Diazoxide Modulates Cardiac Hypertrophy by Targeting H2O2 Generation and Mitochondrial Superoxide Dismutase Activity

Author(s): Aline Maria Brito Lucas, Joana Varlla de Lacerda Alexandre, Maria Thalyne Silva Araújo, Cicera Edna Barbosa David, Yuana Ivia Ponte Viana, Beatriz Neves Coelho, Francisco Rodrigo Lemos Caldas, Anna Lídia Nunes Varela, Alicia Juliana Kowaltowski, Heberty Tarso Facundo*

Journal Name: Current Molecular Pharmacology

Volume 13 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell.

Objective: We investigated the in vivo effects of mitoKATP opening on oxidative stress in isoproterenol- induced cardiac hypertrophy.

Methods: Cardiac hypertrophy was induced in Swiss mice treated intraperitoneally with isoproterenol (ISO - 30 mg/kg/day) for 8 days. From day 4, diazoxide (DZX - 5 mg/kg/day) was used in order to open mitoKATP (a clinically relevant therapy scheme) and 5-hydroxydecanoate (5HD - 5 mg/kg/day) or glibenclamide (GLI - 3 mg/kg/day) were used as mitoKATP blockers.

Results: Isoproterenol-treated mice had elevated heart weight/tibia length ratios (HW/TL). Additionally, hypertrophic hearts had elevated levels of carbonylated proteins and Thiobarbituric Acid Reactive Substances (TBARS), markers of protein and lipid oxidation. In contrast, mitoKATP opening with DZX avoided ISO effects on gross hypertrophic markers (HW/TL), carbonylated proteins and TBARS, in a manner reversed by 5HD and GLI. Moreover, DZX improved mitochondrial superoxide dismutase activity. This effect was also blocked by 5HD and GLI. Additionally, ex vivo treatment of isoproterenol- induced hypertrophic cardiac tissue with DZX decreased H2O2 production in a manner sensitive to 5HD, indicating that this drug also acutely avoids oxidative stress.

Conclusion: Our results suggest that diazoxide blocks oxidative stress and reverses cardiac hypertrophy. This pharmacological intervention could be a potential therapeutic strategy to prevent oxidative stress associated with cardiac hypertrophy.

Keywords: Mitochondria, hypertrophy, oxidative stress, free radicals, antioxidants, hydrogen peroxide.

