Laccase: An Environmental Benign Pretreatment Agent for Efficient Bioconversion of Lignocellulosic Residues to Bioethanol

Author(s): Ali Nawaz, Hamid Mukhtar*, Ikram ul Haq, Zainab Mazhar, Muhammad Waseem Mumtaz

Journal Name: Current Organic Chemistry

Volume 23 , Issue 14 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Abrupt urbanization and industrialization around the world resulted in elevated environmental pollution and depletion of natural energy resources. An eco-friendly and economical alternative for energy production is the need of an hour. This can be achieved by converting the waste material into energy. One such waste is lignocellulosic agricultural residues, produced in billions of tons every year all around the world, which can be converted into bioethanol. The main challenge in this bioconversion is the recalcitrant nature of lignocellulosic material. The removal of cementing material is lignin and to overcome the potential inhibitors produced during the disintegration of lignin is the challenging task for biotechnologist. This task can be achieved by a number of different methods but laccase is the most effective and eco-friendly method that can be used for effective removal of lignin along with the increase the accessibility of cellulose and bioethanol yield.

Keywords: Agricultural residues, bioenergy, green technology, lignocelluloses, saccharification, biomass, urbanization.

[1]
Bhutto, A.W.; Qureshi, K.; Harijan, K.; Abro, R.; Abbas, T.; Bazmi, A.A.; Yu, G. Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 2017, 122, 724-745.
[http://dx.doi.org/10.1016/j.energy.2017.01.005]
[2]
Burton, S.G.; Cowan, D.A.; Woodley, J.M. The search for the ideal biocatalyst. Nat. Biotechnol., 2002, 20(1), 37-45.
[http://dx.doi.org/10.1038/nbt0102-37] [PMID: 11753360]
[3]
Kunamneni, A.; Plou, F.J.; Ballesteros, A.; Alcalde, M. Laccases and their applications: A patent review. Recent Pat. Biotechnol., 2008, 2(1), 10-24.
[http://dx.doi.org/10.2174/187220808783330965] [PMID: 19075849]
[4]
Coll, P.M.; Fernández-Abalos, J.M.; Villanueva, J.R.; Santamaría, R.; Pérez, P. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl. Environ. Microbiol., 1993, 59(8), 2607-2613.
[PMID: 8368848]
[5]
Rodríguez Couto, S.; Toca Herrera, J.L. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv., 2006, 24(5), 500-513.
[http://dx.doi.org/10.1016/j.biotechadv.2006.04.003] [PMID: 16716556]
[6]
Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv., 2009, 27(2), 185-194.
[http://dx.doi.org/10.1016/j.biotechadv.2008.11.001] [PMID: 19100826]
[7]
Moreno, A.D.; Ibarra, D.; Alvira, P.; Tomás-Pejó, E.; Ballesteros, M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit. Rev. Biotechnol., 2015, 35(3), 342-354.
[http://dx.doi.org/10.3109/07388551.2013.878896] [PMID: 24506661]
[8]
Dias de Oliveira, M.E.; Vaughan, B.E.; Rykiel, E.J. Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. Bioscience, 2005, 55(7), 593-602.
[http://dx.doi.org/10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2]
[9]
Mićić, V.; Jotanović, M. Bioethanol as fuel for internal combustion engines. Zaštita Materijala, 2015, 56, 403-408.
[http://dx.doi.org/10.5937/ZasMat1504403M]
[10]
Shah, Y.R.; Sen, D.J. Bioalcohol as green energy-A review. Int. J. Cur. Sci. Res, 2011, 1, 57-62.
[11]
Sjostrom, E. Wood chemistry: fundamentals and applications; Elsevier, 2013.
[12]
Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 2002, 83(1), 1-11.
[http://dx.doi.org/10.1016/S0960-8524(01)00212-7] [PMID: 12058826]
[13]
Huang, Y.; Wang, L.; Chao, Y.; Nawawi, D.S.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Analysis of lignin aromatic structure in wood based on the IR spectrum. J. Wood Chem. Technol., 2012, 32(4), 294-303.
[http://dx.doi.org/10.1080/02773813.2012.666316]
[14]
Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol., 2010, 153(3), 895-905.
[http://dx.doi.org/10.1104/pp.110.155119] [PMID: 20472751]
[15]
Terashima, N.; Yoshida, M.; Hafrén, J.; Fukushima, K.; Westermark, U. Proposed supramolecular structure of lignin in softwood tracheid compound middle lamella regions. Holzforschung, 2012, 66(8), 907-915.
[http://dx.doi.org/10.1515/hf-2012-0021]
[16]
Sangha, A.K.; Petridis, L.; Smith, J.C.; Ziebell, A.; Parks, J.M. Molecular simulation as a tool for studying lignin. Environ. Prog. Sustain., 2012, 31(1), 47-54.
[http://dx.doi.org/10.1002/ep.10628]
[17]
Ruiz-Dueñas, F.J.; Martínez, Á.T. Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb. Biotechnol., 2009, 2(2), 164-177.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x] [PMID: 21261911]
[18]
Babel, K.; Janasiak, D.; Jurewicz, K. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon, 2012, 50(14), 5017-5026.
[http://dx.doi.org/10.1016/j.carbon.2012.06.030]
[19]
Imran, M.; Asad, M.J.; Hadri, S.H.; Mehmood, S. Production and industrial applications of laccase enzyme. J Cell Mol Biol., 2012, 10(1), 11.
[20]
Zabed, H.; Faruq, G.; Sahu, J.N.; Azirun, M.S.; Hashim, R.; Boyce, A.N. Bioethanol production from fermentable sugar juice. Sci. World J., 2014.2014957102
[http://dx.doi.org/10.1155/2014/957102] [PMID: 24715820]
[21]
Chandel, A.K.; Gonçalves, B.C.; Strap, J.L.; da Silva, S.S. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit. Rev. Biotechnol., 2015, 35(3), 281-293.
[http://dx.doi.org/10.3109/07388551.2013.841638] [PMID: 24156399]
[22]
Cruz, G.; Santiago, P.A.; Braz, C.E.; Seleghim, P.; Crnkovic, P.M. Investigation into the physical-chemical properties of chemically pretreated sugarcane bagasse. J. Therm. Anal. Calorim., 2018, 132(2), 1039-1053.
[http://dx.doi.org/10.1007/s10973-018-7041-1]
[23]
Chen, W.H.; Tu, Y.J.; Sheen, H.K. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. Int. J. Energy Res., 2010, 34(3), 265-274.
[http://dx.doi.org/10.1002/er.1566]
[24]
Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass-An overview. Bioresour. Technol., 2016, 199, 76-82.
[http://dx.doi.org/10.1016/j.biortech.2015.08.030] [PMID: 26320388]
[25]
Harris, D.; DeBolt, S. Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol. J., 2010, 8(3), 244-262.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00481.x] [PMID: 20070874]
[26]
Mukherjee, A.; Mandal, T.; Ganguly, A.; Chatterjee, P.K. Lignin degradation in the production of bioethanol-A review. Chem. Bioeng. Rev, 2016, 3, 86-96.
[http://dx.doi.org/10.1002/cben.201500016]
[27]
Sun, Y.; Cheng, J.J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol., 2005, 96(14), 1599-1606.
[http://dx.doi.org/10.1016/j.biortech.2004.12.022] [PMID: 15978993]
[28]
Bensah, E.C.; Mensah, M. Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. Int. J. Chem. Eng., 2013.
[http://dx.doi.org/10.1155/2013/719607]
[29]
Baral, N.R.; Shah, A. Microbial inhibitors: Formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol., 2014, 98(22), 9151-9172.
[http://dx.doi.org/10.1007/s00253-014-6106-8] [PMID: 25267161]
[30]
Jurado, M.; Prieto, A.; Martínez-Alcalá, A.; Martínez, Á.T.; Martínez, M.J. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour. Technol., 2009, 100(24), 6378-6384.
[http://dx.doi.org/10.1016/j.biortech.2009.07.049] [PMID: 19683434]
[31]
Silva, N.L.C.; Betancur, G.J.V.; Vasquez, M.P. Gomes, Ede.B.; Pereira, N., Jr. Ethanol production from residual wood chips of cellulose industry: Acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Appl. Biochem. Biotechnol., 2011, 163(7), 928-936.
[http://dx.doi.org/10.1007/s12010-010-9096-8] [PMID: 20890779]
[32]
Taherzadeh, M.J.; Niklasson, C.; Lidén, G. On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol. Bioeng., 2000, 69(3), 330-338.
[http://dx.doi.org/10.1002/1097-0290(20000805)69:3<330:AID-BIT11>3.0.CO;2-Q] [PMID: 10861413]
[33]
Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol., 2010, 101(13), 4851-4861.
