MD-LBP: An Efficient Computational Model for Protein Subcellular Localization from HeLa Cell Lines Using SVM

Author(s): Muhammad Tahir*, Adnan Idris.

Journal Name: Current Bioinformatics

Volume 15 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The knowledge of subcellular location of proteins is essential to the comprehension of numerous protein functions.

Objective: Accurate as well as computationally efficient and reliable automated analysis of protein localization imagery greatly depend on the calculation of features from these images.

Methods: In the current work, a novel method termed as MD-LBP is proposed for feature extraction from fluorescence microscopy protein images. For a given neighborhood, the value of central pixel is computed as the difference of global and local means of the input image that is further used as threshold to generate a binary pattern for that neighborhood.

Results: The performance of our method is assessed for 2D HeLa dataset using 5-fold crossvalidation protocol. The performance of MD-LBP method with RBF-SVM as base classifier, is superior to that of standard LBP algorithm, Threshold Adjacency Statistics, and Haralick texture features.

Conclusion: Development of specialized systems for different kinds of medical imagery will certainly pave the path for effective drug discovery in pharmaceutical industry. Furthermore, biological and bioinformatics based procedures can be simplified to facilitate pharmaceutical industry for drug designing.

Keywords: Protein images, subcellular localization, local binary patterns, support vector machine, classification, threshold.

