Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease

Author(s): Kazuo Yamagata*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 22 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Previous studies have shown that intake of polyphenols through the consumption of vegetables and fruits reduces the risk of Cardiovascular Disease (CVD) by potentially influencing endothelial cell function.

Objective: In this review, the effects and molecular mechanisms of plant polyphenols, particularly resveratrol, epigallocatechin gallate (EGCG), and quercetin, on endothelial functions, and their putative protective effects against CVD are described.

Methods: Epidemiologic studies examined the effect of the CVD risk of vegetables and the fruit. Furthermore, studies within vitro models investigated the underlying molecular mechanisms of the action of the flavonoid class of polyphenols. These findings help elucidate the effect of polyphenols on endothelial function and CVD risk reduction.

Results: Epidemiologic and in vitro studies have demonstrated that the consumption of vegetables and fruits decreases the incidence of CVDs. Furthermore, it has also been indicated that dietary polyphenols are inversely related to the risk of CVD. Resveratrol, EGCG, and quercetin prevent oxidative stress by regulating the expression of oxidase and the antioxidant enzyme genes, contributing to the prevention of stroke, hypertension, heart failure, and ischemic heart disease.

Conclusion: High intake of dietary polyphenols may help prevent CVD. Polyphenols inhibit endothelial dysfunction and induce vascular endothelium-dependent vascular relaxation viz. redox regulation and nitric oxide production. The polyphenol-induced healthy endothelial cell function may be related to CVD prevention.

Keywords: Cardiovascular disease, epigallocatechin gallate, endothelial cells, reactive oxygen species, polyphenols, quercetin, resveratrol.

[1]
Shi A, Tao Z, Wei P, Zhao J. Epidemiological aspects of heart diseases. Exp Ther Med 2016; 12(3): 1645-50.
[http://dx.doi.org/10.3892/etm.2016.3541] [PMID: 27602082]
[2]
Rautiainen S, Levitan EB, Mittleman MA, Wolk A. Fruit and vegetable intake and rate of heart failure: A population-based prospective cohort of women. Eur J Heart Fail 2015; 17(1): 20-6.
[http://dx.doi.org/10.1002/ejhf.191] [PMID: 25382356]
[3]
Zhan J, Liu YJ, Cai LB, Xu FR, Xie T, He QQ. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2017; 57(8): 1650-63.
[http://dx.doi.org/10.1080/10408398.2015.1008980] [PMID: 26114864]
[4]
Li M, Fan Y, Zhang X, Hou W, Tang Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014; 4(11)E005497
[http://dx.doi.org/10.1136/bmjopen-2014-005497] [PMID: 25377009]
[5]
Larsson SC, Virtamo J, Wolk A. Total and specific fruit and vegetable consumption and risk of stroke: A prospective study. Atherosclerosis 2013; 227(1): 147-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.12.022] [PMID: 23294925]
[6]
Shimazu T, Wakai K, Tamakoshi A, et al. Association of vegetable and fruit intake with gastric cancer risk among Japanese: A pooled analysis of four cohort studies. Ann Oncol 2014; 25(6): 1228-33.
[http://dx.doi.org/10.1093/annonc/mdu115] [PMID: 24618149]
[7]
Grosso G, Micek A, Godos J, et al. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am J Epidemiol 2017; 185(12): 1304-16.
[http://dx.doi.org/10.1093/aje/kww207] [PMID: 28472215]
[8]
Grosso G, Stepaniak U, Micek A, et al. Dietary polyphenol intake and risk of hypertension in the Polish arm of the HAPIEE study. Eur J Nutr 2018; 57(4): 1535-44.
[http://dx.doi.org/10.1007/s00394-017-1438-7] [PMID: 28474120]
[9]
Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pająk A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr 2017; 56(4): 1409-20.
[http://dx.doi.org/10.1007/s00394-016-1187-z] [PMID: 26913852]
[10]
Godos J, Sinatra D, Blanco I, Mulè S, La Verde M, Marranzano M. Association between dietary phenolic acids and hypertension in a mediterranean cohort. Nutrients 2017; 9(10)E1069
[http://dx.doi.org/10.3390/nu9101069] [PMID: 28953227]
[11]
Spencer JP, Abd El Mohsen MM, Minihane AM, Mathers JC, Matsumoto C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br J Nutr 2008; 99(1): 12-22.
[http://dx.doi.org/10.1017/S0007114507798938] [PMID: 17666146]
[12]
Barreca D, Gattuso G, Bellocco E, et al. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43(4): 495-506.
[http://dx.doi.org/10.1002/biof.1363] [PMID: 28497905]
[13]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[14]
Andriantsitohaina R, Auger C, Chataigneau T, et al. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br J Nutr 2012; 108(9): 1532-49.
[http://dx.doi.org/10.1017/S0007114512003406] [PMID: 22935143]
[15]
Zanotti I, Dall’Asta M, Mena P, et al. Atheroprotective effects of (poly)phenols: A focus on cell cholesterol metabolism. Food Funct 2015; 6(1): 13-31.
[http://dx.doi.org/10.1039/C4FO00670D] [PMID: 25367393]
[16]
Khurana S, Piche M, Hollingsworth A, Venkataraman K, Tai TC. Oxidative stress and cardiovascular health: Therapeutic potential of polyphenols. Can J Physiol Pharmacol 2013; 91(3): 198-212.
[http://dx.doi.org/10.1139/cjpp-2012-0252] [PMID: 23537433]
[17]
Tangney CC, Rasmussen HE. Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 2013; 15(5): 324.
[http://dx.doi.org/10.1007/s11883-013-0324-x] [PMID: 23512608]
[18]
Bondonno CP, Croft KD, Ward N, Considine MJ, Hodgson JM. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr Rev 2015; 73(4): 216-35.
[http://dx.doi.org/10.1093/nutrit/nuu014] [PMID: 26024545]
[19]
Bondonno CP, Croft KD, Hodgson JM. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health. Crit Rev Food Sci Nutr 2016; 56(12): 2036-52.
[http://dx.doi.org/10.1080/10408398.2013.811212] [PMID: 25976309]
[20]
González R, Ballester I, López-Posadas R, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51(4): 331-62.
[http://dx.doi.org/10.1080/10408390903584094] [PMID: 21432698]
[21]
Félétou M, Vanhoutte PM. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006; 291(3): H985-H1002.
[http://dx.doi.org/10.1152/ajpheart.00292.2006] [PMID: 16632549]
[22]
Vanhoutte PM. Endothelial dysfunction: The first step toward coronary arteriosclerosis. Circ J 2009; 73(4): 595-601.
[http://dx.doi.org/10.1253/circj.CJ-08-1169] [PMID: 19225203]
[23]
Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol 2004; 15(8): 1983-92.
[http://dx.doi.org/10.1097/01.ASN.0000132474.50966.DA] [PMID: 15284284]
[24]
Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol 2001; 12(4): 383-9.
[http://dx.doi.org/10.1097/00041433-200108000-00003] [PMID: 11507322]
[25]
Landmesser U, Drexler H. Endothelial function and hypertension. Curr Opin Cardiol 2007; 22(4): 316-20.
[http://dx.doi.org/10.1097/HCO.0b013e3281ca710d] [PMID: 17556884]
[26]
Roberts AC, Porter KE. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res 2013; 10(6): 472-82.
[http://dx.doi.org/10.1177/1479164113500680] [PMID: 24002671]
[27]
Santoro D, Bellinghieri G, Conti G, et al. Endothelial dysfunction in chronic renal failure. J Ren Nutr 2010; 20(5)(Suppl.): S103-8.
[http://dx.doi.org/10.1053/j.jrn.2010.06.010] [PMID: 20797556]
[28]
Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003; 42(7): 1149-60.
[http://dx.doi.org/10.1016/S0735-1097(03)00994-X] [PMID: 14522472]
[29]
Buil-Cosiales P, Toledo E, Salas-Salvado J, et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: Results from the PREvencion con DIeta MEDiterranea (PREDIMED) trial. Br J Nutr 2016; 116: 534-46.
[http://dx.doi.org/10.1017/S0007114516002099.]
[30]
Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: Analysis of Health Survey for England data. J Epidemiol Community Health 2014; 68(9): 856-62.
[http://dx.doi.org/10.1136/jech-2013-203500] [PMID: 24687909]
[31]
Okuda N, Miura K, Okayama A, et al. Fruit and vegetable intake and mortality from cardiovascular disease in Japan: A 24-year follow-up of the NIPPON DATA80 Study. Eur J Clin Nutr 2015; 69(4): 482-8.
[http://dx.doi.org/10.1038/ejcn.2014.276] [PMID: 25585600]
[32]
Sun Y, Jiang CQ, Cheng KK, et al. Fruit and vegetable consumption and cardiovascular risk factors in older Chinese: The Guangzhou biobank cohort study. PLoS One 2015; 10E0135380
[33]
Dauchet L, Montaye M, Ruidavets JB, et al. Association between the frequency of fruit and vegetable consumption and cardiovascular disease in male smokers and non-smokers. Eur J Clin Nutr 2010; 64(6): 578-86.
[http://dx.doi.org/10.1038/ejcn.2010.46] [PMID: 20354560]
[34]
Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr 2015; 54(4): 599-608.
[http://dx.doi.org/10.1007/s00394-014-0741-9] [PMID: 25087093]
[35]
Jacques PF, Cassidy A, Rogers G, Peterson JJ, Dwyer JT. Dietary flavonoid intakes and CVD incidence in the Framingham Offspring Cohort. Br J Nutr 2015; 114(9): 1496-503.
[http://dx.doi.org/10.1017/S0007114515003141] [PMID: 26334117]
[36]
Wang X, Ouyang YY, Liu J, Zhao G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br J Nutr 2014; 111(1): 1-11.
[http://dx.doi.org/10.1017/S000711451300278X] [PMID: 23953879]
[37]
Liu XM, Liu YJ, Huang Y, et al. Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: A systematic review and meta-analysis of cohort studies. Mol Nutr Food Res 2017; 61(6)
[http://dx.doi.org/10.1002/mnfr.201601003] [PMID: 28054441]
[38]
George TW, Paterson E, Waroonphan S, Gordon MH, Lovegrove JA. Effects of chronic consumption of fruit and vegetable puree-based drinks on vasodilation, plasma oxidative stability and antioxidant status. J Hum Nutr Diet 2012; 25(5): 477-87.
[http://dx.doi.org/10.1111/j.1365-277X.2012.01279.x] [PMID: 22831286]
[39]
George TW, Waroonphan S, Niwat C, Gordon MH, Lovegrove JA. Effects of acute consumption of a fruit and vegetable purée-based drink on vasodilation and oxidative status. Br J Nutr 2013; 109(8): 1442-52.
[http://dx.doi.org/10.1017/S0007114512003315] [PMID: 23017441]
[40]
Macready AL, George TW, Chong MF, et al. Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease--FLAVURS: A randomized controlled trial. Am J Clin Nutr 2014; 99(3): 479-89.
[http://dx.doi.org/10.3945/ajcn.113.074237] [PMID: 24452238]
[41]
Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in-depth review of the PREDIMED. Nutr Diabetes 2018; 8(1): 13.
[http://dx.doi.org/10.1038/s41387-018-0025-1] [PMID: 29549354]
[42]
Wang Y, Chun OK, Song WO. Plasma and dietary antioxidant status as cardiovascular disease risk factors: A review of human studies. Nutrients 2013; 5(8): 2969-3004.
[http://dx.doi.org/10.3390/nu5082969] [PMID: 23912327]
[43]
Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 2014; 71: 62-70.
[http://dx.doi.org/10.1016/j.yjmcc.2014.03.007] [PMID: 24650874]
[44]
Kruth HS, Huang W, Ishii I, Zhang WY. Macrophage foam cell formation with native low density lipoprotein. J Biol Chem 2002; 277(37): 34573-80.
[http://dx.doi.org/10.1074/jbc.M205059200] [PMID: 12118008]
[45]
Bae YS, Lee JH, Choi SH, et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein:toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 2009; 104: 210-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.181040]
[46]
Katsume A, Okigaki M, Matsui A, et al. Early inflammatory reactions in atherosclerosis are induced by proline-rich tyrosine kinase/reactive oxygen species-mediated release of tumor necrosis factor-alpha and subsequent activation of the p21Cip1/Ets-1/p300 system. Arterioscler Thromb Vasc Biol 2011; 31(5): 1084-92.
[http://dx.doi.org/10.1161/ATVBAHA.110.221804] [PMID: 21372295]
[47]
Raggi P. Inflammation, depression and atherosclerosis or depression, inflammation and atherosclerosis? Atherosclerosis 2016; 251: 542-3.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.902] [PMID: 27451414]
[48]
Panth N, Paudel KR, Parajuli K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv Med 2016; 20169152732
[http://dx.doi.org/10.1155/2016/9152732] [PMID: 27774507]
[49]
Moris D, Spartalis M, Spartalis E, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med 2017; 5(16): 326.
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423]
[50]
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61: 473-501.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.001] [PMID: 23583330]
[51]
Wu JM, Wang ZR, Hsieh TC, Bruder JL, Zou JG, Huang YZ. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine.(Review) Int J Mol Med 2001; 8(1): 3-17. [Review].
[http://dx.doi.org/ 10.3892/ijmm.8.1.3] [PMID: 11408943]
[52]
Soylemez S, Sepici A, Akar F. Resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats. Cardiovasc Drugs Ther 2009; 23(6): 449-58.
[http://dx.doi.org/10.1007/s10557-009-6198-z] [PMID: 19809869]
[53]
Ungvari Z, Labinskyy N, Mukhopadhyay P, et al. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 2009; 297(5): H1876-81.
[http://dx.doi.org/10.1152/ajpheart.00375.2009] [PMID: 19749157]
[54]
Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: Protection against oxidative and electrophilic injury. Eur J Pharmacol 2004; 489(1-2): 39-48.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.031] [PMID: 15063153]
[55]
Li Y, Cao Z, Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res 2006; 53(1): 6-15.
[http://dx.doi.org/10.1016/j.phrs.2005.08.002] [PMID: 16169743]
[56]
Li H, Xia N, Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012; 26(2): 102-10.
[http://dx.doi.org/10.1016/j.niox.2011.12.006] [PMID: 22245452]
[57]
Huang CY, Ting WJ, Huang CY, Yang JY, Lin WT. Resveratrol attenuated hydrogen peroxide-induced myocardial apoptosis by autophagic flux. Food Nutr Res 2016; 60: 30511.
[http://dx.doi.org/10.3402/fnr.v60.30511]
[58]
Chen CJ, Fu YC, Yu W, Wang W. SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-κB. Biochem Biophys Res Commun 2013; 430(2): 798-803.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.066] [PMID: 23201401]
[59]
Li YG, Zhu W, Tao JP, et al. Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 2013; 438(2): 270-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.042] [PMID: 23891692]
[60]
Tanno M, Kuno A, Yano T, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 2010; 285(11): 8375-82.
[http://dx.doi.org/10.1074/jbc.M109.090266] [PMID: 20089851]
[61]
Movahed A, Yu L, Thandapilly SJ, Louis XL, Netticadan T. Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury. Arch Biochem Biophys 2012; 527(2): 74-80.
[http://dx.doi.org/10.1016/j.abb.2012.05.002] [PMID: 22633977]
[62]
Sayin O, Arslan N, Guner G. The protective effects of resveratrol on human coronary artery endothelial cell damage induced by hydrogen peroxide in vitro. Acta Clin Croat 2012; 51(2): 227-35.
[PMID: 23115947]
[63]
Xia N, Daiber A, Habermeier A, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 2010; 335(1): 149-54.
[http://dx.doi.org/10.1124/jpet.110.168724] [PMID: 20610621]
[64]
Spanier G, Xu H, Xia N, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol 2009; 60(Suppl. 4): 111-6.
[PMID: 20083859]
[65]
Robb EL, Page MM, Wiens BE, Stuart JA. Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD. Biochem Biophys Res Commun 2008; 367(2): 406-12.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.138] [PMID: 18167310]
[66]
Ungvari Z, Bagi Z, Feher A, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 2010; 299(1): H18-24.
[http://dx.doi.org/10.1152/ajpheart.00260.2010] [PMID: 20418481]
[67]
Yu HP, Hwang TL, Hwang TL, Yen CH, Lau YT. Resveratrol prevents endothelial dysfunction and aortic superoxide production after trauma hemorrhage through estrogen receptor-dependent hemeoxygenase-1 pathway. Crit Care Med 2010; 38(4): 1147-54.
[http://dx.doi.org/10.1097/CCM.0b013e3181cd124e] [PMID: 20081535]
[68]
Brandes RP, Kreuzer J. Vascular NADPH oxidases: Molecular mechanisms of activation. Cardiovasc Res 2005; 65(1): 16-27.
[http://dx.doi.org/10.1016/j.cardiores.2004.08.007] [PMID: 15621030]
[69]
Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. NADPH oxidases in vascular pathology. Antioxid Redox Signal 2014; 20(17): 2794-814.
[http://dx.doi.org/10.1089/ars.2013.5607] [PMID: 24180474]
[70]
Moore RJ, Jackson KG, Minihane AM. Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr 2009; 102(12): 1790-802.
[http://dx.doi.org/10.1017/S0007114509991218] [PMID: 19751534]
[71]
Rice-Evans C. Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 1999; 220(4): 262-6.
[http://dx.doi.org/10.1046/j.1525-1373.1999.d01-45.x] [PMID: 10202400]
[72]
Legeay S, Rodier M, Fillon L, Faure S, Clere N. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients 2015; 7(7): 5443-68.
[http://dx.doi.org/10.3390/nu7075230] [PMID: 26198245]
[73]
Miura Y, Chiba T, Miura S, et al. Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: An ex vivo study in humans. J Nutr Biochem 2000; 11(4): 216-22.
[http://dx.doi.org/10.1016/S0955-2863(00)00068-1] [PMID: 10827344]
[74]
Chen A, Zhang L. The antioxidant (-)-epigallocatechin-3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of platelet-derived growth factor-beta receptor. J Biol Chem 2003; 278(26): 23381-9.
[http://dx.doi.org/10.1074/jbc.M212042200] [PMID: 12695518]
[75]
Pullikotil P, Chen H, Muniyappa R, et al. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α. J Nutr Biochem 2012; 23(9): 1134-45.
[http://dx.doi.org/10.1016/j.jnutbio.2011.06.007] [PMID: 22137262]
[76]
Zhou X, Liang L, Zhao Y, Zhang H. Epigallocatechin-3-gallate ameliorates angiotensin induced oxidative stress and apoptosis in human umbilical vein endothelial cells through the activation of Nrf2/Caspase-3 Signaling. J Vasc Res 2017; 54(5): 299-308.
[http://dx.doi.org/10.1159/000479873] [PMID: 28942440]
[77]
Garelnabi M, Mahini H, Wilson T. Quercetin intake with exercise modulates lipoprotein metabolism and reduces atherosclerosis plaque formation. J Int Soc Sports Nutr 2014; 11: 22.
[http://dx.doi.org/10.1186/1550-2783-11-22]
[78]
Braun KF, Ehnert S, Freude T, et al. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1. ScientificWorldJournal 2011; 11: 2348-57.
[http://dx.doi.org/10.1100/2011/471426] [PMID: 22203790]
[79]
Wilms LC, Kleinjans JC, Moonen EJ, Briedé JJ. Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro. Toxicol In Vitro 2008; 22(2): 301-7.
[http://dx.doi.org/10.1016/j.tiv.2007.09.002] [PMID: 17959353]
[80]
Wilms LC, Hollman PC, Boots AW, Kleinjans JC. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mutat Res 2005; 582(1-2): 155-62.
[http://dx.doi.org/10.1016/j.mrgentox.2005.01.006] [PMID: 15781220]
[81]
Sakao K, Fujii M, Hou DX. Clarification of the role of quercetin hydroxyl groups in superoxide generation and cell apoptosis by chemical modification. Biosci Biotechnol Biochem 2009; 73(9): 2048-53.
[http://dx.doi.org/10.1271/bbb.90253] [PMID: 19734664]
[82]
Li C, Zhang WJ, Frei B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol 2016; 9: 104-13.
[http://dx.doi.org/10.1016/j.redox.2016.06.006] [PMID: 27454768]
[83]
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789): 373-6.
[http://dx.doi.org/10.1038/288373a0] [PMID: 6253831]
[84]
Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012; 10(1): 4-18.
[http://dx.doi.org/10.2174/157016112798829760] [PMID: 22112350]
[85]
Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013; 35: 175-85.
[http://dx.doi.org/10.1016/j.niox.2013.09.004] [PMID: 24095696]
[86]
Liu VW, Huang PL. Cardiovascular roles of nitric oxide: A review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 2008; 77(1): 19-29.
[PMID: 17658499]
[87]
Jin RC, Loscalzo J. Vascular Nitric Oxide: Formation and Function. J Blood Med 2010; 2010(1): 147-62.
[PMID: 21572574]
[88]
Kim SJ, Li M, Jeong CW, et al. Epigallocatechin-3-gallate, a green tea catechin, protects the heart against regional ischemia-reperfusion injuries through activation of RISK survival pathways in rats. Arch Pharm Res 2014; 37(8): 1079-85.
[http://dx.doi.org/10.1007/s12272-013-0309-x] [PMID: 24307060]
[89]
Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999; 100(10): 1050-5.
[http://dx.doi.org/10.1161/01.CIR.100.10.1050] [PMID: 10477529]
[90]
Chou EJ, Keevil JG, Aeschlimann S, Wiebe DA, Folts JD, Stein JH. Effect of ingestion of purple grape juice on endothelial function in patients with coronary heart disease. Am J Cardiol 2001; 88(5): 553-5.
[http://dx.doi.org/10.1016/S0002-9149(01)01738-6] [PMID: 11524068]
[91]
Clifton PM. Effect of grape seed extract and quercetin on cardiovascular and endothelial parameters in high-risk subjects. J Biomed Biotechnol 2004; 2004(5): 272-8.
[http://dx.doi.org/10.1155/S1110724304403088] [PMID: 15577189]
[92]
Aviram M, Rosenblat M, Gaitini D, et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin Nutr 2004; 23(3): 423-33.
[http://dx.doi.org/10.1016/j.clnu.2003.10.002] [PMID: 15158307]
[93]
Sumner MD, Elliott-Eller M, Weidner G, et al. Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol 2005; 96(6): 810-4.
[http://dx.doi.org/10.1016/j.amjcard.2005.05.026] [PMID: 16169367]
[94]
Davidson MH, Maki KC, Dicklin MR, et al. Effects of consumption of pomegranate juice on carotid intima-media thickness in men and women at moderate risk for coronary heart disease. Am J Cardiol 2009; 104(7): 936-42.
[http://dx.doi.org/10.1016/j.amjcard.2009.05.037] [PMID: 19766760]
[95]
Chong MF, Macdonald R, Lovegrove JA. Fruit polyphenols and CVD risk: A review of human intervention studies. Br J Nutr 2010; 104(Suppl. 3): S28-39.
[http://dx.doi.org/10.1017/S0007114510003922] [PMID: 20955648]
[96]
Schini-Kerth VB, Etienne-Selloum N, Chataigneau T, Auger C. Vascular protection by natural product-derived polyphenols: In vitro and in vivo evidence. Planta Med 2011; 77(11): 1161-7.
[http://dx.doi.org/10.1055/s-0030-1250737] [PMID: 21267812]
[97]
Anselm E, Chataigneau M, Ndiaye M, Chataigneau T, Schini-Kerth VB. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS. Cardiovasc Res 2007; 73(2): 404-13.
[http://dx.doi.org/10.1016/j.cardiores.2006.08.004] [PMID: 16962569]
[98]
Auger C, Gérain P, Laurent-Bichon F, et al. Phenolics from commercialized grape extracts prevent early atherosclerotic lesions in hamsters by mechanisms other than antioxidant effect. J Agric Food Chem 2004; 52(16): 5297-302.
[http://dx.doi.org/10.1021/jf040125d] [PMID: 15291511]
[99]
Fitzpatrick DF, Hirschfield SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol 1993; 265(2 Pt 2): H774-8.
[PMID: 8396352]
[100]
Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O’Malley RM. Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J Agric Food Chem 2000; 48(12): 6384-90.
[http://dx.doi.org/10.1021/jf0009347] [PMID: 11312812]
[101]
Madeira SV, Auger C, Anselm E, et al. eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vasc Res 2009; 46(5): 406-16.
[http://dx.doi.org/10.1159/000194271] [PMID: 19155632]
[102]
Andriambeloson E, Magnier C, Haan-Archipoff G, et al. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 1998; 128(12): 2324-33.
[http://dx.doi.org/10.1093/jn/128.12.2324] [PMID: 9868177]
[103]
Padilla E, Ruiz E, Redondo S, Gordillo-Moscoso A, Slowing K, Tejerina T. Relationship between vasodilation capacity and phenolic content of Spanish wines. Eur J Pharmacol 2005; 517(1-2): 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2005.04.044] [PMID: 15967426]
[104]
Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R. Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 1997; 120(6): 1053-8.
[http://dx.doi.org/10.1038/sj.bjp.0701011] [PMID: 9134217]
[105]
de Moura RS, Miranda DZ, Pinto AC, et al. Mechanism of the endothelium-dependent vasodilation and the antihypertensive effect of Brazilian red wine. J Cardiovasc Pharmacol 2004; 44(3): 302-9.
[http://dx.doi.org/10.1097/01.fjc.0000133060.10597.3c] [PMID: 15475826]
[106]
Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R. Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiol Res 2004; 53(6): 595-602.
[PMID: 15588126]
[107]
Jochmann N, Lorenz M, Krosigk Av, et al. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br J Nutr 2008; 99(4): 863-8.
[http://dx.doi.org/10.1017/S0007114507838992] [PMID: 17916273]
[108]
Lorenz M, Urban J, Engelhardt U, Baumann G, Stangl K, Stangl V. Green and black tea are equally potent stimuli of NO production and vasodilation: New insights into tea ingredients involved. Basic Res Cardiol 2009; 104: 100.
[http://dx.doi.org/10.1007/s00395-008-0759-3]
[109]
Nakamura Y, Matsumoto H, Todoki K. Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn J Pharmacol 2002; 89(1): 29-35.
[http://dx.doi.org/10.1254/jjp.89.29] [PMID: 12083740]
[110]
Bell DR, Gochenaur K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol 2006; 100(4): 1164-70.
[http://dx.doi.org/10.1152/japplphysiol.00626.2005] [PMID: 16339348]
[111]
Maher MA, Mataczynski H, Stefaniak HM, Wilson T. Cranberry juice induces nitric oxide-dependent vasodilation in vitro and its infusion transiently reduces blood pressure in anesthetized rats. J Med Food 2000; 3(3): 141-7.
[http://dx.doi.org/10.1089/jmf.2000.3.141] [PMID: 19281335]
[112]
Mullen W, McGinn J, Lean ME, et al. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J Agric Food Chem 2002; 50: 5191.
[113]
Edirisinghe I, Burton-Freeman B, Varelis P, Kappagoda T. Strawberry extract caused endothelium-dependent relaxation through the activation of PI3 kinase/Akt. J Agric Food Chem 2008; 22(56): 9383-0.
[http://dx.doi.org/10.1021/jf801864t.]
[114]
Kim JA, Formoso G, Li Y, et al. Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem 2007; 282(18): 13736-45.
[http://dx.doi.org/10.1074/jbc.M609725200] [PMID: 17363366]
[115]
Ndiaye M, Chataigneau M, Lobysheva I, Chataigneau T, Schini-Kerth VB. Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J 2005; 19(3): 455-7.
[http://dx.doi.org/10.1096/fj.04-2146fje] [PMID: 15623569]
[116]
Kaufeld AM, Pertz HH, Kolodziej H. 2,3-cis-procyanidins elicit endothelium-dependent relaxation in porcine coronary arteries via activation of the PI3/Akt kinase signaling pathway. J Agric Food Chem 2013; 61(40): 9609-16.
[http://dx.doi.org/10.1021/jf402460m] [PMID: 24032351]
[117]
Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Clin Appl Thromb Hemost 2001; 7(4): 276-80.
[http://dx.doi.org/10.1177/107602960100700404] [PMID: 11697708]
[118]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[119]
Virdis A, Neves MF, Duranti E, Bernini G, Taddei S. Microvascular endothelial dysfunction in obesity and hypertension. Curr Pharm Des 2013; 19(13): 2382-9.
[http://dx.doi.org/10.2174/1381612811319130006] [PMID: 23173587]
[120]
Santoro D, Bellinghieri G, Conti G, et al. Endothelial dysfunction in chronic renal failure. J Ren Nutr 2010; 20(5)(Suppl.): S103-8.
[http://dx.doi.org/10.1053/j.jrn.2010.06.010] [PMID: 20797556]
[121]
Eringa EC, Serne EH, Meijer RI, et al. Endothelial dysfunction in (pre)diabetes: Characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord 2013; 14(1): 39-48.
[http://dx.doi.org/10.1007/s11154-013-9239-7] [PMID: 23417760]
[122]
Singhal A. Endothelial dysfunction: Role in obesity-related disorders and the early origins of CVD. Proc Nutr Soc 2005; 64(1): 15-22.
[http://dx.doi.org/10.1079/PNS2004404] [PMID: 15877918]
[123]
Fujiyoshi K, Yamaoka-Tojo M, Minami Y, et al. Endothelial dysfunction Is associated with cognitive impairment of elderly cardiovascular disease patients. Int Heart J 2018; 59(5): 1034-40.
[http://dx.doi.org/10.1536/ihj.17-610] [PMID: 30158387]
[124]
Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Clin Appl Thromb Hemost 2001; 7(4): 276-80.
[http://dx.doi.org/10.1177/107602960100700404] [PMID: 11697708]
[125]
Kirsch J, Schneider H, Pagel JI, et al. Endothelial dysfunction, and a prothrombotic, proinflammatory phenotype is caused by loss of mitochondrial thioredoxin reductase in endothelium. Arterioscler Thromb Vasc Biol 2016; 36(9): 1891-9.
[http://dx.doi.org/10.1161/ATVBAHA.116.307843] [PMID: 27386940]
[126]
Giles TD, Sander GE, Nossaman BD, Kadowitz PJ. Impaired vaso-dilation in the pathogenesis of hypertension: Focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich) 2012; 14(4): 198-205.
[http://dx.doi.org/10.1111/j.1751-7176.2012.00606.x] [PMID: 22458740]
[127]
Weil BR, Stauffer BL, Greiner JJ, DeSouza CA. Prehypertension is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation in sedentary adults. Am J Hypertens 2011; 24(9): 976-81.
[http://dx.doi.org/10.1038/ajh.2011.88] [PMID: 21633396]
[128]
Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 1996; 93(17): 9114-9.
[http://dx.doi.org/10.1073/pnas.93.17.9114] [PMID: 8799163]
[129]
Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: Part I. Circulation 2003; 108(16): 1917-23.
[http://dx.doi.org/10.1161/01.CIR.0000089190.95415.9F] [PMID: 14568885]
[130]
Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem 2019; 26(9): 1693-700.
[http://dx.doi.org/10.2174/0929867325666180508100950] [PMID: 29737246]
[131]
Wojakowski W, Gminski J. Soluble ICAM-1, VCAM-1 and E-selectin in children from families with high risk of atherosclerosis. Int J Mol Med 2001; 7(2): 181-5.
[http://dx.doi.org/10.3892/ijmm.7.2.181] [PMID: 11172623]
[132]
Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219(1): 22-96.
[http://dx.doi.org/10.1111/apha.12646] [PMID: 26706498]
[133]
Nabavi SF, Li H, Daglia M, Nabavi SM. Resveratrol and stroke: From chemistry to medicine. Curr Neurovasc Res 2014; 11(4): 390-7.
[http://dx.doi.org/10.2174/1567202611666140912114833] [PMID: 25219659]
[134]
Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 2015; 89: 75-82.
[http://dx.doi.org/10.1016/j.neuint.2015.08.009] [PMID: 26277384]
[135]
Wan D, Zhou Y, Wang K, Hou Y, Hou R, Ye X. Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 2016; 121: 255-62.
[http://dx.doi.org/10.1016/j.brainresbull.2016.02.011] [PMID: 26876758]
[136]
Fang L, Gao H, Zhang W, Zhang W, Wang Y. Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. Int J Clin Exp Med 2015; 8: 3219-26.
[137]
Orsu P, Murthy BV, Akula A. Cerebroprotective potential of resveratrol through anti-oxidant and anti-inflammatory mechanisms in rats. J Neural Transm (Vienna) 2013; 120(8): 1217-23.
[http://dx.doi.org/10.1007/s00702-013-0982-4] [PMID: 23371441]
[138]
Sakata Y, Zhuang H, Kwansa H, Koehler RC, Doré S. Resveratrol protects against experimental stroke: Putative neuroprotective role of heme oxygenase 1. Exp Neurol 2010; 224(1): 325-9.
[http://dx.doi.org/10.1016/j.expneurol.2010.03.032] [PMID: 20381489]
[139]
Shen C, Cheng W, Yu P, et al. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro. Mol Med Rep 2016; 14(4): 3646-54.
[http://dx.doi.org/10.3892/mmr.2016.5670] [PMID: 27573874]
[140]
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4(8): 1151-62.
[http://dx.doi.org/10.1021/cn400094w] [PMID: 23758534]
[141]
Wei H, Wang S, Zhen L, et al. Resveratrol attenuates the blood-brain barrier dysfunction by regulation of the MMP-9/TIMP-1 balance after cerebral ischemia reperfusion in rats. J Mol Neurosci 2015; 55(4): 872-9.
[http://dx.doi.org/10.1007/s12031-014-0441-1] [PMID: 25330860]
[142]
Ramos-Fernandez M, Bellolio MF, Stead LG. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: A systematic review. J Stroke Cerebrovasc Dis 2011; 20(1): 47-54.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2009.10.008] [PMID: 21044610]
[143]
Huang T, Gao D, Jiang X, Hu S, Zhang L, Fei Z. Resveratrol inhibits oxygen-glucose deprivation-induced MMP-3 expression and cell apoptosis in primary cortical cells via the NF-κB pathway. Mol Med Rep 2014; 10(2): 1065-71.
[http://dx.doi.org/10.3892/mmr.2014.2239] [PMID: 24840287]
[144]
Zhang F, Li N, Jiang L, Chen L, Huang M. Neuroprotective Effects of (-)-Epigallocatechin-3-Gallate Against Focal Cerebral Ischemia/Reperfusion Injury in Rats Through Attenuation of Inflammation. Neurochem Res 2015; 40(8): 1691-8.
[http://dx.doi.org/10.1007/s11064-015-1647-5] [PMID: 26198193]
[145]
Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL. Bioactive polyphenols and cardiovascular disease: Chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol 2017; 174(11): 1209-25.
[http://dx.doi.org/10.1111/bph.13708] [PMID: 28071785]
[146]
Bai Q, Lyu Z, Yang X, Pan Z, Lou J, Dong T. Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke. Behav Brain Res 2017; 321: 79-86.
[http://dx.doi.org/10.1016/j.bbr.2016.12.037] [PMID: 28042007]
[147]
Zhang JC, Xu H, Yuan Y, et al. Delayed Treatment with Green Tea Polyphenol EGCG Promotes Neurogenesis After Ischemic Stroke in Adult Mice. Mol Neurobiol 2017; 54(5): 3652-64.
[http://dx.doi.org/10.1007/s12035-016-9924-0] [PMID: 27206430]
[148]
Han J, Wang M, Jing X, Shi H, Ren M, Lou H. (-)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res 2014; 39(7): 1292-9.
[http://dx.doi.org/10.1007/s11064-014-1311-5] [PMID: 24792731]
[149]
Park JW, Hong JS, Lee KS, Kim HY, Lee JJ, Lee SR. Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J Nutr Biochem 2010; 21(11): 1038-44.
[http://dx.doi.org/10.1016/j.jnutbio.2009.08.009] [PMID: 19962294]
[150]
Yao C, Zhang J, Liu G, Chen F, Lin Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep 2014; 9(1): 69-76.
[http://dx.doi.org/10.3892/mmr.2013.1778] [PMID: 24193141]
[151]
Lee JK, Kwak HJ, Piao MS, Jang JW, Kim SH, Kim HS. Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir (Wien) 2011; 153(6): 1321-9.
[http://dx.doi.org/10.1007/s00701-010-0889-x] [PMID: 21120545]
[152]
Ahmad A, Khan MM, Hoda MN, et al. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res 2011; 36(8): 1360-71.
[http://dx.doi.org/10.1007/s11064-011-0458-6] [PMID: 21472457]
[153]
Park DJ, Shah FA, Koh PO. Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model. J Vet Med Sci 2018; 80(4): 676-83.
[http://dx.doi.org/10.1292/jvms.17-0693] [PMID: 29563391]
[154]
Shah FA, Park DJ, Koh PO. Identification of Proteins Differentially expressed by quercetin treatment in a middle cerebral artery occlusion model: A proteomics approach. Neurochem Res 2018; 43(8): 1608-23.
[http://dx.doi.org/10.1007/s11064-018-2576-x] [PMID: 29926355]
[155]
Wengreen H, Munger RG, Cutler A, et al. Prospective study of dietary approaches to stop hypertension-and mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. Am J Clin Nutr 2013; 98(5): 1263-71.
[http://dx.doi.org/10.3945/ajcn.112.051276] [PMID: 24047922]
[156]
Moreno-Luna R, Muñoz-Hernandez R, Miranda ML, et al. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am J Hypertens 2012; 25(12): 1299-304.
[http://dx.doi.org/10.1038/ajh.2012.128] [PMID: 22914255]
[157]
Hügel HM, Jackson N, May B, Zhang AL, Xue CC. Polyphenol protection and treatment of hypertension. Phytomedicine 2016; 23(2): 220-31.
[http://dx.doi.org/10.1016/j.phymed.2015.12.012] [PMID: 26926184]
[158]
Javkhedkar AA, Quiroz Y, Rodriguez-Iturbe B, Vaziri ND, Lokhandwala MF, Banday AA. Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2015; 308(10): R840-6.
[http://dx.doi.org/10.1152/ajpregu.00308.2014] [PMID: 25761698]
[159]
Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 2011; 667(1-3): 258-64.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.026] [PMID: 21640096]
[160]
Franco JG, Lisboa PC, Lima NS, et al. Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. J Nutr Biochem 2013; 24(6): 960-6.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.019] [PMID: 22959054]
[161]
Gordish KL, Beierwaltes WH. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am J Physiol Renal Physiol 2014; 306(5): F542-50.
[http://dx.doi.org/10.1152/ajprenal.00437.2013] [PMID: 24431202]
[162]
Carrizzo A, Puca A, Damato A, et al. Resveratrol improves vascular function in patients with hypertension and dyslipidemia by modulating NO metabolism. Hypertension 2013; 62(2): 359-66.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.01009] [PMID: 23753407]
[163]
Potenza MA, Marasciulo FL, Tarquinio M, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 2007; 292(5): E1378-87.
[http://dx.doi.org/10.1152/ajpendo.00698.2006] [PMID: 17227956]
[164]
Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr 2007; 137(11): 2405-11.
[http://dx.doi.org/10.1093/jn/137.11.2405] [PMID: 17951477]
[165]
Brüll V, Burak C, Stoffel-Wagner B, et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: A randomised double-blinded placebo-controlled cross-over trial. Br J Nutr 2015; 114(8): 1263-77.
[http://dx.doi.org/10.1017/S0007114515002950] [PMID: 26328470]
[166]
Sánchez M, Galisteo M, Vera R, et al. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 2006; 24(1): 75-84.
[http://dx.doi.org/10.1097/01.hjh.0000198029.22472.d9] [PMID: 16331104]
[167]
Balasuriya N, Rupasinghe HP. Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem 2012; 135(4): 2320-5.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.023] [PMID: 22980808]
[168]
Liew CC, Dzau VJ. Molecular genetics and genomics of heart failure. Nat Rev Genet 2004; 5(11): 811-25.
[http://dx.doi.org/10.1038/nrg1470] [PMID: 15520791]
[169]
Sung MM, Dyck JR. Therapeutic potential of resveratrol in heart failure. Ann N Y Acad Sci 2015; 1348(1): 32-45.
[http://dx.doi.org/10.1111/nyas.12839] [PMID: 26205211]
[170]
Gupta PK, DiPette DJ, Supowit SC. Protective effect of resveratrol against pressure overload-induced heart failure. Food Sci Nutr 2014; 2(3): 218-29.
[http://dx.doi.org/10.1002/fsn3.92] [PMID: 24936291]
[171]
Rimbaud S, Ruiz M, Piquereau J, et al. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One 2011; 6(10)E26391
[http://dx.doi.org/10.1371/journal.pone.0026391] [PMID: 22028869]
[172]
Gu XS, Wang ZB, Ye Z, et al. Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 2014; 13(1): 323-35.
[http://dx.doi.org/10.4238/2014.January.17.17] [PMID: 24535859]
[173]
Raj P, Louis XL, Thandapilly SJ, Movahed A, Zieroth S, Netticadan T. Potential of resveratrol in the treatment of heart failure. Life Sci 2014; 95(2): 63-71.
[http://dx.doi.org/10.1016/j.lfs.2013.12.011] [PMID: 24361400]
[174]
Ikegami T, Suzuki Y, Shimizu T, Isono K, Koseki H, Shirasawa T. Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun 2002; 296(3): 729-36.
[http://dx.doi.org/10.1016/S0006-291X(02)00933-6] [PMID: 12176043]
[175]
Oyama JI, Shiraki A, Nishikido T, et al. EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of MnSOD in mice. J Cardiol 2017; 69(2): 417-27.
[http://dx.doi.org/10.1016/j.jjcc.2016.05.019] [PMID: 27374189]
[176]
Zhang Q, Hu L, Chen L, et al. (-)-Epigallocatechin-3-gallate, the major green tea catechin, regulates the desensitization of β1 adrenoceptor via GRK2 in experimental heart failure. Inflammopharmacology 2018; 26(4): 1081-91.
[http://dx.doi.org/10.1007/s10787-017-0429-x] [PMID: 29247373]
[177]
Chen K, Chen W, Liu SL, et al. Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGFβ1/Smad3 signaling pathway. Mol Med Rep 2018; 17(6): 7652-60.
[http://dx.doi.org/10.3892/mmr.2018.8825] [PMID: 29620209]
[178]
Cai Y, Yu SS, Chen TT, et al. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast. Phytomedicine 2013; 20(2): 106-13.
[http://dx.doi.org/10.1016/j.phymed.2012.10.002] [PMID: 23141425]
[179]
Gąsiorowski A, Dutkiewicz J. Comprehensive rehabilitation in chronic heart failure. Ann Agric Environ Med 2013; 20(3): 606-12.
[PMID: 24069873]
[180]
Blaškovič D, Zižková P, Držík F, Viskupičová J, Veverka M, Horáková L. Modulation of rabbit muscle sarcoplasmic reticulum Ca2+-ATPase activity by novel quercetin derivatives. Interdiscip Toxicol 2013; 6(1): 3-8.
[http://dx.doi.org/10.2478/intox-2013-0001] [PMID: 24170972]
[181]
Raj P, Zieroth S, Netticadan T. An overview of the efficacy of resveratrol in the management of ischemic heart disease. Ann N Y Acad Sci 2015; 1348(1): 55-67.
[http://dx.doi.org/10.1111/nyas.12828] [PMID: 26227659]
[182]
Chu LM, Lassaletta AD, Robich MP, Sellke FW. Resveratrol in the prevention and treatment of coronary artery disease. Curr Atheroscler Rep 2011; 13(6): 439-46.
[http://dx.doi.org/10.1007/s11883-011-0202-3] [PMID: 21870059]
[183]
Cong X, Li Y, Lu N, et al. Resveratrol attenuates the inflammatory reaction induced by ischemia/reperfusion in the rat heart. Mol Med Rep 2014; 9(6): 2528-32.
[http://dx.doi.org/10.3892/mmr.2014.2090] [PMID: 24682318]
[184]
Cheng L, Jin Z, Zhao R, et al. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: Role of Nrf2/ARE pathway. Int J Clin Exp Med 2015; 8: 10420-8.
[185]
Dong W, Yang R, Yang J, et al. Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway. Int J Clin Exp Pathol 2015; 8: 8731-41.
[186]
Xuan W, Wu B, Chen C, et al. Resveratrol improves myocardial ischemia and ischemic heart failure in mice by antagonizing the detrimental effects of fractalkine. Crit Care Med 2012; 40(11): 3026-33.
[http://dx.doi.org/10.1097/CCM.0b013e31825fd7da] [PMID: 22926332]
[187]
Widlansky ME, Hamburg NM, Anter E, et al. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr 2007; 26(2): 95-102.
[http://dx.doi.org/10.1080/07315724.2007.10719590] [PMID: 17536120]
[188]
Kim JH, Auger C, Schini-Kerth VB. Activation of eNOS by polyphenol-rich products and polyphenolic compounds. Curr Pharm Des 2014; 20(22): 3521-9.
[http://dx.doi.org/10.2174/13816128113196660751] [PMID: 24180384]
[189]
Qin CY, Zhang HW, Gu J, et al. Mitochondrial DNAinduced inflammatory damage contributes to myocardial ischemia reperfusion injury in rats: Cardioprotective role of epigallocatechin. Mol Med Rep 2017; 16(5): 7569-76.
[http://dx.doi.org/10.3892/mmr.2017.7515] [PMID: 28944842]
[190]
Chen WC, Hsieh SR, Chiu CH, Hsu BD, Liou YM. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. J Biomed Sci 2014; 21: 56.
[http://dx.doi.org/10.1186/1423-0127-21-56] [PMID: 24913014]
[191]
Zeng X, Tan X. Epigallocatechin-3-gallate and zinc provide anti-apoptotic protection against hypoxia/reoxygenation injury in H9c2 rat cardiac myoblast cells. Mol Med Rep 2015; 12(2): 1850-6.
[http://dx.doi.org/10.3892/mmr.2015.3603] [PMID: 25872640]
[192]
Othman AI, Elkomy MM, El-Missiry MA, Dardor M. Epigallocatechin-3-gallate prevents cardiac apoptosis by modulating the intrinsic apoptotic pathway in isoproterenol-induced myocardial infarction. Eur J Pharmacol 2017; 794: 27-36.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.014] [PMID: 27864105]
[193]
Chekalina NI, Shut SV, Trybrat TA, et al. Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease. Wiad Lek 2017; 70(4): 707-11.
[PMID: 29064791]
[194]
Dong LY, Chen F, Xu M, et al. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am J Transl Res 2018; 10: 1273-83.
[195]
Liu X, Yu Z, Huang X, et al. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am J Transl Res 2016; 8: 5169-86.
[196]
Wan LL, Xia J, Ye D, Liu J, Chen J, Wang G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc Ther 2009; 27(1): 28-33.
[http://dx.doi.org/10.1111/j.1755-5922.2009.00071.x] [PMID: 19207477]
[197]
Li C, Zhang WJ, Frei B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol 2016; 9: 104-13.
[http://dx.doi.org/10.1016/j.redox.2016.06.006] [PMID: 27454768]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 22
Year: 2019
Page: [2443 - 2458]
Pages: 16
DOI: 10.2174/1381612825666190722100504
Price: $65

Article Metrics

PDF: 49
HTML: 11