Design of Metal-Organic Frameworks for pH-Responsive Drug Delivery Application

Author(s): Xin Shen, Ying Pan, Zhihao Sun, Dong Liu*, Hongjia Xu, Qian Yu, Manoj Trivedi, Abhinav Kumar*, Jinxiang Chen, Jianqiang Liu*.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 20 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Metal-Organic Frameworks (MOFs) have aroused great interest in the field of nanoscience and nanotechnology particularly in biomedical domains, such as Drug Delivery System (DDS), Biomedical Imaging (BI) and Photodynamic Therapy (PDT). As an emerging material, MOFs possess extraordinarily high surface area, controllable particle size and good biocompatibility. With extraordinary flexibility in the selection of organic and inorganic components, MOFs can rationally be tuned to obtain the materials having versatile structures and porosities. MOFs can serve as ideal vehicles for DDS, BI and PDT through modification and function. In this review, we summarized the design and synthetic strategies for preparing MOFs and introduced their recent advanced usage in DDS, BI and PDT. Finally, the prospect and future challenges of these nanomaterials are also documented.

Keywords: Drug delivery, biomedical imaging, photodynamic therapy, Metal-Organic Frameworks (MOFs), Porous Coordination Polymers (PCPs), Photodynamic Therapy (PDT).

[1]
Yang, X.; Ma, L.F.; Yan, D. Facile synthesis of 1D organic-inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. , 2019, 10(17), 4567-4572.
[http://dx.doi.org/10.1039/C9SC00162J] [PMID: 31123566]
[2]
Tăbăcaru, A.; Pettinari, C.; Galli, S. Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coord. Chem. Rev., 2018, 372, 1-30.
[http://dx.doi.org/10.1016/j.ccr.2018.05.024]
[3]
Zhao, Y.; Yang, X.G.; Lu, X.M.; Yang, C.D.; Fan, N.N.; Yang, Z.T.; Wang, L.Y.; Ma, L.F. Zn6 Cluster based metal-organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem., 2019, 58(9), 6215-6221.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00450] [PMID: 31002240]
[4]
Zhao, Y.; Wang, L.; Fan, N.N.; Han, M.L.; Yang, G.P.; Ma, L.F. Porous Zn(II)-based metal–organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des., 2018, 18, 7114-7121.
[http://dx.doi.org/10.1021/acs.cgd.8b01290]
[5]
Li, N.; Feng, R.; Zhu, J.; Chang, Z.; Bu, X. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev., 2018, 375, 558-586.
[http://dx.doi.org/10.1016/j.ccr.2018.05.016]
[6]
Elsaidi, S.K.; Mohamed, M.H.; Banerjee, D.; Thallapally, P.K. Flexibility in Metal–Organic frameworks: A fundamental understanding. Coord. Chem. Rev., 2018, 358, 125-152.
[http://dx.doi.org/10.1016/j.ccr.2017.11.022]
[7]
Lin, Z.J.; Lü, J.; Hong, M.; Cao, R. Metal-organic frameworks based on Flexible Ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev., 2014, 43(16), 5867-5895.
[http://dx.doi.org/10.1039/C3CS60483G] [PMID: 24699533]
[8]
Eubank, J.F.; Wojtas, L.; Hight, M.R.; Bousquet, T.; Kravtsov, V.Ch.; Eddaoudi, M. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc., 2011, 133(44), 17532-17535.
[http://dx.doi.org/10.1021/ja203898s] [PMID: 21675767]
[9]
Cai, H.; Huang, Y.; Li, D. Biological metal-organic frameworks: structures, host-guest chemistry and bio-applications. Coord. Chem. Rev., 2019, 378, 207-221.
[http://dx.doi.org/10.1016/j.ccr.2017.12.003]
[10]
Fu, H.R.; Wang, N.; Qin, J.H.; Han, M.L.; Ma, L.F.; Wang, F. Spatial confinement of a cationic MOF: A SC-SC approach for high capacity Cr(vi)-oxyanion capture in aqueous solution. Chem. Commun. , 2018, 54(82), 11645-11648.
[http://dx.doi.org/10.1039/C8CC05990J] [PMID: 30272073]
[11]
Zhao, Y.; Deng, D.S.; Ma, L.F.; Ji, B.M.; Wang, L.Y. A new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of β-ketoesters. Chem. Commun. , 2013, 49(87), 10299-10301.
