Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Synthesis, In silico and Biological Studies of Thiazolyl-2h-chromen-2-one Derivatives as Potent Antitubercular Agents

Author(s): Bhagwat S. Jadhav, Ramesh S. Yamgar*, Rajesh S. Kenny, Suraj N. Mali, Hemchandra K. Chaudhari and Mustapha C. Mandewale

Volume 16, Issue 5, 2020

Page: [511 - 522] Pages: 12

DOI: 10.2174/1386207322666190722162100

Price: $65

Abstract

Background: A series of new six thiazolyl-2-amine-based Schiff base derivatives (4a-4f) were synthesized by a sequential multistep reaction starting with Salicylaldehyde.

Methods: All the Schiff base derivatives were screened in-vitro for their antibacterial activity against Mycobacterium tuberculosis (H37RV strain) ATCC No-27294. The synthesized compounds were characterized by FTIR, 1H-NMR, 13C-NMR and Mass spectrometry.

Results: Among the compounds tested, 4c and 4f derivatives exhibited potent antitubercular activity against M. tuberculosis at MIC 6.25 μg/mL.

Conclusion: We extended our study to explore the inhibition mechanism by conducting molecular docking analysis by using Schrodinger’s molecular modeling software. All the newly synthesized compounds were found to be in-silico AMES test non-toxic and non-carcinogens. The good Qikprop’s Absorption, Distribution, Metabolism and Excretion (ADMET) would definitely help the researchers in order to make more potent Anti-TB agents.

Keywords: Thiazole, coumarin, schiff bases, heterocyclic, tuberculosis, molecular docking.

