A Mini-Review: Achievements in the Thiolysis of Epoxides

Author(s): Zhihua Chen, Saeed Mohammadi Nasr, Mosstafa Kazemi*, Masoud Mohammadi

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


The β-hydroxy sulfides are an important class of organosulfur compounds that have a key role in the synthesis of bioactive compounds containing biological and natural products. The thiolysis of epoxides is the most common and best route for the synthesis of β-hydroxy sulfides. During the last decade, the applications of a diverse range of catalysts and promoter agents in green and organic mediums as well as under solvent-free conditions for the regioselective ring-opening reactions of epoxides with thiols in order to synthesize β-hydroxy sulfides have been studied by various research groups. This review is focused on the important achievements reported in the literature for the thiolysis of epoxides.

Keywords: Biological, epoxides, organosulfur compounds, thiolysis, β-hydroxy sulfides, catalysts.

Cheng, R.; Liu, B.; Pan, X.; Liu, Z.; He, X. Insight into the reaction mechanisms between CO2 and epoxides over Zn(II) phenoxide catalytic system - A DFT study. J. Organomet. Chem., 2014, 775, 67-75.
Hoang, P.H.; Dien, L.Q. Synthesis of magnetically recyclable ZSM-5 zeolite for styrene epoxide rearrangement reaction. Chem. Eng. J., 2015, 262, 140-145.
White, D.E.; Tadross, P.M.; Lu, Z.; Jacobsen, E.N. A broadly applicable and practical oligomeric (salen) Co catalyst for enantioselective epoxide ring-opening reactions. Tetrahedron, 2014, 70(27-28), 4165-4180.
[http://dx.doi.org/10.1016/j.tet.2014.03.043] [PMID: 25045188]
Wei, R-J.; Zhang, X-H.; Du, B-Y.; Fan, Z-Q.; Qi, G-R. Highly active and selective binary catalyst system for the coupling reaction of CO2 and hydrous epoxides. J. Mol. Catal. Chem., 2013, 379, 38-45.
Di Bussolo, V.; Fiasella, A.; Favero, L.; Frau, I.; Crotti, P. Synthesis of 6-deoxy-N-Cbz-d,l-iminoglycal-derived vinyl epoxides and examination of their regio- and stereoselectivity in nucleophilic addition reactions. Tetrahedron, 2013, 69, 2468-2478.
Kim, S.J.; Chun, Y.S.; Lee, S.; Shin, H.; Ko, Y.O.; Kim, Y. Tandem one-pot synthesis of α-(aminomethylene)-γ-butyrolactones via regioselective epoxide ring-opening with the Blaise reaction intermediate. Tetrahedron Lett., 2010, 51, 6893-6896.
Azizi, N.; Gholibeglo, E.; Maryami, M.; Nayeri, S.D.; Bolourtchian, S.M. Ultrasound mediated efficient ring opening of epoxides by in situ generated dithiocarbamates in green reaction media. C. R. Chim., 2013, 16, 412-418.
Aramesh, N.; Yadollahi, B.; Mirkhani, V. Fe(III) substituted Wells-Dawson type polyoxometalate: An efficient catalyst for ring opening of epoxides with aromatic amines. Inorg. Chem. Commun., 2013, 28, 37-40.
Chimni, S.S.; Kaur, K.; Bala, N. Highly enantioselective kinetic resolution of trans-2-(phenylthio) cyclohexanol derivatives by immobilized Candida antartica B lipase. J. Mol. Catal., B Enzym., 2013, 96, 67-74.
Cossy, J.; Bellosta, V.; Hamoir, C.; Desmurs, J.R. Regioselective ring opening of epoxides by nucleophiles mediated by lithium bistrifluoromethanesulfonimide. Tetrahedron Lett., 2002, 43, 7083-7086.
Clososki, G.C.; Comasseto, J.V.; Costa, C.E.; Nascimento, M.G.; Barchesi, H.B.; Zanotto, S.P. Enzymatic resolution of (RS)-β-hydroxy selenides in organic media. Tetrahedron Asymmetry, 2004, 15, 3945-3954.
Ertürk, E.; Tezeren, M.A.; Atalar, T.; Tilki, T. Regioselective ring-opening of epoxides with ortho-lithioanisoles catalyzed by BF3• OEt2. Tetrahedron, 2012, 68, 6463-6471.