[http://dx.doi.org/10.1016/j.biortech.2009.11.093] [PMID: 20042329]
[34]
Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocellu-lose: Inhibitors and detoxification. Biotechnol. Biofuels, 2013, 6(1), 16.
[http://dx.doi.org/10.1186/1754-6834-6-16] [PMID: 23356676]
[35]
Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol., 2004, 93(1), 1-10.
[http://dx.doi.org/10.1016/j.biortech.2003.10.005] [PMID: 14987714]
[36]
Kim, D. Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 2018, 23(2), 309.
[http://dx.doi.org/10.3390/molecules23020309] [PMID: 29389875]
[37]
Almeida, J.R.; Modig, T.; Petersson, A.; Hähn‐Hägerdal, B.; Lidén, G.; Gorwa‐Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol., 2007, 82, 340-349.
[http://dx.doi.org/10.1002/jctb.1676]
[38]
Singhvi, M.S.; Chaudhari, S.; Gokhale, D.V. Lignocellulose processing: A current challenge. RSC Adv, 2014, 4(16), 8271-8277.
[http://dx.doi.org/10.1039/c3ra46112b]
[39]
Zaldivar, J.; Ingram, L.O. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng., 1999, 66(4), 203-210.
[http://dx.doi.org/10.1002/(SICI)1097-0290(1999)66:4<203:AID-BIT1>3.0.CO;2-#] [PMID: 10578090]
[40]
Koppram, R.; Tomás-Pejó, E.; Xiros, C.; Olsson, L. Lignocellulosic ethanol production at high-gravity: Challenges and perspectives. Trends Biotechnol., 2014, 32(1), 46-53.
[http://dx.doi.org/10.1016/j.tibtech.2013.10.003] [PMID: 24231155]
[41]
Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol., 2000, 74, 25-33.
[http://dx.doi.org/10.1016/S0960-8524(99)00161-3]
[42]
Zeng, Y.; Zhao, S.; Yang, S.; Ding, S.Y. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotechnol., 2014, 27, 38-45.
[http://dx.doi.org/10.1016/j.copbio.2013.09.008] [PMID: 24863895]
[43]
Oliva-Taravilla, A.; Tomás-Pejó, E.; Demuez, M.; González-Fernández, C.; Ballesteros, M. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase. J. Biotechnol., 2016, 218, 94-101.
[http://dx.doi.org/10.1016/j.jbiotec.2015.11.004] [PMID: 26684987]
[44]
Moilanen, U.; Kellock, M.; Várnai, A.; Andberg, M.; Viikari, L. Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce. Biotechnol. Biofuels, 2014, 7(1), 177.
[http://dx.doi.org/10.1186/s13068-014-0177-8] [PMID: 25648942]
[45]
Madhavi, V.; Lele, S.S. Laccase: Properties and applications. BioResources, 2009, 4, 1694-1717.
[46]
Sadhasivam, S.; Savitha, S.; Swaminathan, K.; Lin, F.H. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem., 2008, 43, 736-742.
[http://dx.doi.org/10.1016/j.procbio.2008.02.017]
[47]
Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase: microbial sources, production, purification, and potential biotechnological applications; Enz. Res, 2011.
[48]
Chaurasia, P.; Bharati, S.; Sharma, M.; Singh, S.; Yadav, R.; Yadava, S. Fungal Laccases and their biotechnological significances in the current perspective: A review. Curr. Org. Chem., 2015, 19(19), 1916-1934.
[http://dx.doi.org/10.2174/1385272819666150629175237]
[49]
Kudanga, T.; Nyanhongo, G.S.; Guebitz, G.M.; Burton, S. Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme Microb. Technol., 2011, 48(3), 195-208.
[http://dx.doi.org/10.1016/j.enzmictec.2010.11.007] [PMID: 22112901]
[50]
Chandra, R.; Chowdhary, P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts, 2015, 17(2), 326-342.
[http://dx.doi.org/10.1039/C4EM00627E] [PMID: 25590782]
[51]
Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: A never-ending story. Cell. Mol. Life Sci., 2010, 67(3), 369-385.
[http://dx.doi.org/10.1007/s00018-009-0169-1] [PMID: 19844659]
[52]
Burton, S. Laccases and phenol oxidases in organic synthesis - A review. Curr. Org. Chem., 2003, 7(13), 1317-1331.
[http://dx.doi.org/10.2174/1385272033486477]
[53]
Deng, M.; Zhao, H.; Zhang, S.; Tian, C.; Zhang, D.; Du, P.; Li, H. High catalytic activity of immobilized laccase on core-shell magnetic nanoparticles by dopamine self-polymerization. J. Mol. Catal., B Enzym., 2015, 112, 15-24.
[http://dx.doi.org/10.1016/j.molcatb.2014.11.012]
[54]
Jones, S.M.; Solomon, E.I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci., 2015, 72(5), 869-883.
[http://dx.doi.org/10.1007/s00018-014-1826-6] [PMID: 25572295]
[55]
Claus, H. Laccases: Structure, reactions, distribution. Micron, 2004, 35(1-2), 93-96.
[http://dx.doi.org/10.1016/j.micron.2003.10.029] [PMID: 15036303]
[56]
Gamenara, D.; Seoane, G.A.; Saenz‐Méndez, P.; De María, P.D. Enzymes involved in redox reactions: Natural sources and mechanistic overview. Redox Biocatalysis: Fundamental. App., 2012, 1-15.
[57]
Kudanga, T.; Nemadziva, B.; Le Roes-Hill, M. Laccase catalysis for the synthesis of bioactive compounds. Appl. Microbiol. Biotechnol., 2017, 101(1), 13-33.
[http://dx.doi.org/10.1007/s00253-016-7987-5] [PMID: 27872999]
[58]
Christopher, L.P.; Yao, B.; Ji, Y. Lignin biodegradation with laccase-mediator systems. Energy Res., 2014, 2, 12.
[59]
Andréasson, L.E.; Reinhammar, B. The mechanism of electron transfers in laccase-catalysed reactions. Biochim. Biophys. Acta, 1979, 568(1), 145-156.
[http://dx.doi.org/10.1016/0005-2744(79)90282-1] [PMID: 221027]
[60]
Fillat, Ú.; Ibarra, D.; Eugenio, M.; Moreno, A.; Tomás-Pejó, E.; Martín-Sampedro, R. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: A review. Fermentation., 2017, 3(2), 17.
[http://dx.doi.org/10.3390/fermentation3020017]
[61]
Heap, L.; Green, A.; Brown, D.; van Dongen, B.; Turner, N. Role of laccase as an enzymatic pretreatment method to improve lignocellulosic saccharification. Catal. Sci. Technol., 2014, 4(8), 2251-2259.
[http://dx.doi.org/10.1039/C4CY00046C]
[62]
Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol., 2016, 199, 42-48.
[http://dx.doi.org/10.1016/j.biortech.2015.08.085] [PMID: 26341010]
[63]
Plácido, J.; Capareda, S. Ligninolytic enzymes: A biotechnological alternative for bioethanol production. Bioresour. Bioprocess., 2015, 2, 23.
[http://dx.doi.org/10.1186/s40643-015-0049-5]
[64]
Castoldi, R.; Bracht, A.; de Morais, G.R.; Baesso, M.L.; Correa, R.C.G.; Peralta, R.A.; Peralta, R.M. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: Study of degradation patterns and saccharification kinetics. Chem. Eng. J., 2014, 258, 240-246.
[http://dx.doi.org/10.1016/j.cej.2014.07.090]
[65]
Majumdar, S.; Lukk, T.; Solbiati, J.O.; Bauer, S.; Nair, S.K.; Cronan, J.E.; Gerlt, J.A. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry, 2014, 53(24), 4047-4058.
[http://dx.doi.org/10.1021/bi500285t] [PMID: 24870309]
[66]
Mäkelä, M.R.; Donofrio, N.; de Vries, R.P. Plant biomass degradation by fungi. Fungal Genet. Biol., 2014, 72, 2-9.
[http://dx.doi.org/10.1016/j.fgb.2014.08.010] [PMID: 25192611]
[67]
Moreno, A.D.; Ibarra, D.; Fernández, J.L.; Ballesteros, M. Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour. Technol., 2012, 106, 101-109.
[http://dx.doi.org/10.1016/j.biortech.2011.11.108] [PMID: 22197073]
[68]
Mate, D.M.; Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol., 2017, 10(6), 1457-1467.
[http://dx.doi.org/10.1111/1751-7915.12422] [PMID: 27696775]
[69]
Kudanga, T.; Le Roes-Hill, M. Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 2014, 98(15), 6525-6542.
[http://dx.doi.org/10.1007/s00253-014-5810-8] [PMID: 24841120]
[70]
Moreno, A.D.; Ibarra, D.; Alvira, P.; Tomás-Pejó, E.; Ballesteros, M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit. Rev. Biotechnol., 2015, 35(3), 342-354.