Graphical Abstract
[1]
Reichelt, A.; Bailis, J.M.; Bartberger, M.D.; Yao, G.; Shu, H.; Kaller, M.R.; Allen, J.G.; Weidner, M.F.; Keegan, K.S.; Dao, J.H. Synthesis and structure-activity relationship of trisubstituted thiazoles as Cdc7 kinase inhibitors. Eur. J. Med. Chem., 2014, 80, 364-382.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.013] [PMID: 24793884]
[2]
Dharmesh, N.; Darji, T.Y.; Bhandaria, P.A.; Molvic, K.I.; Desaid, S.A.; Makwana, M.V. Synthesis of some novel 2, 4, 5 –trisubstituted thiazoles as possible antibacterial agents. J. Chem. Pharm. Res., 2012, 4, 2148-2152.
[3]
Baldwin, J.J.; Ponticello, G.S. Di- and tri-substituted thiazoles US Patent US4259341A, 1981.
[4]
Al-Saadi, M.S.; Faidallah, H.M.; Rostom, S.A. Synthesis and biological evaluation of some 2,4,5-trisubstituted thiazole derivatives as potential antimicrobial and anticancer agents. Arch. Pharm. (Weinheim), 2008, 341(7), 424-434.
[http://dx.doi.org/10.1002/ardp.200800026] [PMID: 18574850]
[5]
Lee, Y.S.; Kim, H.; Kim, Y.H.; Roh, E.J.; Han, H.; Shin, K.J. Synthesis and structure-activity relationships of tri-substituted thiazoles as RAGE antagonists for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2012, 22(24), 7555-7561.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.022] [PMID: 23140885]
[6]
Goud, M.P.; Sheri, A.; Desai, P.V.; Watkins, E.B.; Tekwani, B.; Sabnis, Y.; Gut, J.; Rosenthal, P.J.; Avery, M.A. Design, synthesis and evaluation of trisubstituted thiazoles targeting plasmodium falciparum cysteine proteases. Med. Chem. Res., 2005, 14, 74-105.
[http://dx.doi.org/10.1007/s00044-005-0126-y]
[7]
Darji, D.N.; Pasha, T.Y.; Bhandari, A.; Molvi, K.I.; Desai, S.A.; Makwana, M.V. Synthesis of some novel 2, 4, 5 –Trisubstituted thiazoles as possible antifungal agents. J. Pharm. Res., 2011, 4, 4465-4466.
[8]
Christopher, J.L.; Frans, V.P.; Brabander, M.J.; Moses, R.C.; Goncharenko, M.; Cooymans, L.P.; Vandermaesen, N.; Diels, G.S.; Sibley, A. W.; Noula, C. 2,4,5-trisubstituted thiazolyl derivatives and their antiinflammatory activity WO2003015776 A1 to Janssen Pharmaceutica N.V, 2005.
[9]
Babu, K.S.; Prabhakar, V.; Ravindranath, L.K.; Latha, J.; Kumari, S. Synthesis, characterization and biological evaluation of novel trisubstituted quinazoline thiazole derivatives bearing trans substituted thiomorpholine and tetrazoles moieties. Inter. J. Org. Bio. Chem., 2015, 5, 15-24.
[10]
Arora, P.; Narang, R.; Bhatia, S.; Nayak, S.K.; Singh, S.K.; Narasimhan, B. Synthesis, molecular docking and QSAR studies of 2, 4-disubstituted thiazoles as antimicrobial agents. J. Appl. Pharm. Sci., 2015, 5, 28-42.
[http://dx.doi.org/10.7324/JAPS.2015.50206]
[11]
el-Subbagh, H.I.; Abadi, A.H.; Lehmann, J. 2,4-Disubstituted thiazoles, Part III. Synthesis and antitumor activity of ethyl 2-substituted-aminothiazole-4-carboxylate analogs. Arch. Pharm. (Weinheim), 1999, 332(4), 137-142.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19994)332:4<137:AID-ARDP137>3.0.CO;2-0] [PMID: 10327887]
[12]
Kaspady, M.; Narayanaswamy, V.K.; Raju, M.; Rao, G.K. Synthesis, Antibacterial Activity of 2,4-Disubstituted Oxazoles and Thiazoles as Bioisosteres. Lett. Drug Des. Discov., 2009, 6, 21-28.
[http://dx.doi.org/10.2174/157018009787158481]
[13]
Hassan, G.S.; El-Messery, S.M.; Al-Omary, F.A.; El-Subbagh, H.I. Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl-1,3-thiazole analogs. Bioorg. Med. Chem. Lett., 2012, 22(20), 6318-6323.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.095] [PMID: 22995621]
[14]
Bondock, S.; Naser, T.; Ammar, Y.A. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2013, 62, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.050] [PMID: 23357308]
[15]
Kesicki, E.A.; Bailey, M.A.; Ovechkina, Y.; Early, J.V.; Alling, T.; Bowman, J.; Zuniga, E.S.; Dalai, S.; Kumar, N.; Masquelin, T.; Hipskind, P.A.; Odingo, J.O.; Parish, T. Synthesis and evaluation of the 2-Aminothiazoles as anti-tubercular agents. PLoS One, 2016, 11(5)e0155209
[http://dx.doi.org/10.1371/journal.pone.0155209] [PMID: 27171280]
[16]
Thakar, A.; Joshi, K.; Pandya, K.; Pancholi, A. Coordination modes of a schiff base derived from substituted 2-aminothiazole with Chromium(III), Manganese(II), Iron(II), Cobalt(II), Nickel(II) and Copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. J. Chem., 2011, 8, 1750-1764.