[1]
Nanni L, Brahnam S, Ghidoni S, Menegatti E. Improving the descriptors extracted from the co-occurrence matrix using preprocessing approaches. Expert Syst Appl 2015; 42(22): 8989-9000.
[http://dx.doi.org/10.1016/j.eswa.2015.07.055]
[2]
Shakoor MH, Boostani R. Extended mapping local binary pattern operator for texture classification. Int J Pattern Recognit Artif Intell 2017; 31(06) 1750019
[http://dx.doi.org/10.1142/S0218001417500197]
[3]
Lumini A, Nanni L, Brahnam S. Multilayer descriptors for medical image classification. Comput Biol Med 2016; 72: 239-47.
[http://dx.doi.org/10.1016/j.compbiomed.2015.11.010] [PMID: 26656952]
[4]
Zhu L, Hofestadt R, Ester M. Tissue-specific subcellular localization prediction using multi-label markov random fields. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(5): 1471-82.
[http://dx.doi.org/10.1109/TCBB.2019.2897683] [PMID: 30736003]
[5]
Su ZD, Huang Y, Zhang ZY, et al. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 2018; 34(24): 4196-204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[6]
Wan S, Duan Y, Zou Q. HPSLPred: an ensemble multi-label classifier for human protein subcellular location prediction with imbalanced source. Proteomics 2017; 17(17-18) 1700262
[http://dx.doi.org/10.1002/pmic.201700262] [PMID: 28776938]
[7]
Tuceryan M, Jain AK. Texture analysis Handbook of pattern recognition and computer vision. World Scientific 1993; pp. 235-76.
[http://dx.doi.org/10.1142/9789814343138_0010]
[8]
Wang JW, Chen WY. Genetic optimization of fingerprint recognition based on core sub-region. J Inf Sci Eng 2009; 25(1): 303-17.
[9]
Varma M, Zisserman A. A statistical approach to texture classification from single images. Int J Comput Vis 2005; 62(1-2): 61-81.
[http://dx.doi.org/10.1007/s11263-005-4635-4]
[10]
Nanni L, Lumini A, Brahnam S. Ensemble of texture descriptors for face recognition obtained by varying feature transforms and preprocessing approaches. Appl Soft Comput 2017; 61: 8-16.
[http://dx.doi.org/10.1016/j.asoc.2017.07.057]
[11]
Nanni L, Lumini A, Brahnam S. Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 2010; 49(2): 117-25.
[http://dx.doi.org/10.1016/j.artmed.2010.02.006] [PMID: 20338737]
[12]
Nanni L, Lumini A, Brahnam S. Survey on LBP based texture descriptors for image classification. Expert Syst Appl 2012; 39(3): 3634-41.
[http://dx.doi.org/10.1016/j.eswa.2011.09.054]
[13]
Ahonen T, Pietikainen M. Image description using joint distribution of filter bank responses. Pattern Recognit Lett 2009; 30(4): 368-76.
[http://dx.doi.org/10.1016/j.patrec.2008.10.012]
[14]
Unay D, Ekin A. In Proceedings 5th IEEE International Symposium on Biomedical Imaging: from nano to macro, June 2008.
[15]
Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 2010; 19(6): 1635-50.
[http://dx.doi.org/10.1109/TIP.2010.2042645] [PMID: 20172829]
[16]
Keramidas EG, Iakovidis DK, Maroulis D, Dimitropoulos N, Eds. Thyroid texture representation via noise resistant image fea-tures. 21st IEEE International Symposium on Computer-Based Medical Systems 2008.
[17]
Paci M, Nanni L, Lahti A, Aalto-Setala K, Hyttinen J, Severi S. Non-binary coding for texture descriptors in sub-cellular and stem cell image classification. Curr Bioinform 2013; 8(2): 208-19.
[http://dx.doi.org/10.2174/1574893611308020009]
[18]
Nanni L, Lumini A. RegionBoost learning for 2D+ 3D based face recognition. Pattern Recognit Lett 2007; 28(15): 2063-70.
[http://dx.doi.org/10.1016/j.patrec.2007.06.003]
[19]
Ahonen T, Hadid A, Pietikäinen M. Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 2006; 28(12): 2037-41.
[http://dx.doi.org/10.1109/TPAMI.2006.244] [PMID: 17108377]
[20]
Zhao G, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 2007; 29(6): 915-28.
[http://dx.doi.org/10.1109/TPAMI.2007.1110] [PMID: 17431293]
[21]
Ameling S, Wirth S, Paulus D, Lacey G, Vilarino F. Texture-based polyp detection in colonoscopy Bildverarbeitung für die Medizin. Springer 2009; pp. 346-50.
[http://dx.doi.org/10.1007/978-3-540-93860-6_70]
[22]
Sun X, Wang J, Chen R, She MFH, Kong L, Eds. Multi-scale local pattern co-occurrence matrix for textural image classification.The 2012 International Joint Conference on Neural Networks (IJCNN) Australia. 2012.
[23]
Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 2010; 19(6): 1657-63.
[http://dx.doi.org/10.1109/TIP.2010.2044957] [PMID: 20215079]
[24]
Huang Y, Wang Y, Tan T, Eds. Combining Statistics of Geometrical and Correlative Features for 3D Face Recognition BMVC. Citeseer 2006.
[25]
Chingovska I, Anjos A, Marcel S, Eds. On the effectiveness of local binary patterns in face anti-spoofingBIOSIG-proceedings of the international conference of biometrics special interest group (BIOSIG). IEEE Germany 2012.
[26]
Heusch G, Rodriguez Y, Marcel S, Eds. Local binary patterns as an image preprocessing for face authentication.7th International Conference on Automatic Face and Gesture Recognition (FGR06) Southampton, UK. 2006.
[http://dx.doi.org/10.1109/FGR.2006.72]
[27]
O’Connor B, Roy K. Facial recognition using modified local binary pattern and random forest. Intl J Artificial Intell Appl 2013; 4(6): 25.
[http://dx.doi.org/10.5121/ijaia.2013.4603]
[28]
Boland MV, Murphy RF. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 2001; 17(12): 1213-23.
[http://dx.doi.org/10.1093/bioinformatics/17.12.1213] [PMID: 11751230]
[29]
Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw 1999; 10(5): 988-99.
[http://dx.doi.org/10.1109/72.788640] [PMID: 18252602]
[30]
Xiang Q, Liao B, Li X, et al. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine. Artif Intell Med 2017; 78: 41-6.
[http://dx.doi.org/10.1016/j.artmed.2017.05.007] [PMID: 28764871]
[31]
Erenel Z, Altinçay H, Varoglu E. Explicit use of term occurrence probabilities for term weighting in text categorization. J Inf Sci Eng 2011; 27(3): 819-34.
[32]
Nanni L, Lumini A. Ensemblator: An ensemble of classifiers for reliable classification of biological data. Pattern Recognit Lett 2007; 28(5): 622-30.
[http://dx.doi.org/10.1016/j.patrec.2006.10.012]
[33]
Rathore S, Hussain M, Aksam Iftikhar M, Jalil A. Ensemble classification of colon biopsy images based on information rich hybrid features. Comput Biol Med 2014; 47: 76-92.
[http://dx.doi.org/10.1016/j.compbiomed.2013.12.010] [PMID: 24561346]
[34]
Tahir M, Khan A, Majid A. Protein subcellular localization of fluorescence imagery using spatial and transform domain features. Bioinformatics 2012; 28(1): 91-7.
[http://dx.doi.org/10.1093/bioinformatics/btr624] [PMID: 22088847]
[35]
Ahirwar NK, Dixit M. Face and eye recognition on gray image using dwt with rbfsvm method. international journal of signal processing. Image Proc Pattern Recognit 2016; 9(6): 369-78.
[http://dx.doi.org/10.14257/ijsip.2016.9.6.32]
[36]
Zhan J, Loh HT. Using redundancy reduction in summarization to improve text classification by SVMs. J Inf Sci Eng 2009; 25(2): 591-601.
[37]
Tseng CJ, Lu CJ, Chang CC, Chen GD, Cheewakriangkrai C. Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence. Artif Intell Med 2017; 78: 47-54.
[http://dx.doi.org/10.1016/j.artmed.2017.06.003] [PMID: 28764872]
[38]
Dao FY, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[PMID: 30428009]
[39]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2019; 35(9): 1469-77.
[PMID: 30247625]
[40]
Gunn SR. Support vector machines for classification and regression Technical Report. Southampton: Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, university of Southampton 1998.
[41]
Majid A, Khan A, Mirza AM. Combining support vector machines using genetic programming. Int J Hybrid Intell Syst 2006; 3(2): 109-25.
[http://dx.doi.org/10.3233/HIS-2006-3204]
[42]
Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans on Intell Syst Technol 2011; 2(3): Article 27.
[http://dx.doi.org/10.1145/1961189.1961199]
[43]
Hossin M, Sulaiman MN. A review on evaluation metrics for data classification evaluations. Intl J Data Mining & Knowl Manag Proc 2015; 5(2): 1.
[http://dx.doi.org/10.5121/ijdkp.2015.5201]
[44]
Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 1991; 37(1): 35-46.
[http://dx.doi.org/10.1016/0034-4257(91)90048-B]
[45]
Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. Morgan Kaufmann 2016.
[46]
Joshi MV, Ed. On evaluating performance of classifiers for rare classes.2002 IEEE International Conference on Data Mining Japan. 2002.
[http://dx.doi.org/10.1109/ICDM.2002.1184018]
[47]
Lingras P, Butz CJ, Eds. Precision and recall in rough support vector machines. 2007 IEEE International Conference on Granular Computing (GRC) CA, USA. 2007.
[http://dx.doi.org/10.1109/GrC.2007.77]
[48]
Xu Y, Ding J, Wu LY, Chou KC. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013; 8(2) e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[49]
Chen W, Feng PM, Lin H, Chou KC. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 2013; 41(6) e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[50]
Peng L, Peng M, Liao B, Huang G, Li W, Xie D. The advances and challenges of deep learning application in biological big data processing. Curr Bioinform 2018; 13(4): 352-9.
[http://dx.doi.org/10.2174/1574893612666170707095707]
[51]
Nie L, Deng L, Fan C, Zhan W, Tang Y. Prediction of protein S-sulfenylation sites using a deep belief network. Curr Bioinform 2018; 13(5): 461-7.
[http://dx.doi.org/10.2174/1574893612666171122152208]
[52]
Hamilton NA, Pantelic RS, Hanson K, Teasdale RD. Fast automated cell phenotype image classification. BMC Bioinformatics 2007; 8(1): 110.
[http://dx.doi.org/10.1186/1471-2105-8-110] [PMID: 17394669]
[53]
Miyamoto E. Jr TM Fast Calculation of Haralick Texture FeaturesHuman Computer Interaction Institute. Carnegie Mellon University: Department of Electrical and Computer Engineering 2005.
[54]
Bianconi F, González E, Fernández A. Dominant local binary patterns for texture classification: labelled or unlabelled? Pattern Recognit Lett 2015; 65: 8-14.
[http://dx.doi.org/10.1016/j.patrec.2015.06.025]
[55]
Wang Y, See J, Phan RCW, Oh YH. Efficient spatio-temporal local binary patterns for spontaneous facial micro-expression recognition. PLoS One 2015; 10(5) e0124674
[http://dx.doi.org/10.1371/journal.pone.0124674] [PMID: 25993498]
[56]
Ojansivu V, Heikkilä J. Blur Insensitive Texture Classification Using Local Phase Quantization.International conference on image and signal processing. Berlin, Heidelberg. Springer. 2008. 2008 July; 1
[http://dx.doi.org/10.1007/978-3-540-69905-7_27]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2020
Page: [204 - 211]
Pages: 8
DOI: 10.2174/1574893614666190723120716
Price: $65

Article Metrics

PDF: 14