[http://dx.doi.org/10.1039/c3cc45310c] [PMID: 24066353]
[12]
Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev., 2016, 307, 342-360.
[http://dx.doi.org/10.1016/j.ccr.2015.08.008]
[13]
Ma, L.F.; Han, M.L.; Qin, J.H.; Wang, L.Y.; Du, M. Mn(II) coordination polymers based on bi-, tri-, and tetranuclear and polymeric chain building units: Crystal structures and magnetic properties. Inorg. Chem., 2012, 51(17), 9431-9442.
[http://dx.doi.org/10.1021/ic3012537] [PMID: 22909349]
[14]
Feng, X.; Feng, Y.; Guo, N.; Sun, Y.; Zhang, T.; Ma, L.; Wang, L. Series d−f heteronuclear metal−organic frameworks: Color tunability and luminescent probe with switchable properties. Inorg. Chem., 2017, 56(3), 1713-1721.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02851] [PMID: 28094932]
[15]
Feng, X.; Feng, Y.Q.; Chen, J.J.; Ng, S.W.; Wang, L.Y.; Guo, J.Z. Reticular three-dimensional 3d-4f frameworks constructed through substituted imidazole-dicarboxylate: Syntheses, luminescence and magnetic properties study. Dalton Trans., 2015, 44(2), 804-816.
[http://dx.doi.org/10.1039/C4DT02047B] [PMID: 25406692]
[16]
Feng, X.; Ma, L.F.; Liu, L.; Xie, S.Y.; Wang, L.Y. A series of heterometallic three dimensional frameworks constructed from imidazole dicarboxylate: Structures, luminescence and magnetic property. Cryst. Growth Des., 2013, 13, 4469-4479.
[http://dx.doi.org/10.1021/cg4009587]
[17]
Ximing, G.; Bin, G.; Yuanlin, W.; Shuanghong, G. Preparation of spherical metal-organic frameworks encapsulating ag nanoparticles and study on its antibacterial activity. Mater. Sci. Eng. C, 2017, 80, 698-707.
[http://dx.doi.org/10.1016/j.msec.2017.07.027] [PMID: 28866218]
[18]
Yang, Y.; Chen, Q.; Wu, J.P.; Kirk, T.B.; Xu, J.; Liu, Z.; Xue, W. Reduction-responsive codelivery system based on a metal–organic framework for eliciting potent cellular immune response. ACS Appl. Mater. Interfaces, 2018, 10(15), 12463-12473.
[http://dx.doi.org/10.1021/acsami.8b01680] [PMID: 29595246]
[19]
Zhan, X.; Yu, X.; Tsai, F.; Ma, N.; Liu, H.; Han, Y.; Xie, L.; Jiang, T.; Shi, D.; Xiong, Y. Magnetic MOF for AO7 removal and targeted delivery. Crystals , 2018, 8(6), 250-256.
[http://dx.doi.org/10.3390/cryst8060250]
[20]
Gao, X.; Wang, Y.; Ji, G.; Cui, R.; Liu, Z. One-pot synthesis of hierarchical-pore metal-organic frameworks for drug delivery and fluorescent imaging. CrystEngComm, 2018, 20(8), 1087-1093.
[http://dx.doi.org/10.1039/C7CE02053H]
[21]
Taylor, K.M.L.; Rieter, W.J.; Lin, W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc., 2008, 130(44), 14358-14359.
[http://dx.doi.org/10.1021/ja803777x] [PMID: 18844356]
[22]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Zhao, G.; Xia, G.; Li, R.; Liu, Z.; Tian, J.; Wang, H.; Guo, Z.; Wang, H.; Chen, Q. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 2016, 100, 27-40.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.027] [PMID: 27240160]
[23]
Yang, Y.M.; Zhou, C.Q.; Chen, J.X.; Lin, Y.L.; Zeng, W.; Kuang, B.C.; Fu, W.L.; Chen, W.H. Facile synthesis of a polyether-tethered dimeric berberine as a highly effective DNA-cleaving agent in the presence of Cu(II) ion. MedChemComm, 2013, 4, 1400-1404.
[24]
Ren, F.; Chen, R.D.; Wang, Y.; Sun, Y.B.; Jiang, Y.D.; Li, G.F. Paclitaxel-loaded poly (n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm. Res., 2011, 28, 897-906.
[25]
Li, Z.; Chen, W.H. Synthesis, anion recognition and transmembrane anion-transport properties of squaramides and their derivatives. Mini Rev. Med. Chem., 2017, 14, 1398-1405.