[http://dx.doi.org/10.1155/2011/282061]
[17]
Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 82(1), 290-298.
[http://dx.doi.org/10.1016/j.saa.2011.07.051] [PMID: 21824811]
[18]
Zhou, X.; Shao, L.; Jin, Z.; Liu, J.; Dai, H.; Fang, J. Synthesis and antitumor activity evaluation of some schiff bases derived from 2-aminothiazole derivatives. Heteroatom Chem., 2007, 18, 55-59.
[http://dx.doi.org/10.1002/hc.20256]
[19]
Kumaran, J.S.; Priya, S.; Gowsika, J.; Jayachandramani, N.; Mahalakshmi, S. Synthesis, spectroscopic characterization, in silico dna studies and antibacterial activites of Copper(II) and Zinc(II) Complexes derived from Thiazole based Pyrazolone Derivatives. Res. J. Pharm. Biol. Chem. Sci., 2013, 4, 279-287.
[20]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives. J. Mol. Struct., 2019, 1192, 162-171.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.123]
[21]
Yeh, T.K.; Kang, I.J.; Hsu, T.A.; Lee, Y.C.; Lee, C.C.; Hsu, S.J.; Tian, Y.W.; Yang, H.Y.; Chen, C.T.; Chao, Y.S.; Yueh, A.; Chern, J.H. A novel, potent, and orally bioavailable thiazole HCV NS5A inhibitor for the treatment of hepatitis C virus. Eur. J. Med. Chem., 2019, 167, 245-268.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.016] [PMID: 30772607]
[22]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Zhang, S.L.; Zhou, C.H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur. J. Med. Chem., 2019, 167, 105-123.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.072] [PMID: 30769240]
[23]
Wang, Y.; Wu, C.; Zhang, Q.; Shan, Y.; Gu, W.; Wang, S. Design, synthesis and biological evaluation of novel β-pinene-based thiazole derivatives as potential anticancer agents via mitochondrial-mediated apoptosis pathway. Bioorg. Chem., 2019, 84, 468-477.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.010] [PMID: 30576910]
[24]
Surineni, G.; Gao, Y.; Hussain, M.; Liu, Z.; Lu, Z.; Chhotaray, C.; Islam, M.M.; Hameed, H.M.A.; Zhang, T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MedChemComm, 2018, 10(1), 49-60.
[http://dx.doi.org/10.1039/C8MD00389K] [PMID: 30774854]
[25]
Fu, Y.; Yi, K.; Li, M.; Wang, J.; Chen, Y.; Ye, F. Design, synthesis, safener activity, and molecular docking of novel N-substituted thiazide/thiazole derivatives. J. Heterocycl. Chem., 2018, 56, 180-187.
[http://dx.doi.org/10.1002/jhet.3393]
[26]
Rami, M.; Winum, J.Y.; Supuran, C.T.; Melnyk, P.; Yous, S. (Hetero)aryl substituted thiazol-2,4-yl scaffold as human carbonic anhydrase I, II, VII and XIV activators. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 224-229.
[http://dx.doi.org/10.1080/14756366.2018.1543292] [PMID: 30734616]
[27]
Sağlık, B.N.; Kaya Çavuşoğlu, B.; Osmaniye, D.; Levent, S.; Acar Çevik, U.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A.; Öztürk, Y. In vitro and in silico evaluation of new thiazole compounds as monoamine oxidase inhibitors. Bioorg. Chem., 2019, 85, 97-108.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.019] [PMID: 30605888]
[28]
Sirakanyan, S.; Spinelli, D.; Geronikaki, A.; Kartsev, V.; Hakobyan, E.; Hovakimyan, A. Synthesis and antimicrobial activity of new derivatives of pyrano[4”,3”:4′,5′]pyrido [3′,2′:4,5]thieno[3,2-d]pyrimidine and new heterocyclic systems. Synth. Commun., 2019, 49, 1262-1276.
[http://dx.doi.org/10.1080/00397911.2019.1595659]
[29]
Abd El-Karim, S.S.; Syam, Y.M.; El Kerdawy, A.M.; Abdelghany, T.M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorg. Chem., 2019, 86, 80-96.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.026] [PMID: 30685646]
[30]
Deng, X.; Tan, X.; An, T.; Ma, Q.; Jin, Z.; Wang, C.; Meng, Q.; Hu, C. Synthesis, characterization, and biological activity of a novel series of Benzo[4,5]imidazo[2,1-b]thiazole derivatives as potential epidermal growth factor receptor inhibitors. Molecules, 2019, 24(4), 682-695.
[http://dx.doi.org/10.3390/molecules24040682] [PMID: 30769844]
[31]
Mandewale, M.C.; Kokate, S.; Thorat, B.R.; Sawant, S.S.; Yamgar, R.S. Zinc complexes of hydrazone derivatives bearing 3,4-dihydroquinolin-2(1H)-one nucleus as new anti-tubercular agents. Arab. J. Chem., 2019, 12(8), 4479-4489.
