Proteomics Study in Urolithiasis

Author(s): Manavi Jain, Paramveer Yadav, Priyadarshini*

Journal Name: Current Proteomics

Volume 17 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Urolithiasis, which is the presence of stones in the urinary tract, has long been linked with a higher risk of causing chronic kidney diseases and associated illnesses, such as diabetes-affecting 12% of the world population. This clinical condition arises due to the supersaturation of urine and alterations in the expression of cellular and urinary proteins. The renal stone mineral composition has been well understood and incorporated as a routine part of stone removal, however, the protein composition, an essential fraction of the stone matrix has been inadequately understood and not adeptly established. Stone proteomics consists of a number of techniques including crystal analysis using X-ray diffractometry and IR spectroscopy, sample purification, identification and characterization of proteins using high throughput mass spectrometric methods. However, not many studies have utilized the data obtained from these experiments to assign functional significance to associated identified proteins. Protein network analysis using bioinformatic tools such as STRING to study protein-protein interactions will enable researchers to get better insight into stone formation mechanics. Hence, a comprehensive proteomic study of kidney stone matrix will help in deciphering protein-crystal pathways generating novel information useful for clinical application.

Keywords: Urolithiasis, X-ray diffractometry, IR spectroscopy, protein-protein interaction, string, protein network analysis.

[1]
Courbebaisse, M.; Prot-Bertoye, C.; Bertocchio, J.P.; Baron, S.; Maruani, G.; Briand, S.; Daudon, M.; Houillier, P. Nephrolithiasis of adult: from mechanisms to preventive medical treatment. Rev. Med. Interne, 2017, 38(1), 44-52.
[http://dx.doi.org/10.1016/j.revmed.2016.05.013] [PMID: 27349612]
[2]
Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Obesity, weight gain, and the risk of kidney stones. JAMA, 2005, 293(4), 455-462.
[http://dx.doi.org/10.1001/jama.293.4.455] [PMID: 15671430]
[3]
Moe, O.W. Kidney stones: Pathophysiology and medical management. Lancet, 2006, 367(9507), 333-344.
[http://dx.doi.org/10.1016/S0140-6736(06)68071-9] [PMID: 16443041]
[4]
Romero, V.; Akpinar, H.; Assimos, D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol., 2010, 12(2-3), e86-e96.
[PMID: 20811557]
[5]
Alelign, T.; Petros, B. Kidney stone disease: An update on current concepts. Adv. Urol., 2018, 20183068365
[http://dx.doi.org/10.1155/2018/3068365] [PMID: 29515627]
[6]
Chhiber, N.; Sharma, M.; Kaur, T.; Singla, S. Mineralization in health and mechanism of kidney stone formation. Int. J. Pharmaceut. Sci. Invent., 2014, 3, 25-31.
[7]
Khan, S.R.; Kok, D.J. Modulators of urinary stone formation. Front. Biosci., 2004, 9(1-3), 1450-1482.
[http://dx.doi.org/10.2741/1347] [PMID: 14977559]
[8]
Reynolds, T.M. ACP best practice no 181: Chemical pathology clinical investigation and management of nephrolithiasis. J. Clin. Pathol., 2005, 58(2), 134-140.
[http://dx.doi.org/10.1136/jcp.2004.019588] [PMID: 15677531]
[9]
Tonannavar, J.; Deshpande, G.; Yenagi, J.; Patil, S.B.; Patil, N.A.; Mulimani, B.G. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 154, 20-26.
[http://dx.doi.org/10.1016/j.saa.2015.10.003] [PMID: 26495905]
[10]
Raman, K. Construction and analysis of protein-protein interaction networks. Autom. Exp., 2010, 2(1), 2.
[http://dx.doi.org/10.1186/1759-4499-2-2] [PMID: 20334628]
[11]
Peerapen, P.; Chaiyarit, S.; Thongboonkerd, V. Protein network analysis and functional studies of calcium oxalate crystal-induced cytotoxicity in renal tubular epithelial cells. Proteomics, 2018, 18(8)e1800008
[http://dx.doi.org/10.1002/pmic.201800008] [PMID: 29464862]
[12]
Raizada, D.; Kumar, P.; Singh, T.; Pruthi, T. Priyadarshini. Albumin and its role in urolithiasis. Asian J. Pharm. Clin. Res., 2017, 10, 32-35.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i10.20059]
[13]
Mohamaden, W.I.; Wang, H.; Guan, H.; Meng, X.; Li, J. Osteopontin and tamma-horsefall proteins-macromolecules of myriad values. J. Basic Appl. Zool., 2014, 67, 158-163.
[http://dx.doi.org/10.1016/j.jobaz.2014.03.002]
[14]
Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, H.; Zeng, G. Epidemiology of urolithiasis in Asia. J. Urol., 2018, 5(4), 205-214.www.ncbi.nlm.nih.gov/pmc/articles/PMC6197415/
[PMID: 30364478]
[15]
Gupta, S.; Shamsher, S.K. Kidney stones: mechanism of formation, pathogenesis and possible treatments. J. Biomol. Biochem., 2018, 2, 1-5.
[16]
Francisco, R. Kidney stones: Composition, frequency and relation to metabolic diagnosis. Medicina (Buenos Aires),, 2016, 76, 343-348.
[17]
Daudon, M.; Jungers, P. Drug-induced renal stones. Urinary Tract Stone Disease. Rao, N.; Preminger, G; Kavanagh, J., Ed.; Springer: London, 2010, pp. 225-237.
[http://dx.doi.org/10.1007/978-1-84800-362-0_19]
[18]
Kleinman, J.G.; Wesson, J.A.; Hughes, J. Osteopontin and calcium stone formation. Nephron, Physiol., 2004, 98(2), 43-47.
[http://dx.doi.org/10.1159/000080263] [PMID: 15499214]
[19]
King, J.S. Jr.; Boyce, W.H. Immunological studies on serum and urinary proteins in urolith matrix in man. Ann. N. Y. Acad. Sci., 1963, 104, 5791.
[http://dx.doi.org/10.1111/j.1749-6632.1963.tb17694.x] [PMID: 14032844]
[20]
Robertson, W.G.; Peacock, M.; Nordin, B.E.C. Activity products in stone-forming and non-stone-forming urine. Clin. Sci., 1968, 34(3), 579-594.
[PMID: 5666884]
[21]
Boyce, W.H. Organic matrix of human urinary concretions. Am. J. Med., 1968, 45(5), 673-683.
[http://dx.doi.org/10.1016/0002-9343(68)90203-9] [PMID: 5687257]
[22]
Khan, S.R.; Shevock, P.N.; Hackett, R.L. Presence of lipids in urinary stones: Results of preliminary studies. Calcif. Tissue Int., 1988, 42(2), 91-96.
[http://dx.doi.org/10.1007/BF02556340] [PMID: 3127030]
[23]
Mandel, N.S.; Mandel, I.C.; Kolbach-Mandel, A.M. Accurate stone analysis: The impact on disease diagnosis and treatment. Springer, 1988, 45(1), 3-9.
[24]
Spivacow, F.R.; Del Valle, E.E.; Lores, E.; Rey, P.G. Kidney stones: composition, frequency and relation to metabolic diagnosis. Medicina (B. Aires), 2016, 76(6), 343-348.
[PMID: 27959841]
[25]
Priyadarshini, S.S.K.; Tandon, C. Effect of biomolecules from human renal stone matrix of calcium oxalate monohydrate stones on in vitro calcium phosphate crystallization. Int. Braz J Urol, 2010, 36, 621-662.
[http://dx.doi.org/10.1590/S1677-55382010000500013] [PMID: 21044380]
[26]
Priyadarshini, S.; Singh, S.K.; Tandon, C. Mass spectrometric identification of human phosphate cytidylyltransferase 1 as a novel calcium oxalate crystal growth inhibitor purified from human renal stone matrix. Clin. Chim. Acta, 2009, 408(1-2), 34-38.
[http://dx.doi.org/10.1016/j.cca.2009.06.041] [PMID: 19595683]
[27]
Canales, B.K.; Anderson, L.; Higgins, L.; Slaton, J.; Roberts, K.P.; Liu, N.; Monga, M. Second prize: comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix. J. Endourol., 2008, 22(6), 1161-1167.
[http://dx.doi.org/10.1089/end.2007.0440] [PMID: 18484873]
[28]
Witzmann, F.A.; Evan, A.P.; Coe, F.L.; Worcester, E.M.; Lingeman, J.E.; Williams, J.C. Jr. Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci., 2016, 14(4), 4.
[http://dx.doi.org/10.1186/s12953-016-0093-x] [PMID: 26924944]
[29]
Williams, J.C. Jr.; Zarse, C.A.; Jackson, M.E.; Witzmann, F.A.; McAteer, J.A. Variability of protein content in calcium oxalate monohydrate stones. J. Endourol., 2006, 20(8), 560-564.
[http://dx.doi.org/10.1089/end.2006.20.560] [PMID: 16903815]
[30]
Chutipongtanate, S.; Nakagawa, Y.; Sritippayawan, S.; Pittayamateekul, J.; Parichatikanond, P.; Westley, B.R.; May, F.E.; Malasit, P.; Thongboonkerd, V. Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. J. Clin. Invest., 2005, 115(12), 3613-3622.
[http://dx.doi.org/10.1172/JCI25342] [PMID: 16308573]
[31]
Thongboonkerd, V.; Chutipongtanate, S.; Semangoen, T.; Malasit, P. Urinary trefoil factor 1 is a novel potent inhibitor of calcium oxalate crystal growth and aggregation. J. Urol., 2008, 179(4), 1615-1619.
[http://dx.doi.org/10.1016/j.juro.2007.11.041] [PMID: 18295252]
[32]
Boonla, C.; Tosukhowong, P.; Spittau, B.; Schlosser, A.; Pimratana, C.; Krieglstein, K. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin. Chim. Acta, 2014, 429, 81-89.
[http://dx.doi.org/10.1016/j.cca.2013.11.036] [PMID: 24333391]
[33]
Kaneko, K.; Kobayashi, R.; Yasuda, M.; Izumi, Y.; Yamanobe, T.; Shimizu, T. Comparison of matrix proteins in different types of urinary stone by proteomic analysis using liquid chromatography-tandem mass spectrometry. Int. J. Urol., 2012, 19(8), 765-772.
[http://dx.doi.org/10.1111/j.1442-2042.2012.03005.x] [PMID: 22494008]
[34]
Merchant, M.L.; Cummins, T.D.; Wilkey, D.W.; Salyer, S.A.; Powell, D.W.; Klein, J.B.; Lederer, E.D. Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am. J. Physiol. Renal Physiol., 2008, 295(4), F1254-F1258.
[http://dx.doi.org/10.1152/ajprenal.00134.2008] [PMID: 18701630]
[35]
Okumura, N.; Tsujihata, M.; Momohara, C.; Yoshioka, I.; Suto, K.; Nonomura, N.; Okuyama, A.; Takao, T. Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One, 2013, 8(7)e68624
[http://dx.doi.org/10.1371/journal.pone.0068624] [PMID: 23874695]
[36]
Canales, B.K.; Anderson, L.; Higgins, L.; Ensrud-Bowlin, K.; Roberts, K.P.; Wu, B.; Kim, I.W.; Monga, M. Proteome of human calcium kidney stones. Urology, 2010, 76(4), 1017.e13-1017.e20.
[http://dx.doi.org/10.1016/j.urology.2010.05.005] [PMID: 20709378]
[37]
Canales, B.K.; Anderson, L.; Higgins, L.; Frethem, C.; Ressler, A.; Kim, I.W.; Monga, M. Proteomic analysis of a matrix stone: A case report. Urol. Res., 2009, 37(6), 323-329.
[http://dx.doi.org/10.1007/s00240-009-0213-5] [PMID: 19730843]
[38]
Jou, Y.C.; Fang, C.Y.; Chen, S.Y.; Chen, F.H.; Cheng, M.C.; Shen, C.H.; Liao, L.W.; Tsai, Y.S. Proteomic study of renal uric acid stone. Urology, 2012, 80(2), 260-266.
[http://dx.doi.org/10.1016/j.urology.2012.02.019] [PMID: 22516363]
[39]
Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem., 2002, 74(20), 5383-5392.
[http://dx.doi.org/10.1021/ac025747h] [PMID: 12403597]
[40]
Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem., 2003, 75(17), 4646-4658.
[http://dx.doi.org/10.1021/ac0341261] [PMID: 14632076]
[41]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[42]
Aggarwal, K.; Tandon, S.; Pathak, P.; Singh, S.K.; Tandon, C. Identification of novel antilithiatic cationic proteins from human calcium oxalate renal stone matrix by MALDI TOF MS. Eur. Urol. Suppl., 2012, 11, 1.
[43]
Thongboonkerd, V.; Semangoen, T.; Sinchaikul, S.; Chen, S.T. Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells. J. Proteome Res., 2008, 7(11), 4689-4700.
[http://dx.doi.org/10.1021/pr8002408] [PMID: 18850734]
[44]