[http://dx.doi.org/10.3109/07388551.2013.878896] [PMID: 24506661]
[71]
Kong, W.; Fu, X.; Wang, L.; Alhujaily, A.; Zhang, J.; Ma, F.; Zhang, X.; Yu, H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol. Biofuels, 2017, 10(1), 218.
[http://dx.doi.org/10.1186/s13068-017-0906-x] [PMID: 28924453]
[72]
Rajak, R.C.; Banerjee, R. Enzymatic delignification: An attempt for lignin degradation from lignocellulosic feedstock. RSC Adv, 2015, 5(92), 75281-75291.
[http://dx.doi.org/10.1039/C5RA09667G]
[73]
Martín-Sampedro, R.; López-Linares, J.C.; Fillat, Ú.; Gea-Izquierdo, G.; Ibarra, D.; Castro, E.; Eugenio, M.E. Endophytic fungi as pretreatment to enhance enzymatic hydrolysis of olive tree pruning. BioMed Res. Int., 2017.
[http://dx.doi.org/10.1155/2017/9727581]
[74]
de Gonzalo, G.; Colpa, D.I.; Habib, M.H.; Fraaije, M.W. Bacterial enzymes involved in lignin degradation. J. Biotechnol., 2016, 236, 110-119.
[http://dx.doi.org/10.1016/j.jbiotec.2016.08.011] [PMID: 27544286]
[75]
López-Abelairas, M.; Álvarez Pallín, M.; Salvachúa, D.; Lú-Chau, T.; Martínez, M.J.; Lema, J.M. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst. Eng., 2013, 36(9), 1251-1260.
[http://dx.doi.org/10.1007/s00449-012-0869-z] [PMID: 23232963]
[76]
Ma, K.; Ruan, Z. Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour. Technol., 2015, 175, 586-593.
[http://dx.doi.org/10.1016/j.biortech.2014.10.161] [PMID: 25459871]
[77]
Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 2015, 5, 597-609.
[78]
Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech, 2016, 6(1), 15.
[79]
Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol., 2016, 199, 103-112.
[http://dx.doi.org/10.1016/j.biortech.2015.10.009] [PMID: 26482946]
[80]
Keshav, P.K.; Shaik, N.; Koti, S.; Linga, V.R. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crops Prod., 2016, 91, 323-331.
[http://dx.doi.org/10.1016/j.indcrop.2016.07.031]
[81]
Saritha, M.; Arora, A. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Int. J. Microbiol., 2012, 52(2), 122-130.
[http://dx.doi.org/10.1007/s12088-011-0199-x] [PMID: 23729871]
[82]
Chen, Q.; Marshall, M.N.; Geib, S.M.; Tien, M.; Richard, T.L. Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour. Technol., 2012, 117, 186-192.
[http://dx.doi.org/10.1016/j.biortech.2012.04.085] [PMID: 22613895]
[83]
Rico, A.; Rencoret, J.; Del Río, J.C.; Martínez, A.T.; Gutiérrez, A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol. Biofuels, 2014, 7(1), 6.
[http://dx.doi.org/10.1186/1754-6834-7-6] [PMID: 24401177]
[84]
Nakanishi, A.; Kuroda, K.; Ueda, M. Direct fermentation of newspaper after laccase-treatment using yeast codisplaying endoglucanase, cellobiohydrolase, and β-glucosidase. Renew. Energy, 2012, 44, 199-205.
[http://dx.doi.org/10.1016/j.renene.2012.01.078]
[85]
Kamei, I.; Hirota, Y.; Mori, T.; Hirai, H.; Meguro, S.; Kondo, R. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour. Technol., 2012, 112, 137-142.
[http://dx.doi.org/10.1016/j.biortech.2012.02.109] [PMID: 22425400]
[86]
Kalyani, D.; Dhiman, S.S.; Kim, H.; Jeya, M.; Kim, I.W.; Lee, J.K. Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochem., 2012, 47, 671-678.
[http://dx.doi.org/10.1016/j.procbio.2012.01.013]
[87]
Bruni, E.; Jensen, A.P.; Angelidaki, I. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour. Technol., 2010, 101(22), 8713-8717.
[http://dx.doi.org/10.1016/j.biortech.2010.06.108] [PMID: 20638274]
[88]
Gutiérrez, A.; Rencoret, J.; Cadena, E.M.; Rico, A.; Barth, D.; del Río, J.C.; Martínez, Á.T. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour. Technol., 2012, 119, 114-122.