Abdi, S.H.R.; Prathap, K.J.; Shah, A.K.; Bajaj, H.C.; Khan, N.H.; Kureshy, R.I. Fe(OH)3 nano solid material: An efficient catalyst for regioselective ring opening of aryloxy epoxide with amines under solvent free condition. Appl. Catal. A Gen., 2013, 469, 442-450.
Sridhar, R.; Srinivas, B.; Surendra, K.; Krishnaveni, N.S.; Rao, K.R. Synthesis of β-hydroxy selenides using benzeneselenol and oxiranes under supramolecular catalysis in the presence of β-cyclodextrin in water. Tetrahedron Lett., 2005, 46, 8837-8839.
Thomas, C.; Brut, S.; Bibal, B. Quaternary ammoniums and a cationic sodium complex as supramolecular catalysts in ring-opening of epoxides by amines. Tetrahedron, 2014, 70, 1646-1650.
Bonollo, S.; Lanari, D.; Marrocchi, A.; Vaccaro, L. stereoselective ring-opening reactions of epoxides in water. Curr. Org. Synth., 2011, 8, 319-329.
Bagnoli, L.; Tiecco, M.; Purgatorio, V.; Testaferri, L.; Marini, F.; Santi, C. Synthesis of enantiomerically pure substituted tetrahydrofurans from epoxides and phenylselenium reagents. Tetrahedron Asymmetry, 2004, 15, 405-412.
Tomioka, T.; Sankranti, R.; James, A.M.; Mattern, D.L. Regioselective ring-opening α-methylenation of aryl epoxides to conjugated allyl alcohols utilizing n-BuLi and Me2S=CH2 reagents. Tetrahedron Lett., 2014, 55, 3443-3445.
Trikittiwong, P.; Sukpirom, N.; Chavasiri, W. Regioselective epoxide ring opening mediated by iron oxide-pillared clay. J. Mol. Catal. Chem., 2013, 378, 76-81.
Amantini, D.; Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. ZnCl2 as an efficient catalyst in the thiolysis of 1,2-epoxides by thiophenol in aqueous medium. Synlett, 2003, 2003, 2292-2296.
Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. Zn(II)-catalyzed thiolysis of oxiranes in water under neutral conditions. J. Org. Chem., 2003, 68(21), 8248-8251.
[http://dx.doi.org/10.1021/jo0348266] [PMID: 14535811]
Maiti, A.K.; Bhattacharyya, P. Polyethylene glycol (PEG) 4000 catalysed regioselective nucleophilic ring opening of oxiranes - A new and convenient synthesis of β-hydroxy sulfone and β-hydroxy sulfide. Tetrahedron, 1994, 50, 10483-10490.
Movassagh, B.; Sobhani, S.; Kheirdoush, F.; Fadaei, Z. Regioselective reaction of epoxides with disulfides using Zn/AlCl3 System: A simple synthesis of β-hydroxy sulfides. Synth. Commun., 2003, 33, 3103-3108.
Polshettiwar, V.; Kaushik, M.P. CsF-celite catalyzed regio- and chemoselective SN2 type ring opening of epoxides with thiol. Catal. Commun., 2004, 5, 515-518.
Della Sala, G.; Labano, S.; Lattanzi, A.; Scettri, A. Diastereoselective oxidation of β-hydroxysulfides with TBHP: A comparative study of titanocenes and Ti(Oi-Pr)4as catalysts. Tetrahedron, 2002, 58, 6679-6683.
Vaddula, B.R.; Varma, R.S.; Leazer, J. One-pot catalyst-free synthesis of β-and γ-hydroxy sulfides using diaryliodonium salts and microwave irradiation. Eur. J. Org. Chem., 2012, 2012, 6852-6855.
Arroyo, Y.; Rodríguez, J.F.; Santos, M.; Tejedor, M.A.S.; Ruano, J.L.G. Asymmetric synthesis of β-hydroxy sulfides controlled by remote sulfoxides. J. Org. Chem., 2007, 72(3), 1035-1038.
[http://dx.doi.org/10.1021/jo062053q] [PMID: 17253831]
Surendra, K.; Krishnaveni, N.S.; Sridhar, R.; Rao, K.R. Synthesis of β-hydroxysulfides from alkenes under supramolecular catalysis in the presence of β-cyclodextrin in water. J. Org. Chem., 2006, 71(15), 5819-5821.
