent tyrosinase inhibitors. J. Mol. Struct., 2019, 1175, 280-286.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.065]
[28]
Tanaka, Y.; Suzuki, M.; Kodachi, Y.; Nihei, K.I. Molecular design of potent, hydrophilic tyrosinase inhibitors based on the natural dihydrooxyresveratrol skeleton. Carbohydr. Res., 2019, 472, 42-49.
[http://dx.doi.org/10.1016/j.carres.2018.11.006] [PMID: 30471509]
[29]
Satooka, H.; Kubo, I. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg. Med. Chem., 2012, 20(2), 1090-1099.
[30]
Khani-Meinagh, H.; Mostafavi, H.; Mahdavi, M. Synthesis and Biological Evaluation of Some Novel 2-Pyrazinoic Acid-derived Esters. Lett. Org. Chem., 2019, 16(5), 424-429.
[http://dx.doi.org/10.2174/1570178615666180806122226]
[31]
Emami, S.; Hosseinimehr, S.J.; Shahrbandi, K.; Enayati, A.A.; Esmaeeli, Z. Synthesis and evaluation of 2(3H)-thiazole thiones as tyrosinase inhibitors. Arch. Pharm. (Weinheim), 2012, 345(8), 629-637.
[http://dx.doi.org/10.1002/ardp.201200028] [PMID: 22532401]
[32]
Loizzo, M.; Tundis, R.; Menichini, F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr. Rev. Food Sci. Food Saf., 2012, 11(4), 378-398.
[http://dx.doi.org/10.1111/j.1541-4337.2012.00191.x]
[33]
Mendes, E. Perry, Mde.J.; Francisco, A.P. Design and discovery of mushroom tyrosinase inhibitors and their therapeutic applications. Expert Opin. Drug Discov., 2014, 9(5), 533-554.
[http://dx.doi.org/10.1517/17460441.2014.907789] [PMID: 24708040]
[34]
Tehrani, M.B.; Emani, P.; Rezaei, Z.; Khoshneviszadeh, M.; Ebrahimi, M.; Edraki, N.; Mahdavi, M.; Larijani, B.; Ranjbar, S.; Foroumadi, A. Phthalimide-1, 2, 3-triazole hybrid compounds as tyrosinase inhibitors; synthesis, biological evaluation and molecular docking analysis. J. Mol. Struct., 2019, 1176, 86-93.
[35]
Mahdavi, M.; Ashtari, A.; Khoshneviszadeh, M.; Ranjbar, S.; Dehghani, A.; Akbarzadeh, T.; Larijani, B.; Khoshneviszadeh, M.; Saeedi, M. Synthesis of new benzimidazole‐1, 2, 3‐triazole hybrids as tyrosinase inhibitors. Chem. Biodivers., 2019, 15(7), e1800120.
[36]
Azimi, S.; Zonouzi, A.; Firuzi, O.; Iraji, A.; Saeedi, M.; Mahdavi, M.; Edraki, N. Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. Eur. J. Med. Chem., 2017, 138, 729-737.
[37]
Edraki, N.; Iraji, A.; Firuzi, O.; Fattahi, Y.; Mahdavi, M.; Foroumadi, A.; Khoshneviszadeh, M.; Shafiee, A.; Miri, R. 2-Imino 2H-chromene and 2-(phenylimino) 2H-chromene 3-aryl carboxamide derivatives as novel cytotoxic agents: synthesis, biological assay, and molecular docking study. J. Iran. Chem. Soc., 2016, 13(12), 2163-2171.
[38]
Yazdani, M.; Edraki, N.; Badri, R.; Khoshneviszadeh, M.; Iraji, A.; Firuzi, O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg. Chem., 2019, 84, 363-371.
[39]
Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Nadri, H.; Edraki, N.; Miri, R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 77, 223-235.
[40]
Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Tavakkoli, M.; Mahdavi, M.; Nadri, H.; Edraki, N.; Miri, R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. European. J. Med. Chem., 2017, 141, 690-702.
[41]
Jun, N.; Hong, G.; Jun, K. Synthesis and evaluation of 2′,4′,6′-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2007, 15(6), 2396-2402.
[42]
Chang, T-S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[43]
Cho, S.J.; Roh, J.S.; Sun, W.S.; Kim, S.H.; Park, K.D. N-Benzylbenzamides: A new class of potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(10), 2682-2684.
[44]
Khoshneviszadeh, M.; Shahraki, O.; Khoshneviszadeh, M.; Foroumadi, A.; Firuzi, O.; Edraki, N.; Nadri, H.; Moradi, A.; Shafiee, A.; Miri, R. Structure-based design, synthesis, molecular docking study and biological evaluation of 1,2,4-triazine derivatives acting as COX/15-LOX inhibitors with anti-oxidant activities. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1602-1611.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2020
Published on: 06 November, 2020
Page: [892 - 902]
Pages: 11
DOI: 10.2174/1573406415666190724142951

Article Metrics

PDF: 29
HTML: 1