[1]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Magid, D.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R.; Moy, C.S.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Schreiner, P.J.; Sorlie, P.D.; Stein, J.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation, 2013, 127(1), e6-e245.
[http://dx.doi.org/10.1161/CIR.0b013e31828124ad] [PMID: 23239837]
[2]
Frey, N.; Olson, E.N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol., 2003, 65, 45-79.
[http://dx.doi.org/10.1146/annurev.physiol.65.092101.142243] [PMID: 12524460]
[3]
Vakili, B.A.; Okin, P.M.; Devereux, R.B. Prognostic implications of left ventricular hypertrophy. Am. Heart J., 2001, 141(3), 334-341.
[http://dx.doi.org/10.1067/mhj.2001.113218] [PMID: 11231428]
[4]
Frey, N.; McKinsey, T.A.; Olson, E.N. Decoding calcium signals involved in cardiac growth and function. Nat. Med., 2000, 6(11), 1221-1227.
[http://dx.doi.org/10.1038/81321] [PMID: 11062532]
[5]
Facundo, H.D.T.F.; Brainard, R.E.; Caldas, F.R.L.; Lucas, A.M.B. Mitochondria and Cardiac Hypertrophy. Adv. Exp. Med. Biol., 2017, 982, 203-226.
[http://dx.doi.org/10.1007/978-3-319-55330-6_11] [PMID: 28551789]
[6]
Osterholt, M.; Nguyen, T.D.; Schwarzer, M.; Doenst, T. Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Fail. Rev., 2013, 18(5), 645-656.
[http://dx.doi.org/10.1007/s10741-012-9346-7] [PMID: 22968404]
[7]
Xie, Z.; Kometiani, P.; Liu, J.; Li, J.; Shapiro, J.I.; Askari, A. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem., 1999, 274(27), 19323-19328.
[http://dx.doi.org/10.1074/jbc.274.27.19323] [PMID: 10383443]
[8]
Pimentel, D.R.; Amin, J.K.; Xiao, L.; Miller, T.; Viereck, J.; Oliver-Krasinski, J.; Baliga, R.; Wang, J.; Siwik, D.A.; Singh, K.; Pagano, P.; Colucci, W.S.; Sawyer, D.B. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ. Res., 2001, 89(5), 453-460.
[http://dx.doi.org/10.1161/hh1701.096615] [PMID: 11532907]
[9]
Kwon, S.H.; Pimentel, D.R.; Remondino, A.; Sawyer, D.B.; Colucci, W.S.H.H. (2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J. Mol. Cell. Cardiol., 2003, 35(6), 615-621.
[http://dx.doi.org/10.1016/S0022-2828(03)00084-1] [PMID: 12788379]
[10]
Dhalla, A.K.; Hill, M.F.; Singal, P.K. Role of oxidative stress in transition of hypertrophy to heart failure. J. Am. Coll. Cardiol., 1996, 28(2), 506-514.
[http://dx.doi.org/10.1016/0735-1097(96)00140-4] [PMID: 8800132]
[11]
Date, M.O.; Morita, T.; Yamashita, N.; Nishida, K.; Yamaguchi, O.; Higuchi, Y.; Hirotani, S.; Matsumura, Y.; Hori, M.; Tada, M.; Otsu, K. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J. Am. Coll. Cardiol., 2002, 39(5), 907-912.
[http://dx.doi.org/10.1016/S0735-1097(01)01826-5] [PMID: 11869860]
[12]
Dhalla, A.K.; Singal, P.K. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am. J. Physiol., 1994, 266(4 Pt 2), H1280-H1285.
[PMID: 8184905]
[13]
Hirotani, S.; Otsu, K.; Nishida, K.; Higuchi, Y.; Morita, T.; Nakayama, H.; Yamaguchi, O.; Mano, T.; Matsumura, Y.; Ueno, H.; Tada, M.; Hori, M. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation, 2002, 105(4), 509-515.
[http://dx.doi.org/10.1161/hc0402.102863] [PMID: 11815436]
[14]
Nakamura, K.; Fushimi, K.; Kouchi, H.; Mihara, K.; Miyazaki, M.; Ohe, T.; Namba, M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation, 1998, 98(8), 794-799.
[http://dx.doi.org/10.1161/01.CIR.98.8.794] [PMID: 9727550]
[15]
Lemos Caldas, F.R.; Rocha Leite, I.M.; Tavarez Filgueiras, A.B.; de Figueiredo Júnior, I.L.; Gomes Marques de Sousa, T.A.; Martins, P.R.; Kowaltowski, A.J.; Fernandes Facundo, Hd. Mitochondrial ATP-sensitive potassium channel opening inhibits isoproterenol-induced cardiac hypertrophy by preventing oxidative damage. J. Cardiovasc. Pharmacol., 2015, 65(4), 393-397.
[http://dx.doi.org/10.1097/FJC.0000000000000210] [PMID: 25850726]
[16]
Dai, D-F.; Santana, L.F.; Vermulst, M.; Tomazela, D.M.; Emond, M.J.; MacCoss, M.J.; Gollahon, K.; Martin, G.M.; Loeb, L.A.; Ladiges, W.C.; Rabinovitch, P.S. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation, 2009, 119(21), 2789-2797.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.822403] [PMID: 19451351]
[17]
Lucas, A.M.; Caldas, F.R.; da Silva, A.P.; Ventura, M.M.; Leite, I.M.; Filgueiras, A.B.; Silva, C.G.L.; Kowaltowski, A.J.; Facundo, H.T. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects. Chem. Biol. Interact., 2017, 261, 50-55.
[http://dx.doi.org/10.1016/j.cbi.2016.11.012] [PMID: 27867086]
[18]
Siwik, D.A.; Tzortzis, J.D.; Pimental, D.R.; Chang, D.L.; Pagano, P.J.; Singh, K.; Sawyer, D.B.; Colucci, W.S. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ. Res., 1999, 85(2), 147-153.
[http://dx.doi.org/10.1161/01.RES.85.2.147] [PMID: 10417396]
[19]
Koyama, H.; Nojiri, H.; Kawakami, S.; Sunagawa, T.; Shirasawa, T.; Shimizu, T. Antioxidants improve the phenotypes of dilated cardiomyopathy and muscle fatigue in mitochondrial superoxide dismutase-deficient mice. Molecules, 2013, 18(2), 1383-1393.
[http://dx.doi.org/10.3390/molecules18021383] [PMID: 23348992]
[20]
Ventura-Clapier, R.; Garnier, A.; Veksler, V. Energy metabolism in heart failure. J. Physiol., 2004, 555(Pt 1), 1-13.
[http://dx.doi.org/10.1113/jphysiol.2003.055095] [PMID: 14660709]
[21]
Figueira, T. R.; Barros, M. H.; Camargo, A. A.; Castilho, R. F.; Ferreira, J. C. B.; Kowaltowski, A. J.; Sluse, F. E.; Souza-Pinto, N. C.; Vercesi, A. E. Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: From Molecular Mechanisms to Human Health. Antioxidants & redox Signal., 2013, 18(16), 2029-2074.
[http://dx.doi.org/10.1089/ars.2012.4729]
[22]
Tahara, E.B.; Navarete, F.D.T.; Kowaltowski, A.J. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med., 2009, 46(9), 1283-1297.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.008] [PMID: 19245829]
[23]
Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 1995, 64, 97-112.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000525] [PMID: 7574505]
[24]
Li, Y.; Huang, T.T.; Carlson, E.J.; Melov, S.; Ursell, P.C.; Olson, J.L.; Noble, L.J.; Yoshimura, M.P.; Berger, C.; Chan, P.H.; Wallace, D.C.; Epstein, C.J. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet., 1995, 11(4), 376-381.
[http://dx.doi.org/10.1038/ng1295-376] [PMID: 7493016]
[25]
Loch, T.; Vakhrusheva, O.; Piotrowska, I.; Ziolkowski, W.; Ebelt, H.; Braun, T.; Bober, E. Different extent of cardiac malfunction and resistance to oxidative stress in heterozygous and homozygous manganese-dependent superoxide dismutase-mutant mice. Cardiovasc. Res., 2009, 82(3), 448-457.
[http://dx.doi.org/10.1093/cvr/cvp092] [PMID: 19293248]
[26]
Reznick, A.Z.; Packer, L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol., 1994, 233, 357-363.
[http://dx.doi.org/10.1016/S0076-6879(94)33041-7] [PMID: 8015470]
[27]
Xia, Y.; Rajapurohitam, V.; Cook, M.A.; Karmazyn, M. Inhibition of phenylephrine induced hypertrophy in rat neonatal cardiomyocytes by the mitochondrial KATP channel opener diazoxide. J. Mol. Cell. Cardiol., 2004, 37(5), 1063-1067.
[http://dx.doi.org/10.1016/j.yjmcc.2004.07.002] [PMID: 15522283]
[28]
Zhang, L.; Wang, H.; Lu, M.; Wu, G.; Yang, Y.; Liu, C.; Maslov, L.N.K.K. (ATP) channels mediate the antihypertrophic effects afforded by κ-opioid receptor stimulation in neonatal rat ventricular myocytes. Exp. Ther. Med., 2012, 4(2), 261-266.
[http://dx.doi.org/10.3892/etm.2012.578] [PMID: 23139715]
[29]
Shih, N.L.; Cheng, T.H.; Loh, S.H.; Cheng, P.Y.; Wang, D.L.; Chen, Y.S.; Liu, S.H.; Liew, C.C.; Chen, J.J. Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem. Biophys. Res. Commun., 2001, 283(1), 143-148.
[http://dx.doi.org/10.1006/bbrc.2001.4744] [PMID: 11322781]
[30]
Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003, 25(3-4), 207-218.
[http://dx.doi.org/10.1007/s00726-003-0011-2] [PMID: 14661084]
[31]
Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta, 2003, 329(1-2), 23-38.
[http://dx.doi.org/10.1016/S0009-8981(03)00003-2] [PMID: 12589963]
[32]
Ichihara, S.; Suzuki, Y.; Chang, J.; Kuzuya, K.; Inoue, C.; Kitamura, Y.; Oikawa, S. Involvement of oxidative modification of proteins related to ATP synthesis in the left ventricles of hamsters with cardiomyopathy. Sci. Rep., 2017, 7(1), 9243.
[http://dx.doi.org/10.1038/s41598-017-08546-1] [PMID: 28835655]
[33]
Hiroi, S.; Harada, H.; Nishi, H.; Satoh, M.; Nagai, R.; Kimura, A. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem. Biophys. Res. Commun., 1999, 261(2), 332-339.
[http://dx.doi.org/10.1006/bbrc.1999.1036] [PMID: 10425186]
[34]
Sundaresan, N.R.; Gupta, M.; Kim, G.; Rajamohan, S.B.; Isbatan, A.; Gupta, M.P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest., 2009, 119(9), 2758-2771.
[http://dx.doi.org/10.1172/JCI39162] [PMID: 19652361]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 1
Year: 2020
Page: [76 - 83]
Pages: 8
DOI: 10.2174/1874467212666190723144006
Price: $65

Article Metrics

PDF: 23
HTML: 6
EPUB: 1
PRC: 1