[http://dx.doi.org/10.1016/j.biortech.2012.05.112] [PMID: 22728191]
[89]
Nair, R.B.; Lennartsson, P.R.; Taherzadeh, M.J. Bioethanol production from agricultural and municipal wastes. In: Curr Dev Biotechnol Bioeng; , 2017; pp. 157-190.
[http://dx.doi.org/10.1016/B978-0-444-63664-5.00008-3]
[90]
Chang, K.L.; Thitikorn-amorn, J.; Chen, S.H.; Hsieh, J.F.; Ratanakhanokchai, K.; Huang, P.J.; Lin, T.C.; Chen, S.T. Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment. Bioresour. Technol., 2011, 102(2), 519-523.
[http://dx.doi.org/10.1016/j.biortech.2010.09.060] [PMID: 20952190]
[91]
Amiri, H.; Karimi, K.; Zilouei, H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour. Technol., 2014, 152, 450-456.
[http://dx.doi.org/10.1016/j.biortech.2013.11.038] [PMID: 24321608]
[92]
Chandel, A.K.; Kapoor, R.K.; Singh, A.; Kuhad, R.C. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol., 2007, 98(10), 1947-1950.
[http://dx.doi.org/10.1016/j.biortech.2006.07.047] [PMID: 17011776]
[93]
Plácido, J.; Capareda, S. Ligninolytic enzymes: A biotechnological alternative for bioethanol production. Bioresour. Bioprocess., 2015, 2(1), 23.
[http://dx.doi.org/10.1186/s40643-015-0049-5]
[94]
Ludwig, D.; Amann, M.; Hirth, T.; Rupp, S.; Zibek, S. Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresour. Technol., 2013, 133, 455-461.
[http://dx.doi.org/10.1016/j.biortech.2013.01.053] [PMID: 23454802]
[95]
Oliva-Taravilla, A.; Moreno, A.D.; Demuez, M.; Ibarra, D.; Tomás-Pejó, E.; González-Fernández, C.; Ballesteros, M. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour. Technol., 2015, 175, 209-215.
[http://dx.doi.org/10.1016/j.biortech.2014.10.086] [PMID: 25459824]
[96]
Minussi, R.C.; Pastore, G.M.; Durán, N. Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresour. Technol., 2007, 98(1), 158-164.
[http://dx.doi.org/10.1016/j.biortech.2005.11.008] [PMID: 16376074]
[97]
Mathews, S.L.; Pawlak, J.; Grunden, A.M. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl. Microbiol. Biotechnol., 2015, 99(7), 2939-2954.
[http://dx.doi.org/10.1007/s00253-015-6471-y] [PMID: 25722022]
[98]
Asgher, M.; Ahmad, Z.; Iqbal, H.M. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind. Crops Prod., 2013, 44, 488-495.
[http://dx.doi.org/10.1016/j.indcrop.2012.10.005]
[99]
Maryana, R.; Ma’rifatun, D.; Wheni, A.I.; Satriyo, K.W.; Rizal, W.A. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia, 2014, 47, 250-254.
[http://dx.doi.org/10.1016/j.egypro.2014.01.221]
[100]
Vallejos, M.E.; Zambon, M.D.; Area, M.C.; da Silva Curvelo, A.A. Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Ind. Crops Prod., 2015, 65, 349-353.
[http://dx.doi.org/10.1016/j.indcrop.2014.11.018]
[101]
Rong, J.; Zhang, T.; Qiu, F.; Zhu, Y. Preparation of efficient, stable, and reusable laccase-Cu3 (PO4)2 hybrid microspheres based on copper foil for decoloration of congo red. ACS Sustain. Chem.& Eng., 2017, 5, 4468-4477.
[http://dx.doi.org/10.1021/acssuschemeng.7b00820]
[102]
Champagne, P.P.; Ramsay, J.A. Reactive blue 19 decolouration by laccase immobilized on silica beads. Appl. Microbiol. Biotechnol., 2007, 77(4), 819-823.
[http://dx.doi.org/10.1007/s00253-007-1208-1] [PMID: 17917725]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 14
Year: 2019
Published on: 15 October, 2019
Page: [1517 - 1526]
Pages: 10
DOI: 10.2174/1385272823666190722163046
Price: $65

Article Metrics

PDF: 32
HTML: 3
EPUB: 2
PRC: 1