[http://dx.doi.org/10.1016/j.arabjc.2016.07.016]
[32]
Mandewale, M.C.; Thorat, B.R.; Nivid, Y.; Jadhav, R.; Nagarsekar, A.S.; Yamgar, R.S. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn (II) complexes. J. Saudi Chem. Soc., 2018, 22, 218-228.
[http://dx.doi.org/10.1016/j.jscs.2016.04.003]
[33]
Mandewale, M.C.; Thorat, B.; Shelke, D.; Yamgar, R. Synthesis and biological evaluation of new hydrazone derivatives of quinoline and their Cu (II) and Zn (II) complexes against Mycobacterium Tuberculosis. Bioinorg. Chem. Appl., 2015.2015153015
[http://dx.doi.org/10.1155/2015/153015] [PMID: 26759537]
[34]
Mandewale, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study of some fluorine containing Schiff bases of quinoline and their metal complexes. Pharma Chem., 2015, 7, 207-215.
[35]
Yamgar, R.S.; Nivid, Y.; Nalawade, S.; Mandewale, M.C.; Atram, R.G.; Sawant, S.S. Novel zinc (II) complexes of heterocyclic ligands as antimicrobial agents: synthesis, characterisation, and antimicrobial studies. Bioinorg. Chem. Appl., 2014. Article ID 276598
[http://dx.doi.org/10.1155/2014/276598]
[36]
Nazirkar, B.; Mandewale, M.; Yamgar, R. Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands. J. Taibah Uni. for Sci., 2019, 13, 440-449.
[http://dx.doi.org/10.1080/16583655.2019.1592316]
[37]
Dadmal, T.; Katre, S.; Mandewale, M.; Kumbhare, R. Contemporary progress in the synthesis and reactions of 2-aminobenzothiazole: a review. New J. Chem., 2018, 42, 776-797.
[http://dx.doi.org/10.1039/C7NJ03776G]
[38]
Mandewale, M.; Patil, U.; Shedge, S.; Dappadwad, U.; Yamgar, R. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef Uni. J. Basic Appl. Sci., 2017, 6, 354-361.
[http://dx.doi.org/10.1016/j.bjbas.2017.07.005]
[39]
Cheng, F.; Li, W.; Zhou, T.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J. Chem. Inf. Model., 2012, 52, 3099-3105.
[http://dx.doi.org/10.1021/ci300367a]
[40]
Qikprop; Schrodinger, LLC: New York, NY, 2017.
[41]
Glide; Schrodinger, LLC: New York, NY, 2017.
[42]
Prime; Schrodinger, LLC: New York, NY, 2017.
[43]
Gfeller, D.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. Swiss TargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42, 32-38.
[http://dx.doi.org/10.1093/nar/gku293]
[44]
Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. SwissSimilarity: a web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Model., 2016, 56(8), 1399-1404.
[http://dx.doi.org/10.1021/acs.jcim.6b00174]
[45]
Mali, S.N.; Chaudhari, H.K. Computational studies on imidazo [1,2-a] pyridine-3-carboxamide analogues as antimycobacterial agents: common pharmacophore generation, atom-based 3D-QSAR, molecular dynamics simulation, QikProp, molecular docking and prime MMGBSA approaches. Open Pharm. Sci. J., 2018, 5, 12-23.
[http://dx.doi.org/10.2174/1874844901805010012]
[46]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]
[47]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. In silico appraisal, Synthesis, Antibacterial screening and DNA cleavage for 1,2,5-thiadiazole derivative. Curr. Comput. Aided Drug Des, 2019, 15(5), 445-455.
[http://dx.doi.org/10.2174/1573409915666190206142756] [PMID: 30727910]
[48]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003]
[49]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and mcf-7 anticancer activity, DNA cleavage and Computational study. J. Biomol. Struct. Dyn., 2019, 38(6), 1772-1785.
[http://dx.doi.org/10.1080/07391102.2019.1621213]
[50]
Liessi, N.; Cichero, E.; Pesce, E.; Arkel, M.; Salis, A.; Tomati, V.; Paccagnella, M.; Damonte, G.; Tasso, B.; Galietta, L.J.; Pedemonte, N. Synthesis and biological evaluation of novel thiazole-VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools. Eur. J. Med. Chem., 2018, 144, 179-200.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.030]
[51]
Nivid, Y.; Jadhav, B. S.; Kenny, R. S.; Nazirkar, B. P.; Thorat, B. R.; Mulgoankar, B. S.; Yamgar, R. S. Synthesis and biological activity studies of some novel substituted imidazo [1,2-a] pyridine Heterocycl. lett, 2015, 5, 177-184.
[52]
Abate, G.; Mshana, R.N.; Miörner, H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 1998, 2(12), 1011-1016.
[PMID: 9869118]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy