Fabrication and in-vitro Investigation of Polycaprolactone - (Polyvinyl Alcohol/Collagen) Hybrid Nanofiber as Anti-Inflammatory Guided Tissue Regeneration Membrane

Author(s): Mazdak Limoee, Pouran Moradipour, Mahnaz Godarzi, Elham Arkan, Leila Behbood*

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 13 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Periodontal disease is the most common oral condition that affects the tissue surrounding the teeth. The oral cavity is colonized by an impressive array of micro-organisms, many of which can colonize the implants such as Guided Tissue Regeneration (GTR) often utilized in recovering procedures that result in inflammation interfering with the bone regeneration.

Methods: In the current study, a nano-hybrid GTR membrane is developed as a heliacal structure scaffold with localized drug delivery function (Ibuprofen) as an anti-inflammatory agent. Polycaprolactone (PCL) and a blend of Polyvinyl alcohol (PVA)/collagen (Col) (50/50) were electrospun by electrospinning. Ibuprofen (Ibu) was loaded once in the PCL context and once in the hydrophilic portion (PVA/Col).

Results: The in vitro release behavior was investigated in each case. Chemical and physical properties were studied for each item. Morphology investigation indicated a heliacal structure with the total average diameter of 1266 nm consististing of porous pores with the average diameter of 256nm.

Conclusion: The membranes indicated proper mechanical properties and appropriate biodegradation rate as a potential GTR membrane. The controlled and sustained release of Ibu was obtained from both PCL and PVA/COL loaded membranes. Kinetic model study indicated the following zero-order and Higuchi models for the optimum case of PCL loaded and PVA/Col Ibu loaded scaffolds respectively.

Keywords: Dental materials, guided tissue regeneration, nanofiber, ibuprofen, electrospinning, controlled release, scaffold, anti-inflammatory.

[1]
Haffajee, A.D.; Socransky, S.S. Microbial etiological agents of destructive periodontal diseases; Periodontology, 1994, pp. 78-111.
[http://dx.doi.org/10.1111/j.1600-0757.1994.tb00020.x]
[2]
Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet, 2005, 366(9499), 1809-1820.
[http://dx.doi.org/10.1016/S0140-6736(05)67728-8] [PMID: 16298220]
[3]
Slots, J.; Macdonald, E.S.; Nowzari, H. Infectious aspects of periodontal regeneration. Periodontol, 2000, 19, 164-172.
[http://dx.doi.org/10.1111/j.1600-0757.1999.tb00154.x]
[4]
Southerland, J.H.; Taylor, G.W.; Moss, K.; Beck, J.D.; Offenbacher, S. Commonality in chronic inflammatory diseases: periodontitis, diabetes, and coronary artery disease. Periodontol., 2006, 40, 130-143. [x].
[http://dx.doi.org/10.1111/j.1600-0757.2005.00138.x] [PMID: 16398690]
[5]
Nishimura, F.; Iwamoto, Y.; Soga, Y. The periodontal host response with diabetes. Periodontol., 2007, 43, 245-253.
[http://dx.doi.org/10.1111/j.1600-0757.2006.00171.x] [PMID: 17214842]
[6]
Polimeni, G.; Koo, K-T.; Pringle, G.A.; Agelan, A.; Safadi, F.F.; Wikesjö, U.M. Histopathological observations of a polylactic acid-based device intended for guided bone/tissue regeneration. Clin. Implant Dent. Relat. Res., 2008, 10(2), 99-105.
[http://dx.doi.org/10.1111/j.1708-8208.2007.00067.x] [PMID: 18462206]
[7]
Sculean, A.; Nikolidakis, D.; Schwarz, F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials - biological foundation and preclinical evidence: A systematic review. J. Clin. Periodontol., 2008, 35(8)(Suppl.), 106-116.
[http://dx.doi.org/10.1111/j.1600-051X.2008.01263.x] [PMID: 18724845]
[8]
Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology, 2008, 96(1), 1-11.
[http://dx.doi.org/10.1007/s10266-008-0087-y] [PMID: 18661198]
[9]
Geurs, N.C.; Korostoff, J.M.; Vassilopoulos, P.J.; Kang, T-H.; Jeffcoat, M.; Kellar, R.; Reddy, M.S. Clinical and histologic assessment of lateral alveolar ridge augmentation using a synthetic long-term bioabsorbable membrane and an allograft. J. Periodontol., 2008, 79(7), 1133-1140.
[http://dx.doi.org/10.1902/jop.2008.070595] [PMID: 18597594]
[10]
Piattelli, A.; Scarano, A.; Russo, P.; Matarasso, S. Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and non-resorbable membranes. Biomaterials, 1996, 17(8), 791-796.
[http://dx.doi.org/10.1016/0142-9612(96)81416-5] [PMID: 8730963]
[11]
Nakashima, M.; Reddi, A.H. The application of bone morphogenetic proteins to dental tissue engineering. Nat. Biotechnol., 2003, 21(9), 1025-1032.
[http://dx.doi.org/10.1038/nbt864] [PMID: 12949568]
[12]
Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A. Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology, 2008, 96(1), 1-11.
[http://dx.doi.org/10.1007/s10266-008-0087-y] [PMID: 18661198]
[13]
Yang, F.; Both, S.K.; Yang, X.; Walboomers, X.F.; Jansen, J.A. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater., 2009, 5(9), 3295-3304.
[http://dx.doi.org/10.1016/j.actbio.2009.05.023] [PMID: 19470413]
[14]
Milella, E.; Barra, G.; Ramires, P.A.; Leo, G.; Aversa, P.; Romito, A. Poly(L-lactide) acid/alginate composite membranes for guided tissue regeneration. J. Biomed. Mater. Res., 2001, 57(2), 248-257.
[http://dx.doi.org/10.1002/1097-4636(200111)57:2<248:AID-JBM1165>3.0.CO;2-X] [PMID: 11484188]
[15]
Jovanovic, S.A.; Nevins, M. Bone formation utilizing titanium-reinforced barrier membranes. Int. J. Periodontics Restorative Dent., 1995, 15(1), 56-69.
[http://dx.doi.org/10.1097/00008505-199500440-00029] [PMID: 7591524]
[16]
Townsend-Nicholson, A.; Jayasinghe, S.N. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules, 2006, 7(12), 3364-3369.
[http://dx.doi.org/10.1021/bm060649h] [PMID: 17154464]
[17]
Jayasinghe, S.N. Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst (Lond.), 2013, 138(8), 2215-2223.
[http://dx.doi.org/10.1039/c3an36599a] [PMID: 23457706]
[18]
Tal, H.; Kozlovsky, A.; Artzi, Z.; Nemcovsky, C.E.; Moses, O. Cross-linked and non-cross-linked collagen barrier membranes disintegrate following surgical exposure to the oral environment: a histological study in the cat. Clin. Oral Implants Res., 2008, 19(8), 760-766.
[http://dx.doi.org/10.1111/j.1600-0501.2008.01546.x] [PMID: 18720556]
[19]
Bunyaratavej, P.; Wang, H-L. Collagen membranes: A review. J. Periodontol., 2001, 72(2), 215-229.
[http://dx.doi.org/10.1902/jop.2001.72.2.215] [PMID: 11288796]
[20]
Owens, K.W.; Yukna, R.A. Collagen membrane resorption in dogs: a comparative study. Implant Dent., 2001, 10(1), 49-58.
[http://dx.doi.org/10.1097/00008505-200101000-00016] [PMID: 11307648]
[21]
Coïc, M.; Placet, V.; Jacquet, E.; Meyer, C. Propriétés mécaniques des membranes de collagène. Rev. Stomatol. Chir. Maxillofac., 2010, 111(5-6), 286-290.
[http://dx.doi.org/10.1016/j.stomax.2010.10.006] [PMID: 21109281]
[22]
Yamada, M.; Kojima, N.; Att, W.; Minamikawa, H.; Sakurai, K.; Ogawa, T. Improvement in the osteoblastic cellular response to a commercial collagen membrane and demineralized freeze-dried bone by an amino acid derivative: An in vitro study. Clin. Oral Implants Res., 2011, 22(2), 165-172.
[http://dx.doi.org/10.1111/j.1600-0501.2010.01975.x] [PMID: 20946208]
[23]
Tal, H.; Moses, O.; Kozlovsky, A.; Nemcovsky, C. Bioresorbable collagen membranes for guided bone regeneration; Bone Regeneration, 2012.
[http://dx.doi.org/10.5772/34667]
[24]
Thomas, M.V.; Puleo, D.A. Infection, inflammation, and bone regeneration: A paradoxical relationship. J. Dent. Res., 2011, 90(9), 1052-1061.
[http://dx.doi.org/10.1177/0022034510393967] [PMID: 21248364]
[25]
Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T-M.G.; Kowolik, M.J.; Janowski, G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent. Mater., 2012, 28(7), 703-721.
[http://dx.doi.org/10.1016/j.dental.2012.04.022] [PMID: 22592164]
[26]
Thomas, M.V.; Puleo, D.A. Infection, inflammation, and bone regeneration: a paradoxical relationship. J. Dent. Res., 2011, 90(9), 1052-1061.
[http://dx.doi.org/10.1177/0022034510393967] [PMID: 21248364]
[27]
Hargreaves, P.L.; Nguyen, T-S.; Ryan, R.O. Spectroscopic studies of amphotericin B solubilized in nanoscale bilayer membranes. Biochim. Biophys. Acta, 2006, 1758(1), 38-44.
[http://dx.doi.org/10.1016/j.bbamem.2006.01.001] [PMID: 16473324]
[28]
Rostami, E.; Kashanian, S.; Azandaryani, A.H. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol. Biol. Rep., 2014, 41(5), 3521-3527.
[http://dx.doi.org/10.1007/s11033-014-3216-4] [PMID: 24515386]
[29]
Gottlow, J.; Nyman, S.; Karring, T.; Lindhe, J. New attachment formation as the result of controlled tissue regeneration. J. Clin. Periodontol., 1984, 11(8), 494-503.
[http://dx.doi.org/10.1111/j.1600-051X.1984.tb00901.x] [PMID: 6384274]
[30]
Vidal, Bde. C.; Mello, M.L.S. Collagen type I amide I band infrared spectroscopy. Micron, 2011, 42(3), 283-289.
[http://dx.doi.org/10.1016/j.micron.2010.09.010] [PMID: 21134761]
[31]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67, 217-223.
[32]
Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P.D.; Chen, D.; Shi, R.; Zhang, L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 2014, 35(34), 9395-9405.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.060] [PMID: 25134855]
[33]
Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics, 2019, 11(3), 140-185.
[http://dx.doi.org/10.3390/pharmaceutics11030140] [PMID: 30901930]
[34]
Villar, C.C.; Cochran, D.L. Regeneration of periodontal tissues: Guided tissue regeneration. Dent. Clin. North Am., 2010, 54(1), 73-92.
[http://dx.doi.org/10.1016/j.cden.2009.08.011] [PMID: 20103473]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 13
Year: 2019
Page: [1122 - 1133]
Pages: 12
DOI: 10.2174/1389201020666190722161004
Price: $65

Article Metrics

PDF: 23
HTML: 2