[26]
Guan, M.; Chen, Y.M.; Wei, Y.; Song, H.; Cap, C.; Cheng, H.; Li, Y.; Huo, K.F.; Fu, J.J.; Xiong, W. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo. Intl. J. NanoMed, 2019, 14, 2903-2914.
[http://dx.doi.org/10.1039/C7DT02974H] [PMID: 28990615]
[27]
Yang, X.; Yuan, S.; Zou, L.; Drake, H.; Zhang, Y.; Qin, J.; Alsalme, A.; Zhou, H.C. One-step synthesis of hybrid core-shell metal-organic frameworks. Angew. Chem. Int. Ed. Engl., 2018, 57(15), 3927-3932.
[http://dx.doi.org/10.1002/anie.201710019] [PMID: 29451952]
[28]
Guan, H.; LeBlanc, R.J.; Xie, S.; Yue, Y. Recent progress in the syntheses of mesoporous metal-organic framework materials. Coord. Chem. Rev., 2018, 369, 76-90.
[http://dx.doi.org/10.1016/j.ccr.2018.05.001]
[29]
Jin, L.; Liu, Q.; Sun, W. An introduction to synthesis and application of nanoscale metal-carboxylate coordination polymers. CrystEngComm, 2014, 16(19), 3816-3828.
[http://dx.doi.org/10.1039/c3ce41962b]
[30]
Taylor, K.M.L.; Jin, A.; Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed. Engl., 2008, 47(40), 7722-7725.
[http://dx.doi.org/10.1002/anie.200802911] [PMID: 18767098]
[31]
Sun, W.; Zhai, X.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J., 2016, 289, 59-64.
[http://dx.doi.org/10.1016/j.cej.2015.12.076]
[32]
Liu, Y.; Goebl, J.; Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev., 2013, 42(7), 2610-2653.
[http://dx.doi.org/10.1039/C2CS35369E] [PMID: 23093173]
[33]
Jiang, Z.; Li, Z.; Qin, Z.; Sun, H.; Jiao, X.; Chen, D. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale, 2013, 5(23), 11770-11775.
[http://dx.doi.org/10.1039/c3nr03829g] [PMID: 24121859]
[34]
Feng, X.; Liu, B.; Wang, L.Y.; Zhao, J.S.; Wang, J.G.; Weng, N.S.; Shi, X.G. A series of lanthanide-organic polymers incorporating nitrogen-heterocyclic and aliphatic carboxylate mixed-ligands: structures, luminescent and magnetic properties. Dalton Trans., 2010, 39(34), 8038-8049.
[http://dx.doi.org/10.1039/c0dt00333f] [PMID: 20680195]
[35]
Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev., 2013, 42(7), 2555-2567.
[http://dx.doi.org/10.1039/C2CS35282F] [PMID: 23165883]
[36]
Feng, X.; Li, R.F.; Wang, L.Y. A series of homonuclear lanthanide coordination polymers based on a fluorescent conjugated ligand: syntheses, luminescence and sensor. CrystEngComm, 2015, 17, 7878-7887.
[http://dx.doi.org/10.1039/C5CE01454A]
[37]
Pan, C.Q. Liu, Y.Q.; Zhou, M.Y.; Wang, W.S.; Shi, M.; Xing, M. Liao, W.J. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int. J. Nanomedicine, 2018, 13, 1119-1137.
[38]
Jiang, K.; Zhang, L.; Hu, Q.; Zhang, X.; Zhang, J.; Cui, Y.; Yang, Y.; Li, B.; Qian, G. A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous Mesoporous Mater., 2019, 275, 229-234.
[http://dx.doi.org/10.1016/j.micromeso.2018.08.030]
[39]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[40]
He, Q.; Shi, J.; Chen, F.; Zhu, M.; Zhang, L. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials, 2010, 31(12), 3335-3346.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.015] [PMID: 20106517]
[41]
Karthik, S.; Puvvada, N.; Kumar, B.N.P.; Rajput, S.; Pathak, A.; Mandal, M.; Singh, N.D.P. Photoresponsive coumarin-tethered multifunctional magnetic nanoparticles for release of anticancer drug. ACS Appl. Mater. Interfaces, 2013, 5(11), 5232-5238.
[http://dx.doi.org/10.1021/am401059k] [PMID: 23730930]
[42]
Wyszogrodzka, G.; Dorożyński, P.; Gil, B.; Roth, W.J.; Strzempek, M.; Marszałek, B.; Węglarz, W.P.; Menaszek, E.; Strzempek, W.; Kulinowski, P. Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy. Pharm. Res., 2018, 35(7), 144-154.
[http://dx.doi.org/10.1007/s11095-018-2425-2] [PMID: 29777389]
[43]
Qiu, L.; Zhu, M.; Gong, K.; Peng, H.; Ge, L.; Zhao, L.; Chen, J. pH-triggered degradable polymeric micelles for targeted anti-tumor drug delivery. Mater. Sci. Eng. C, 2017, 78, 912-922.
[http://dx.doi.org/10.1016/j.msec.2017.04.137] [PMID: 28576067]
[44]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[45]
Singh, R. Geetanjali. Metal organic frameworks for drug delivery. App. J. Nano. Mater. Drug Deliv., 2018, 25, 605-617.
[46]
Wu, M.X.; Yang, Y.W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23)1606134
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[47]
Zamani, F.; Jahanmard, F.; Ghasemkhah, F.; Amjad-Iranagh, S.; Bagherzadeh, R.; Amani-Tehran, M.; Latifi, M. Nanofibrous and nanoparticle materials as drug-delivery systems. Nano Drug Deliv., 2017, 7, 239-270.
[48]
Beg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F.J.; Akhter, S. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov. Today, 2017, 22(4), 625-637.
[http://dx.doi.org/10.1016/j.drudis.2016.10.001] [PMID: 27742533]
[49]
Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Orellana-Tavra, C.; Del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S. Mechanistic investigation into the selective anticancer cytotoxicity and immune system response of surface-functionalized, dichloroacetate-loaded, UiO-66 nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(6), 5255-5268.
[http://dx.doi.org/10.1021/acsami.7b17756] [PMID: 29356507]
[50]
Morey, M.; Pandit, A. Responsive triggering systems for delivery in chronic wound healing. Adv. Drug Deliv. Rev., 2018, 129, 169-193.
[http://dx.doi.org/10.1016/j.addr.2018.02.008] [PMID: 29501700]
[51]
Jin, Z.; Zhao, P.; Zhang, J.; Yang, T.; Zhou, G.; Zhang, D.; Wang, T.; He, Q. Intelligent metal carbonyl metal-organic framework nanocomplex for fluorescent traceable H2O2-triggered CO delivery. Chemistry, 2018, 24(45), 11667-11674.
[http://dx.doi.org/10.1002/chem.201801407] [PMID: 29851158]
[52]
Jiang, K.; Zhang, L.; Hu, Q.; Yang, Y.; Lin, W.; Cui, Y.; Yang, Y.; Qian, G. A Biocompatible Ti-based metal-organic framework for pH responsive drug delivery. Mater. Lett., 2018, (225), 142-144.
[http://dx.doi.org/10.1016/j.matlet.2018.05.006]
[53]
Wang, T.C.; Vermeulen, N.A.; Kim, I.S.; Martinson, A.B.; Stoddart, J.F.; Hupp, J.T.; Farha, O.K. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat. Protoc., 2016, 11(1), 149-162.
[http://dx.doi.org/10.1038/nprot.2016.001] [PMID: 26678084]
[54]
Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc., 2016, 138(3), 962-968.
[http://dx.doi.org/10.1021/jacs.5b11720] [PMID: 26710234]
[55]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[56]
Bhattacharjee, A.; Gumma, S.; Purkait, M.K. Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater., 2018, 259, 203-210.
[http://dx.doi.org/10.1016/j.micromeso.2017.10.020]
[57]
Chen, Y.; Li, P.; Modica, J.A.; Drout, R.J.; Farha, O.K. Acid-resistant mesoporous metal−organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc., 2018, 140(17), 5678-5681.
[http://dx.doi.org/10.1021/jacs.8b02089] [PMID: 29641892]
[58]
Lei, B.; Wang, M.; Jiang, Z.; Qi, W.; Su, R.; He, Z. Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(19), 16698-16706.
[http://dx.doi.org/10.1021/acsami.7b19693] [PMID: 29692177]
[59]
Luo, Z.D.; Fan, S.R.; Gu, C.Y.; Liu, W.C.; Li, B.H.; Liu, J.Q. metal-organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem., 2019, 26, 3341-3369.
[http://dx.doi.org/10.2174/0929867325666180214123500]
[60]
Li, Y.; Jin, J.; Wang, D.; Lv, J.; Hou, K.; Liu, Y.; Chen, C.; Tang, Z. Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res., 2018, 11(6), 3294-3305.