[http://dx.doi.org/10.1021/jo060805a] [PMID: 16839175]
Hutchinson, T.H.; Shillabeer, N.; Winter, M.J.; Pickford, D.B. Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquat. Toxicol., 2006, 76(1), 69-92.
[http://dx.doi.org/10.1016/j.aquatox.2005.09.008] [PMID: 16290221]
Makitra, R.G. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry, Weinheim: Wiley-VCH, 2003, 630 p. Russ. J. Gen. Chem., 2005, 75, 664.
Cavanagh, J.B. Solvent neurotoxicity. Br. J. Ind. Med., 1985, 42(7), 433-434.
[PMID: 4040387]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Taherinia, Z. (ZrO)2Fe2O5 as an efficient and recoverable nanocatalyst in C-C bond formation. J. Iran. Chem. Soc., 2019, 16, 411-421.
Ghorbani-Choghamarani, A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron, 2019, 158, 25-35.
Zhang, Y.; Bakshi, B.R.; Demessie, E.S. Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ. Sci. Technol., 2008, 42(5), 1724-1730.
[http://dx.doi.org/10.1021/es0713983] [PMID: 18441827]
Robert, C.; de Montigny, F.; Thomas, C.M. Tandem synthesis of alternating polyesters from renewable resources. Nat. Commun., 2011, 2, 586.
[http://dx.doi.org/10.1038/ncomms1596] [PMID: 22158441]
Lubineau, A.; Augé, J.; Queneau, Y. Water-promoted organic reactions. Synthesis (Stuttg), 1994, 1994, 741-760.
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
Simon, M-O.; Li, C-J. ChemInform Abstract: Green Chemistry Oriented Organic Synthesis in Water. ChemInform, 2012, •••, 43.
Movassagh, B.; Soleiman-Beigi, M. Stereo- and regioselective thiolysis of 1,2-epoxides in water. Synth. Commun., 2007, 37, 3239-3244.
Mukherjee, C.; Maiti, G.H.; Misra, A.K. Regioselective ring opening of epoxides with thiols in water. ARKIVOC, 2008, 11, 46-55.
Abaee, S.M.; Mojtahedi, M.M.; Abbasi, H.; Fatemi, E.R. Additive-free thiolysis of epoxides in water: A green and efficient regioselective pathway to β-hydroxy sulfides. Synth. Commun., 2008, 38, 282-289.
Pironti, V.; Colonna, S. Microwave-promoted synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides in water. Green Chem., 2005, 7, 43-45.
Gao, P.; Xu, P.F.; Zhai, H. Borax-catalyzed thiolysis of 1,2-epoxides in aqueous medium. Tetrahedron Lett., 2008, 49, 6536-6538.
Panchadhayee, R.; Misra, A.K. Odorless regioselctive ring opening of epoxides with S-alkylisothiouronium salts as masked thiols in water. ARKIVOC, 2009, 2009, 298-307.
Li, R.; Ge, Z.; Cheng, T.; Zhu, J.; Li, R. Synthesis of β-hydroxy sulfides via thiolysis of epoxides using s-alkylisothiouronium salts as thiol equivalents in basic aqueous medium. ChemInform, 2009, 40, 791-796.
Azizi, N.; Amiri, A.K.; Bolourtchian, M.; Saidi, M.R. A green and highly efficient alkylation of thiols in water. J. Iran. Chem. Soc., 2009, 6, 749-753.
Reutzel-Edens, S.M.; Bush, J.K. MageeGreg, P.A. Stephenson, G.A.; Byrn, S.R. Anhydrates and hydrates of olanzapine: Crystallization, solid-state characterization, and structural relationships. Cryst. Growth Des., 2003, 3, 897-907.
Rogers, R.D. Chemistry. Ionic liquids--solvents of the future? Science, 2003, 302, 792-793.
Weingärtner, H. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. Engl., 2008, 47(4), 654-670.
[http://dx.doi.org/10.1002/anie.200604951] [PMID: 17994652]
Lee, J.W.; Shin, J.Y.; Chun, Y.S.; Jang, H.B.; Song, C.E.; Lee, S.G. Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc. Chem. Res., 2010, 43(7), 985-994.
[http://dx.doi.org/10.1021/ar9002202] [PMID: 20345123]
Kochetkov, S.V.; Kucherenko, A.S.; Kryshtal, G.V.; Zhdankina, G.M.; Zlotin, S.G. Simple ionic liquid supported C2-symmetric bisprolinamides as recoverable organocatalysts for the asymmetric aldol reaction in the presence of water. Eur. J. Org. Chem., 2012, 2012, 7129-7134.
Chen, J.; Wu, H.; Jin, C.; Zhang, X.; Xie, Y.; Su, W. Highly regioselective ring-opening of epoxides with thiophenols in ionic liquids without the use of any catalyst. Green Chem., 2006, 8, 330-332.
Yang, M.H.; Yan, G.B.; Zheng, Y.F. Regioselective ring-opening reactions of 1,2-epoxides with thiols and arylselenols directly promoted by [Bmim]BF4. Tetrahedron Lett., 2008, 49, 6471-6474.
Widegren, J.A.; Finke, R.G. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts. J. Mol. Catal. Chem., 2003, 191, 187-207.
Schellenberg, J. Recent transition metal catalysts for syndiotactic polystyrene. Prog. Polym. Sci., 2009, 34, 688-718.
Chen, L.; Noory Fajer, A.; Yessimbekov, Z.; Kazemi, M.; Mohammadi, M. Diaryl sulfides synthesis: Copper catalysts in C-S bond formation. J. Sulfur Chem., 2019, 40(2)
Pu, Q.; Kazemi, M.; Mohammadi, M. Application of transition metals in sulfoxidation reactions. Mini Rev. Org. Chem., 2019, 16, 5775-5791.
Ghorbani-Choghamarani, A.; Mohammadi, M.; Hudson, R.H.E.; Tamoradi, T. Boehmite@tryptophan-Pd nanoparticles: A new catalyst for C-C bond formation. Appl. Organomet. Chem., 2019, 33(8)e4977
Yao, X.; Chen, Y. Interactions among supported copper-based catalyst components and their effects on performance: A review. Chin. J. Catal., 2013, 34, 851-864.
Costas, M.; Chen, K.; Que, L. Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord. Chem. Rev., 2000, 200-202, 517-544.
Firouzabadi, H.; Iranpoor, N.; Jafari, A.A.; Makarem, S. Aluminumdodecatungstophosphate (AlPW12O40) as a reusable Lewis acid catalyst. Facile regioselective ring opening of epoxides with alcohols, acetic acid and thiols. J. Mol. Catal. Chem., 2006, 250, 237-242.
Chen, Y.J.; Chen, C. Enantioselective ring-opening reaction of meso-epoxides with ArSH catalyzed by a C2-symmetric chiral bipyridyldiol-titanium complex. Tetrahedron Asymmetry, 2007, 18, 1313-1319.
Dalpozzo, R.; Nardi, M.; Oliverio, M.; Paonessa, R.; Procopio, A. Erbium(III) triflate is a highly efficient catalyst for the synthesis of β-alkoxy alcohols, 1,2-diols and β-hydroxy sulfides by ring opening of epoxides. Synthesis (Stuttg), 2009, 2009, 3433-3438.
Pan, Y.; Zhu, C.; Yuan, F.; Sun, J.; Yang, M. Enantioselective ring-opening reaction of meso-epoxides with ArSH catalyzed by heterobimetallic Ti-Ga-Salen system. Tetrahedron Lett., 2008, 50, 548-551.
Badiceanu, A.D.; Garst, A.E.; Trubitt, M.E.; Nolin, K.A. Addition of unactivated thiols to epoxides and oxetanes catalyzed by a rhenium-oxo complex. Catal. Commun., 2014, 47, 67-70.
Concellón, J.M.; del Solar, V.; Suárez, J.R.; Blanco, E.G. Ring opening of chiral 2-(1-aminoalkyl)epoxides by aliphatic thiols with total selectivity: Synthesis of enantiopure 3-amino-1-(alkylthio)alkan-2-ols. Tetrahedron, 2007, 63, 2805-2810.
Rani, R.; Pattanayak, S.; Agarwal, J.; Peddinti, R.K. Magnesium Chloride-Catalyzed Thiolysis of Epoxides: Synthesis of β-Hydroxy Sulfides. ChemInform, 2011, 42(4)
Agafontsev, A.M.; Gorshkov, N.B.; Tkachev, A.V. Efficient synthesis of β-hydroxy sulfides by microwave-promoted ring opening in (+)-3-carene trans-epoxide with sodium thiolates. Mendeleev Commun., 2011, 21, 192-193.
Lanke, S.R.; Bhanage, B.M. Amberlyst-15©: An efficient heterogeneous reusable catalyst for selective anti-Markovnikov addition of thiols to alkenes/alkynes and for thiolysis of epoxides. Catal. Commun., 2013, 41, 29-33.
Guo, W.; Chen, J.; Wu, D.; Ding, J.; Chen, F.; Wu, H. Rongalite® promoted highly regioselective synthesis of β-hydroxy sulfides by ring opening of epoxides with disulfides. Tetrahedron, 2009, 65, 5240-5243.
Tandem base-free synthesis of β-hydroxy sulphides under ultrasound irradiation. J. Chem. Sci., 2012, 124, 1057-1062.
Soleiman-Beigi, M.; Kohzadi, H. Na/THF- Mediated cleavage of organic disulfides/diselenides. An efficient and one-pot regioselective method to the synthesis of β-hydroxy sulfides/selenides. Arab. J. Chem., 2019, 12(7), 1532-1536.
Zhang, J.; Cue, B.W. Green process chemistry in the pharmaceutical industry: Recent case studies, Green Tech. Org. Synth. Med. Chem., 2012, 2, 631-658.
Gani, R.; Gómez, P.A.; Folić, M.; Jiménez-González, C.; Constable, D.J.C. Solvents in organic synthesis: Replacement and multi-step reaction systems. Comput. Chem. Eng., 2008, 32, 2420-2444.
Dong, Y.W.; Wang, G.W.; Wang, L. Solvent-free synthesis of naphthopyrans under ball-milling conditions. Tetrahedron, 2008, 64, 10148-10154.
Baron, A.; Martinez, J.; Lamaty, F. Solvent-free synthesis of unsaturated amino esters in a ball-mill. Tetrahedron Lett., 2010, 51, 6246-6249.
Fulmer, D.A.; Shearouse, W.C.; Medonza, S.T.; Mack, J. Solvent-free Sonogashira coupling reaction viahigh speed ball milling. Green Chem., 2009, 11, 1821-1825.
Thorwirth, R.; Stolle, A.; Ondruschka, B. ChemInform Abstract: Fast Copper-, Ligand- and Solvent-Free Sonogashira Coupling in a Ball Mill. ChemInform, 2010, 41(43)
Mojtahedi, M.M.; Ghasemi, M.H.; Abaee, M.S.; Bolourtchian, M. Microwave-assisted ring opening of epoxides with thiols on montmorillonite K-10 solid support. ARKIVOC, 2005, 15, 68-73.
Azizi, N.; Saidi, M.R. LiClO4 • 3H2O promoted highly regioselective ring-opening of epoxides with thiols under neutral conditions. Catal. Commun., 2006, 7, 224-227.
Bandgar, B.P.; Patil, A.V.; Chavan, O.S.; Kamble, V.T. Regioselective ring opening of epoxides with thiols under solvent free and mild conditions using heterogeneous catalyst. Catal. Commun., 2007, 8, 1065-1069.
Su, W.; Chen, J.; Wu, H.; Jin, C. A general and efficient method for the selective synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides catalyzed by gallium(III) triflate. J. Org. Chem., 2007, 72(12), 4524-4527.
[http://dx.doi.org/10.1021/jo0700124] [PMID: 17489634]
Shivani; Chakraborti, A.K. Zinc perchlorate hexahydrate as a new and highly efficient catalyst for synthesis of 2-hydroxysulfides by opening of epoxide rings with thiols under solvent-free conditions: Application for synthesis of the key intermediate of diltiazem. J. Mol. Catal. Chem., 2007, 263, 137-142.
Balasubramanyam, P.; Veeranjaneyulu, B.; Sudhakar, D.; Das, B.; Krishnaiah, M. Efficient synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides catalyzed by Cu/MgO under solvent-free conditions. Synth. Commun., 2010, 40, 2113-2121.
Shailaja, M.; Manjula, A.; Vittal Rao, B. Bromodimethyl sulfonium bromide-mediated thiolysis of epoxides: An easy access to β-hydroxy sulfides and benzoxathiepinones in solvent-free conditions. Synth. Commun., 2010, 40, 3629-3639.
Mojtahedi, M.M.; Abaee, M.S.; Rajabi, A.; Mahmoodi, P.; Bagherpoor, S. Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides. J. Mol. Catal. Chem., 2012, 361, 68-71.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 01 June, 2020
Page: [352 - 362]
Pages: 11
DOI: 10.2174/1570193X16666190723111746
Price: $65

Article Metrics

PDF: 21