Grover, P.K.; Moritz, R.L.; Simpson, R.J.; Ryall, R.L. Inhibition of growth and aggregation of calcium oxalate crystals in vitro--a comparison of four human proteins. Eur. J. Biochem., 1998, 253(3), 637-644.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2530637.x] [PMID: 9654060]
[45]
Rose, G.A.; Sulaiman, S. Effect of different fractions of macromolecules upon triggering of calcium oxalate and calcium phosphate crystal formation in whole urine. Urol. Int., 1984, 39(3), 147-149.
[http://dx.doi.org/10.1159/000280963] [PMID: 6740804]
[46]
Cerini, C.; Geider, S.; Dussol, B.; Hennequin, C.; Daudon, M.; Veesler, S.; Nitsche, S.; Boistelle, R.; Berthézène, P.; Dupuy, P.; Vazi, A.; Berland, Y.; Dagorn, J.C.; Verdier, J.M. Nucleation of calcium oxalate crystals by albumin: involvement in the prevention of stone formation. Kidney Int., 1999, 55(5), 1776-1786.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00426.x] [PMID: 10231440]
[47]
Liu, J.; Jiang, H.; Liu, X.Y. How does bovine serum albumin prevent the formation of kidney stone? A kinetics study. J. Phys. Chem. B, 2006, 110(18), 9085-9089.
[http://dx.doi.org/10.1021/jp057403b] [PMID: 16671718]
[48]
Xiao, L.; Kang, L.; Yongsheng, P.; Jing, Z.; Qiang, L.; Lixin, L.; Zengjun, W.; Jie, L.; Changjun, Y. Roles of osteopontin gene polymorphism (rs1126616), osteopontin levels in urine and serum, and the risk of urolithiasis: A meta-analysis. BioMed. Res. Int.,, 2015. pp. 9, Article ID 315043.
[49]
Heck, L.W.; Rostand, K.S.; Hunter, F.A.; Bhown, A. Isolation, characterization, and amino-terminal amino acid sequence analysis of human neutrophil cathepsin G from normal donors. Anal. Biochem., 1986, 158(1), 217-227.
[http://dx.doi.org/10.1016/0003-2697(86)90612-3] [PMID: 3799965]
[50]
Morgan, J.G.; Sukiennicki, T.; Pereira, H.A.; Spitznagel, J.K.; Guerra, M.E.; Larrick, J.W. Cloning of the cDNA for the serine protease homolog CAP37/azurocidin, a microbicidal and chemotactic protein from human granulocytes. J. Immunol., 1991, 147(9), 3210-3214.
[PMID: 1919011]
[51]
Worcester, E.M.; Beshensky, A.M. Osteopontin inhibits nucleation of calcium oxalate crystals. Ann. N. Y. Acad. Sci., 1995, 760, 375-377.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb44661.x] [PMID: 7785921]
[52]
Aggarwal, K.P.; Narula, S.; Kakkar, M.; Tandon, C. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. BioMed Res. Int., 2013, 2013292953
[http://dx.doi.org/10.1155/2013/292953] [PMID: 24151593]
[53]
Dean, C.; Kanellos, J.; Pham, H.; Gomes, M.; Oates, A.; Grover, P.; Ryall, R. Effects of inter-α-inhibitor and several of its derivatives on calcium oxalate crystallization in vitro. Clin. Sci. (Lond.), 2000, 98(4), 471-480.
[http://dx.doi.org/10.1042/cs0980471] [PMID: 10731483]
[54]
Carvalho, M.; Mulinari, R.A.; Nakagawa, Y. Role of Tamm-Horsfall protein and uromodulin in calcium oxalate crystallization. Braz. J. Med. Biol. Res., 2002, 35(10), 1165-1172.
[http://dx.doi.org/10.1590/S0100-879X2002001000009] [PMID: 12424489]
[55]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: methods and analysis. Int. J. Proteomics, 2014, 2014147648
[http://dx.doi.org/10.1155/2014/147648] [PMID: 24693427]
[56]
Negi, S.S.; Schein, C.H.; Oezguen, N.; Power, T.D.; Braun, W. InterProSurf: A web server for predicting interacting sites on protein surfaces. Bioinformatics, 2007, 23(24), 3397-3399.
[http://dx.doi.org/10.1093/bioinformatics/btm474] [PMID: 17933856]
[57]
von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[58]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[59]
Changtong, C.; Peerapen, P.; Khamchun, S.; Fong-Ngern, K.; Chutipongtanate, S.; Thongboonkerd, V. In vitro evidence of the promoting effect of testosterone in kidney stone disease: A proteomics approach and functional validation. J. Proteomics, 2016, 144(144), 11-22.
[http://dx.doi.org/10.1016/j.jprot.2016.05.028] [PMID: 27260493]
[60]
Manissorn, J.; Khamchun, S.; Vinaiphat, A.; Thongboonkerd, V. Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion. Sci. Rep., 2016, 6(1), 28808.
[http://dx.doi.org/10.1038/srep28808] [PMID: 27363348]
[61]
Pongsakul, N.; Vinaiphat, A.; Chanchaem, P.; Fong-Ngern, K.; Thongboonkerd, V. Lamin A/C in renal tubular cells is important for tissue repair, cell proliferation, and calcium oxalate crystal adhesion, and is associated with potential crystal receptors. FASEB J., 2016, 30(10), 3368-3377.
[http://dx.doi.org/10.1096/fj.201600426R] [PMID: 27358390]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [88 - 94]
Pages: 7
DOI: 10.2174/1570164616666190722161823
Price: $25

Article Metrics

PDF: 15
HTML: 4
EPUB: 1
PRC: 1