[http://dx.doi.org/10.1007/s12274-017-1874-y]
[61]
Han, Y.Y.; Liu, W.C.; Huang, J.J.; Qiu, S.W.; Zhong, H.R.; Liu, D.; Liu, J.Q. Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics, 2018, 10, 271-282.
[http://dx.doi.org/10.3390/pharmaceutics10040271]
[62]
Kim, I.S.; Borycz, J.; Platero-Prats, A.E.; Tussupbayev, S.; Wang, T.C.; Farha, O.K.; Hupp, J.T.; Gagliardi, L.; Chapman, K.W.; Cramer, C.J.; Martinson, A.B.F. Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem. Mater., 2015, 27(13), 4772-4778.
[http://dx.doi.org/10.1021/acs.chemmater.5b01560]
[63]
Luo, Z.; Wang, R.; Gu, C.; Li, F.; Han, Y.; Li, B.; Liu, J. A metal-organic framework with unusual nanocages: Drug delivery. Inorg. Chem. Commom., 2017, 76, 91-94.
[http://dx.doi.org/10.1016/j.inoche.2017.01.002]
[64]
Xue, Y.X.; Hong, X.F.; Gao, J.; Shen, R.Z.; Ye, Z.C. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. Intl. J. NanoMed, 2019, 14, 483-498.
[65]
Zou, Z.; Li, S.; He, D.; He, X.; Wang, K.; Li, L.; Yang, X.; Li, H. A versatile stimulus-responsive metal-organic framework for size/morphology tunable hollow mesoporous silica and pH-triggered drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(11), 2126-2132.
[http://dx.doi.org/10.1039/C6TB03379B]
[66]
Yang, B.C.; Shen, M.; Liu, J.Q.; Ren, F. Post-synthetic modification nanoscale metal-organic frameworks for targeted drug delivery incancer cells. Pharm. Res., 2017, 34, 2440-2450.
[67]
Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H.; Meng, X. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials, 2018, 162, 132-143.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.022] [PMID: 29448141]
[68]
Xing, K.; Fan, R.; Wang, F.; Nie, H.; Du, X.; Gai, S.; Wang, P.; Yang, Y. Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc meta-organic framework. ACS Appl. Mater. Interfaces, 2018, 10(26), 22746-22756.
[http://dx.doi.org/10.1021/acsami.8b06270] [PMID: 29877692]
[69]
Sun, K.; Xu, C.; Hu, T.; Lin, C.; Wang, Y.; Li, Y.; Li, L.; Wang, Y. γ-Fe2O3/La-MOFs@SiO2 for magnetic resonance/fluorescence dual mode imaging and pH-drug delivery. Mater. Lett., 2018, 228, 216-219.
[http://dx.doi.org/10.1016/j.matlet.2018.06.018]
[70]
Liu, Y.; Zhang, C.; Liu, H.; Li, Y.; Xu, Z.; Li, L.; Whittaker, A. Controllable synthesis of up-conversion nanoparticles UCNPs@MIL-PEG for pH-responsive drug delivery and potential up-conversion luminescence/magnetic resonance dual-mode imaging. J. All. Comp., 2018, 749, 939-947.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.355]
[71]
Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur. J. Med. Chem., 2018, 157, 705-715.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.034] [PMID: 30138802]
[72]
Wu, M.X.; Gao, J.; Wang, F.; Yang, J.; Song, N.; Jin, X.; Mi, P.; Tian, J.; Luo, J.; Liang, F.; Yang, Y.W. Multistimuli responsive core-shell nanoplatform constructed from Fe3O4@MOF equipped with pillar[6]arene nanovalves. Small, 2018, 14(17)e1704440
[http://dx.doi.org/10.1002/smll.201704440] [PMID: 29611291]
[73]
Abazari, R.; Reza Mahjoub, A.; Slawin, A.M.Z.; Carpenter-Warren, C.L. Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrason. Sonochem., 2018, 42, 594-608.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.032] [PMID: 29429708]
[74]
Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J.M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chem. Commun. , 2015, 51(62), 12463-12466.
[http://dx.doi.org/10.1039/C5CC04663G] [PMID: 26144844]
[75]
Xu, T.; Hou, X.; Liu, S.; Liu, B. One-step synthesis of magnetic and porous Ni@MOF-74(Ni) composite. Microporous Mesoporous Mater., 2018, 259, 178-183.
[http://dx.doi.org/10.1016/j.micromeso.2017.10.014]
[76]
Ebrahimi, A.K.; Barani, M.; Sheikhshoaie, I. Fabrication of a new superparamagnetic metal-organic framework with core-shell nanocomposite structures: Characterization, biocompatibility, and drug release study. Mater. Sci. Eng. C, 2018, 92, 349-355.
[http://dx.doi.org/10.1016/j.msec.2018.07.010] [PMID: 30184760]
[77]
Meng, X.; Gui, B.; Yuan, D.; Zeller, M.; Wang, C. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci. Adv., 2016, 2(8)e1600480
[http://dx.doi.org/10.1126/sciadv.1600480] [PMID: 27493996]
[78]
Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44(10), 957-968.
[http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
[79]
Zhou, J.; Tian, G.; Zeng, L.; Song, X.; Bian, X.W. Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy. Adv. Healthc. Mater., 2018, 7(10)e1800022
[http://dx.doi.org/10.1002/adhm.201800022] [PMID: 29508557]
[80]
Wang, D.; Zhou, J.; Shi, R.; Wu, H.; Chen, R.; Duan, B.; Xia, G.; Xu, P.; Wang, H.; Zhou, S.; Wang, C.; Wang, H.; Guo, Z.; Chen, Q. Biodegradable core-shell dual-metal-organic-frameworks nano theranostic agent for multiple imaging guided combination cancer therapy. Theranostics, 2017, 7(18), 4605-4617.
[http://dx.doi.org/10.7150/thno.20363] [PMID: 29158848]
[81]
Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater., 2018, 30(37)e1707634
[http://dx.doi.org/10.1002/adma.201707634] [PMID: 29971835]
[82]
Cai, W.; Chu, C.C.; Liu, G.; Wáng, Y.X.J. Metal–organic framework‐based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11(37), 4806-4822.
[http://dx.doi.org/10.1002/smll.201500802] [PMID: 26193176]
[83]
Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc., 2006, 128(28), 9024-9025.
[http://dx.doi.org/10.1021/ja0627444] [PMID: 16834362]
[84]
Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Post synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]
[85]
Tu, C.; Osborne, E.A.; Louie, A.Y. Activatable T1 and T2 magnetic resonance imaging contrast agents. Ann. Biomed. Eng., 2011, 39(4), 1335-1348.
[http://dx.doi.org/10.1007/s10439-011-0270-0] [PMID: 21331662]
[86]
Zhou, Z.; Wang, L.; Chi, X.; Bao, J.; Yang, L.; Zhao, W.; Chen, Z.; Wang, X.; Chen, X.; Gao, J. Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano, 2013, 7(4), 3287-3296.
[http://dx.doi.org/10.1021/nn305991e] [PMID: 23473444]
[87]
Wang, C.; Liu, D.; Lin, W. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc., 2013, 135(36), 13222-13234.
[http://dx.doi.org/10.1021/ja308229p] [PMID: 23944646]
[88]
Rieter, W.J.; Taylor, K.M.L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc., 2007, 129(32), 9852-9853.
[http://dx.doi.org/10.1021/ja073506r] [PMID: 17645339]
[89]
Foucault-Collet, A.; Gogick, K.A.; White, K.A.; Villette, S.; Pallier, A.; Collet, G.; Kieda, C.; Li, T.; Geib, S.J.; Rosi, N.L.; Petoud, S. Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17199-17204.
[http://dx.doi.org/10.1073/pnas.1305910110] [PMID: 24108356]
[90]
He, L.; Wang, T.; An, J.; Li, X.; Zhang, L.; Li, L.; Li, G.; Wu, X.; Su, Z.; Wang, C. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging. CrystEngComm, 2014, 16(16), 3259-3263.
[http://dx.doi.org/10.1039/c3ce42506a]
[91]
Chen, J.D.; Cui, C.; Li, Y.Q.; Zhou, L.; Ou, Q.D.; Li, C.; Li, Y.; Tang, J.X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater., 2015, 27(6), 1035-1041.
[http://dx.doi.org/10.1002/adma.201404535] [PMID: 25408480]
[92]
Lusic, H.; Grinstaff, M.W. X-ray-computed tomography contrast agents. Chem. Rev., 2013, 113(3), 1641-1666.
[http://dx.doi.org/10.1021/cr200358s] [PMID: 23210836]
[93]
Zhang, T.; Wang, L.; Ma, C.; Wang, W.; Ding, J.; Liu, S.; Zhang, X.; Xie, Z. BODIPY-containing nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(12), 2330-2336.
[http://dx.doi.org/10.1039/C7TB00392G]
[94]
He, W.; Ai, K.; Lu, L. Nanoparticulate X-ray CT contrast agents. Sci. China Chem., 2015, 58(5), 753-760.
[http://dx.doi.org/10.1007/s11426-015-5351-8]
[95]
Graves, E.E.; Bazalova, M. X-ray computed tomography principles and contrast agents. Mol. Imag. Prob. Cancer Res., 2012, 27, 795-827.
[http://dx.doi.org/10.1142/9789814293686_0027]
[96]
Shang, W.; Zeng, C.; Du, Y.; Hui, H.; Liang, X.; Chi, C.; Wang, K.; Wang, Z.; Tian, J. Core-shell gold nanorod@metal-organic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater., 2017, 29(3)1604381
[http://dx.doi.org/10.1002/adma.201604381] [PMID: 27859713]
[97]
Cole, L.E.; Ross, R.D.; Tilley, J.M.; Vargo-Gogola, T.; Roeder, R.K. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine , 2015, 10(2), 321-341.
[http://dx.doi.org/10.2217/nnm.14.171] [PMID: 25600973]
[98]
Dekrafft, K.E.; Boyle, W.S.; Burk, L.M.; Zhou, O.Z.; Lin, W. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem., 2012, 22(35), 18139-18144.
[http://dx.doi.org/10.1039/c2jm32299d] [PMID: 23049169]
[99]
Yong, K.; Brechbiel, M.W. Towards translation of 212Pb as a clinical therapeutic; getting the lead in! Dalton Trans., 2011, 40(23), 6068-6076.
[http://dx.doi.org/10.1039/c0dt01387k] [PMID: 21380408]
[100]
Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. Biomater. Sci., 2015, 3(9), 1270-1278.
[http://dx.doi.org/10.1039/C5BM00186B] [PMID: 26236784]
[101]
Faulkner, S.; Long, N.J. Radiopharmaceuticals for imaging and therapy. Dalton Trans., 2011, 40(23), 6067-6067.
[http://dx.doi.org/10.1039/c1dt90067f] [PMID: 21584331]
[102]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Zhao, G.; Xia, G.; Li, R.; Liu, Z.; Tian, J.; Wang, H.; Guo, Z.; Wang, H.; Chen, Q. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 2016, 100, 27-40.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.027] [PMID: 27240160]
[103]
Biju, V.; Hamada, M.; Ono, K.; Sugino, S.; Ohnishi, T.; Shibu, E.S.; Yamamura, S.; Sawada, M.; Nakanishi, S.; Shigeri, Y.; Wakida, S. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging. Nanoscale, 2015, 7(36), 14829-14837.
[http://dx.doi.org/10.1039/C5NR00959F] [PMID: 26205500]
[104]
Wang, G.; Pu, K.; Zhang, X.; Li, K.; Wang, L.; Cai, L.; Ding, D.; Lai, Y.; Liu, B. Star-shaped glycosylated conjugated oligomer for two-photon fluorescence imaging of live cells. Chem. Mater., 2011, 23(20), 4428-4434.
[http://dx.doi.org/10.1021/cm201377u]
[105]
Langer, G.; Bouchal, K.D.; Grün, H.; Burgholzer, P.; Berer, T. Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser. Opt. Express, 2013, 21(19), 22410-22422.
[http://dx.doi.org/10.1364/OE.21.022410] [PMID: 24104130]
[106]
Yin, C.; Hong, B.; Gong, Z.; Zhao, H.; Hu, W.; Lu, X.; Li, J.; Li, X.; Yang, Z.; Fan, Q.; Yao, Y.; Huang, W. Fluorescent oligo(p-phenyleneethynylene) contained amphiphiles-encapsulated magnetic nanoparticles for targeted magnetic resonance and two-photon optical imaging in vitro and in vivo. Nanoscale, 2015, 7(19), 8907-8919.
[http://dx.doi.org/10.1039/C5NR00806A] [PMID: 25916546]
[107]
Yang, H.; Santra, S.; Walter, G.A.; Holloway, P.H. Gd(III)-functionalized fluorescent quantum Dots as multimodal imaging probes. Adv. Mater., 2006, 18(21), 2890-2894.
[http://dx.doi.org/10.1002/adma.200502665] [PMID: 22539076]
[108]
Luo, D.; Carter, K.A.; Miranda, D.; Lovell, J.F. Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci., 2016, 4(1)1600106
[http://dx.doi.org/10.1002/advs.201600106] [PMID: 28105389]
[109]
Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; Liang, X.J.; Zhang, J. Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.007] [PMID: 29913389]
[110]
Juarranz, A.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol., 2008, 10(3), 148-154.
[http://dx.doi.org/10.1007/s12094-008-0172-2] [PMID: 18321817]
[111]
Park, J.; Feng, D.; Yuan, S.; Zhou, H.C. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. Engl., 2015, 54(2), 430-435.
[http://dx.doi.org/10.1002/anie.201408862] [PMID: 25476702]
[112]
Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev., 2008, 60(15), 1627-1637.
[http://dx.doi.org/10.1016/j.addr.2008.08.003] [PMID: 18930086]
[113]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h] [PMID: 25407895]
[114]
Schuitmaker, J.J.; Baas, P.; van Leengoed, H.L.; van der Meulen, F.W.; Star, W.M.; van Zandwijk, N. Photodynamic therapy: a promising new modality for the treatment of cancer. J. Photochem. Photobiol. B, 1996, 34(1), 3-12.
[http://dx.doi.org/10.1016/1011-1344(96)07342-3] [PMID: 8765658]
[115]
Lismont, M.; Dreesen, L.; Wuttke, S. Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv. Funct. Mater., 2017, 27(14)1606314
[http://dx.doi.org/10.1002/adfm.201606314]
[116]
Comuzzi, C.; Cogoi, S.; Overhand, M.; Van der Marel, G.A.; Overkleeft, H.S.; Xodo, L.E. Synthesis and biological evaluation of new pentaphyrin macrocycles for photodynamic therapy. J. Med. Chem., 2006, 49(1), 196-204.
[http://dx.doi.org/10.1021/jm050831l] [PMID: 16392804]
[117]
Moghissi, K.; Dixon, K. Update on the current indications, practice and results of photodynamic therapy (PDT) in early central lung cancer (ECLC). Photodiagn. Photodyn. Ther., 2008, 5(1), 10-18.
[http://dx.doi.org/10.1016/j.pdpdt.2007.11.001] [PMID: 19356631]
[118]
Friedberg, J.S. Photodynamic therapy as an innovative treatment for malignant pleural mesothelioma. Semin. Thorac. Cardiovasc. Surg., 2009, 21(2), 177-187.
[http://dx.doi.org/10.1053/j.semtcvs.2009.07.001] [PMID: 19822291]
[119]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[120]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[121]
Ma, Y.; Li, X.; Li, A.; Yang, P.; Zhang, C.; Tang, B. H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew. Chem. Int. Ed. Engl., 2017, 56(44), 13752-13756.
[http://dx.doi.org/10.1002/anie.201708005] [PMID: 28856780]
[122]
Cai, H.; Shen, T.; Zhang, J.; Shan, C.; Jia, J.; Li, X.; Liu, W.; Tang, Y. A core–shell metal–organic-framework (MOF)-based smart nanocomposite for efficient NIR/H2O2 -responsive photodynamic therapy against hypoxic tumor cells. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(13), 2390-2394.
[http://dx.doi.org/10.1039/C7TB00314E]
[123]
Chen, R.; Zhang, J.; Wang, Y.; Chen, X.; Zapien, J.A.; Lee, C.S. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy. Nanoscale, 2015, 7(41), 17299-17305.
[http://dx.doi.org/10.1039/C5NR04436G] [PMID: 26287769]
[124]
Tan, J.; Sun, C.; Xu, K.; Wang, C.; Guo, J. Immobilization of ALA-ZnII coordination polymer pro-photosensitizers on magnetite colloidal supraparticles for target photodynamic therapy of bladder cancer. Small, 2015, 11(47), 6338-6346.
[http://dx.doi.org/10.1002/smll.201502131] [PMID: 26514273]
[125]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[126]
Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy. Chem. Commun. , 2016, 52(31), 5402-5405.
[http://dx.doi.org/10.1039/C6CC01048B] [PMID: 27009757]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 20
Year: 2019
Page: [1644 - 1665]
Pages: 22
DOI: 10.2174/1389557519666190722164247
Price: $65

Article Metrics

PDF: 26
HTML: 7
EPUB: 1
PRC: 2