Highly Significant Scaffolds to Design and Synthesis Cholinesterase Inhibitors as Anti-Alzheimer Agents

Author(s): Yaghoub Pourshojaei*, Khalil Eskandari*, Ali Asadipour

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 19 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Alzheimer, a progressive disease, is a common term for memory loss which interferes with daily life through severe influence on cognitive abilities. Based on the cholinergic hypothesis, and Xray crystallographic determination of the structure of acetylcholinesterase (AChE) enzyme, the level of acetylcholine (ACh, an important neurotransmitter associated with memory) in the hippocampus and cortex area of the brain has a direct effect on Alzheimer. This fact encourages scientists to design and synthesize a wide range of acetylcholinesterase inhibitors (AChEIs) to control the level of ACh in the brain, keeping in view the crystallographic structure of AChE enzyme and drugs approved by the Food and Drug Administration (FDA).

AChEIs have slightly diverse pharmacological properties, but all of them work by inhibiting the segregation of ACh by blocking AChE. We reviewed significant scaffolds introduced as AChEIs. In some studies, the activity against butyrylcholinesterase (BuChE) has been evaluated as well because BuChE is a similar enzyme to neuronal acetylcholinesterase and is capable of hydrolyzing ACh. In order to study AChEIs effectively, we divided them structurally into 12 classes and briefly explained effective AChEIs and compared their activities against AChE enzyme.

Keywords: Cholinesterase inhibitors, design, synthesis, dementia, Alzheimer disease, acetylcholine.

[1]
Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res., 2011, 221(2), 334-340.
[http://dx.doi.org/10.1016/j.bbr.2009.12.044] [PMID: 20060018]
[2]
Lopez, C.M.; Battaini, F.; Govoni, S.; Lograno, M.D.; Trabucchi, M. Action of a cholinomimetic drug on passive avoidance and brain acethylcholine levels in rats. Pharmacol. Res., 1990, 22, 275.
[http://dx.doi.org/10.1016/S1043-6618(09)80307-1]
[3]
Branduardi, D.; Gervasio, F.L.; Cavalli, A.; Recanatini, M.; Parrinello, M. The role of the peripheral anionic site and cation-π interactions in the ligand penetration of the human AChE gorge. J. Am. Chem. Soc., 2005, 127(25), 9147-9155.
[http://dx.doi.org/10.1021/ja0512780] [PMID: 15969593]
[4]
Alvarado, W.; Bremer, P.L.; Choy, A.; Dinh, H.N.; Eung, A.; Gonzalez, J.; Ly, P.; Tran, T.; Nakayama, K.; Schwans, J.P.; Sorin, E.J. Understanding the enzyme-ligand complex: Insights from all-atom simulations of butyrylcholinesterase inhibition. J. Biomol. Struct. Dyn., 2019, 1-14.
[http://dx.doi.org/10.1080/07391102.2019.1596836] [PMID: 30909811]
[5]
Sang, Z.; Wang, K.; Wang, H.; Yu, L.; Wang, H.; Ma, Q.; Ye, M.; Han, X.; Liu, W. Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine Oxidase-B inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2017, 27(22), 5053-5059.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.055] [PMID: 29033232]
[6]
Luo, Z.; Liang, L.; Sheng, J.; Pang, Y.; Li, J.; Huang, L.; Li, X. Synthesis and biological evaluation of a new series of ebselen derivatives as Glutathione Peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem., 2014, 22(4), 1355-1361.
[http://dx.doi.org/10.1016/j.bmc.2013.12.066] [PMID: 24461494]
[7]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430(7000), 631-639.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[8]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[9]
Gouras, G.K.; Tsai, J.; Naslund, J.; Vincent, B.; Edgar, M.; Checler, F.; Greenfield, J.P.; Haroutunian, V.; Buxbaum, J.D.; Xu, H.; Greengard, P.; Relkin, N.R. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol., 2000, 156(1), 15-20.
[http://dx.doi.org/10.1016/S0002-9440(10)64700-1] [PMID: 10623648]
[10]
Trushina, E.; McMurray, C.T. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience, 2007, 145(4), 1233-1248.
[http://dx.doi.org/10.1016/j.neuroscience.2006.10.056] [PMID: 17303344]
[11]
Palop, J.J.; Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci., 2010, 13(7), 812-818.
[http://dx.doi.org/10.1038/nn.2583] [PMID: 20581818]
[12]
Terry, A.V., Jr; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306(3), 821-827.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[13]
World Alzheimer Report, 2016 September
[14]
Eskandari, K.; Karami, B.; Khodabakhshi, S. An unexpected catalytic synthesis of novel and known Bis(Pyrazolyl) methanes by the use of α-Aryl-N-Phenyl nitrones in aqueous media. J. Chem. Res., 2014, 38(1), 600-603.
[http://dx.doi.org/10.3184/174751914X14114871789226]
[15]
Asadipour, A.; Shams, Z.; Eskandari, K.; Moshafi, M.H.; Faghih-Mirzaei, E.; Pourshojaei, Y. Efficient, Straightforward, Catalyst-free synthesis of medicinally important S-Alkyl/Benzyl Dithiocarbamates under green conditions. Res. Chem. Intermed., 2018, 44(1), 1295-1304.
[http://dx.doi.org/10.1007/s11164-017-3167-1]
[16]
Asadipour, A.; Pourshojaei, Y.; Eskandari, K.; Foroumadi, A. A short synthesis of 7-Amino alkoxy homoisoflavonoides. RSC Adv, 2017, 7(1), 44680-44687.
[http://dx.doi.org/10.1039/C7RA08990B]
[17]
Eskandari, K.; Karami, B.; Pourshojaei, Y.; Asadipour, A. An Eco-Compatible, Three-Component Synthesis of Acyl-Substituted Bis(Pyrazolyl)Methanes by employing recyclable silica sodium carbonate as an efficient and environmentally benign catalyst in aqueous medium. Monatsh. Chem., 2018, 149(6), 1075-1081.
[http://dx.doi.org/10.1007/s00706-017-2106-6]
[18]
Rahmani-Nezhad, S.; Khosravani, L.; Saeedi, M.; Divsalar, K.; Firoozpour, L.; Pourshojaei, Y.; Sarrafi, Y.; Nadri, H.; Moradi, A.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Synthesis and evaluation of Coumarin-Resveratrol hybrids as 15-Lipoxygenaze inhibitors. Synth. Commun., 2015, 45(6), 751-759.
[http://dx.doi.org/10.1080/00397911.2014.979947]
[19]
Mehrabi, F.; Pourshojaei, Y.; Moradi, A.; Sharifzadeh, M.; Khosravani, L.; Sabourian, R.; Rahmani-Nezhad, S.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Asadipour, A.; Rahimi, H.R.; Moghimi, S.; Foroumadi, A. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med. Chem., 2017, 9(7), 659-671.
[http://dx.doi.org/10.4155/fmc-2016-0237] [PMID: 28485614]
[20]
Korábečný, J.; Nepovimová, E.; Cikánková, T.; Špilovská, K.; Vašková, L.; Mezeiová, E.; Kuča, K.; Hroudová, J. Newly developed drugs for Alzheimer’s Disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience, 2018, 370(1), 191-206.
[http://dx.doi.org/10.1016/j.neuroscience.2017.06.034] [PMID: 28673719]
[21]
Villalobos, A.; Butler, T.W.; Chapin, D.S.; Chen, Y.L.; DeMattos, S.B.; Ives, J.L.; Jones, S.B.; Liston, D.R.; Nagel, A.A.; Nason, D.M.; Nielsen, J.A.; Ramirez, A.D.; Shalaby, I.A.; White, W.F. 5,7-dihydro-3-[2-[1-(phenylmethyl)-4-piperidinyl] ethyl]-6H- pyrrolo[3,2-f]-1,2-benzisoxazol-6-one: A potent and centrally-selective inhibitor of acetylcholinesterase with an improved margin of safety. J. Med. Chem., 1995, 38(15), 2802-2808.
[http://dx.doi.org/10.1021/jm00015a002] [PMID: 7636841]
[22]
Villalobos, A.; Blake, J.F.; Biggers, C.K.; Butler, T.W.; Chapin, D.S.; Chen, Y.L.; Ives, J.L.; Jones, S.B.; Liston, D.R.; Nagel, A.A.; Nason, D.M.; Nielsen, J.A.; Shalaby, I.A.; White, W.F. Novel benzisoxazole derivatives as potent and selective inhibitors of acetylcholinesterase. J. Med. Chem., 1994, 37(17), 2721-2734.
[http://dx.doi.org/10.1021/jm00043a012] [PMID: 8064800]
[23]
Sağlık, B.N.; Ilgın, S.; Özkay, Y. Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. Eur. J. Med. Chem., 2016, 124(1), 1026-1040.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.042] [PMID: 27783974]
[24]
Guzior, N.; Bajda, M.; Skrok, M.; Kurpiewska, K.; Lewiński, K.; Brus, B.; Pišlar, A.; Kos, J.; Gobec, S.; Malawska, B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur. J. Med. Chem., 2015, 92(2), 738-749.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.027] [PMID: 25621991]
[25]
Guzior, N.; Bajda, M.; Rakoczy, J.; Brus, B.; Gobec, S.; Malawska, B. Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer’s agents. Bioorg. Med. Chem., 2015, 23(7), 1629-1637.
[http://dx.doi.org/10.1016/j.bmc.2015.01.045] [PMID: 25707322]
[26]
Rizzo, S.; Bartolini, M.; Ceccarini, L.; Piazzi, L.; Gobbi, S.; Cavalli, A.; Recanatini, M.; Andrisano, V.; Rampa, A. Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg. Med. Chem., 2010, 18(5), 1749-1760.
[http://dx.doi.org/10.1016/j.bmc.2010.01.071] [PMID: 20171894]
[27]
van Greunen, D.G.; Cordier, W.; Nell, M.; van der Westhuyzen, C.; Steenkamp, V.; Panayides, J.L.; Riley, D.L. Targeting Alzheimer’s disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil. Eur. J. Med. Chem., 2017, 127(1), 671-690.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.036] [PMID: 27823887]
[28]
Sheng, R.; Lin, X.; Li, J.; Jiang, Y.; Shang, Z.; Hu, Y. Design, synthesis, and evaluation of 2-phenoxy-indan-1-one derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(17), 3834-3837.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.132] [PMID: 15993600]
[29]
Sabolová, D.; Kristian, P.; Kožurková, M. Multifunctional properties of novel tacrine congeners: Cholinesterase inhibition and cytotoxic activity. J. Appl. Toxicol., 2018, 38(11), 1377-1387.
[http://dx.doi.org/10.1002/jat.3622] [PMID: 29624715]
[30]
Rosini, M.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L.; Hrelia, P.; Minarini, A.; Tarozzi, A.; Melchiorre, C. Rational approach to discover multipotent anti-Alzheimer drugs. J. Med. Chem., 2005, 48(2), 360-363.
[http://dx.doi.org/10.1021/jm049112h] [PMID: 15658850]
[31]
Camps, P.; Formosa, X.; Muñoz-Torrero, D.; Petrignet, J.; Badia, A.; Clos, M.V. Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: Subnanomolar dual binding site acetylcholinesterase inhibitors. J. Med. Chem., 2005, 48(6), 1701-1704.
[http://dx.doi.org/10.1021/jm0496741] [PMID: 15771413]
[32]
Li, G.; Hong, G.; Li, X.; Zhang, Y.; Xu, Z.; Mao, L.; Feng, X.; Liu, T. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids. Eur. J. Med. Chem., 2018, 148(1), 238-254.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.028] [PMID: 29466774]
[33]
Chioua, M.; Pérez-Peña, J.; García-Font, N.; Moraleda, I.; Iriepa, I.; Soriano, E.; Marco-Contelles, J.; Oset-Gasque, M.J. Pyranopyrazolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer’s disease. Future Med. Chem., 2015, 7(7), 845-855.
[http://dx.doi.org/10.4155/fmc.15.41] [PMID: 26061104]
[34]
de Aquino, R.A.N.; Modolo, L.V.; Alves, R.B.; de Fátima, Â. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org. Biomol. Chem., 2013, 11(48), 8395-8409.
[http://dx.doi.org/10.1039/c3ob41762j] [PMID: 24186541]
[35]
Cherif, O.; Allouche, F.; Chabchoub, F.; Chioua, M.; Soriano, E.; Yañez, M.; Cacabelos, R.; Romero, A.; López, M.G.; Marco-Contelles, J. Isoxazolotacrines as non-toxic and selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Future Med. Chem., 2014, 6(17), 1883-1891.
[http://dx.doi.org/10.4155/fmc.14.115] [PMID: 25495982]
[36]
Samadi, A.; de los Ríos, C.; Bolea, I.; Chioua, M.; Iriepa, I.; Moraleda, I.; Bartolini, M.; Andrisano, V.; Gálvez, E.; Valderas, C.; Unzeta, M.; Marco-Contelles, J. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer’s disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur. J. Med. Chem., 2012, 52(1), 251-262.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.022] [PMID: 22503231]
[37]
Khodabakhshi, S.; Karami, B.; Eskandari, K. One-Pot Synthesis of Novel Pyrano-Fused Coumarins Catalyzed by Zinc Oxide Nanoparticles. Heterocycles, 2014, 89(1), 1670-1677.
[http://dx.doi.org/10.3987/COM-14-13006]
[38]
Eskandari, K.; Karami, B.; Khodabakhshi, S.; Farahi, M. A Highly efficient tandem knoevenagel/michael reaction using mohr’s salt hexahydrate as a green and powerful catalyst: Selective synthesis of benzylpyrazolocoumarins on water. J. Chin. Chem. Soc. (Taipei), 2015, 62(6), 473-478.
[http://dx.doi.org/10.1002/jccs.201400283]
[39]
Karami, B.; Eskandari, K.; Zare, Z.; Gholipour, S. A new access to 1,8-Dioxooctahydroxanthenes using Yttrium(III) Nitrate Hexahydrate and Tin(II) Chloride Dihydrate as effective and reusable catalysts. Chem. Heterocycl. Compd., 2014, 49(6), 1715-1722.
[http://dx.doi.org/10.1007/s10593-014-1423-5]
[40]
Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Homayouni Moghadam, F.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b] quinoline-3-carboxylates. Eur. J. Med. Chem., 2017, 128(2), 237-246.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.042] [PMID: 28189905]
[41]
Liu, Z.; Fang, L.; Zhang, H.; Gou, S.; Chen, L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem., 2017, 25(8), 2387-2398.
[http://dx.doi.org/10.1016/j.bmc.2017.02.049] [PMID: 28302511]
[42]
Boulebd, H.; Ismaili, L.; Martin, H.; Bonet, A.; Chioua, M.; Marco Contelles, J.; Belfaitah, A. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease. Future Med. Chem., 2017, 9(8), 723-729.
[http://dx.doi.org/10.4155/fmc-2017-0019] [PMID: 28485637]
[43]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125(3), 1200-1212.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.008] [PMID: 27863370]
[44]
Butini, S.; Guarino, E.; Campiani, G.; Brindisi, M.; Coccone, S.S.; Fiorini, I.; Novellino, E.; Belinskaya, T.; Saxena, A.; Gemma, S. Tacrine based human cholinesterase inhibitors: synthesis of peptidic-tethered derivatives and their effect on potency and selectivity. Bioorg. Med. Chem. Lett., 2008, 18(19), 5213-5216.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.076] [PMID: 18786825]
[45]
Ramsay, R.R.; Tipton, K.F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules, 2017, 22(7), 1-46.
[http://dx.doi.org/10.3390/molecules22071192] [PMID: 28714881]
[46]
Strelnik, A.D.; Petukhov, A.S.; Zueva, I.V.; Zobov, V.V.; Petrov, K.A.; Nikolsky, E.E.; Balakin, K.V.; Bachurin, S.O.; Shtyrlin, Y.G. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile. Bioorg. Med. Chem. Lett., 2016, 26(16), 4092-4094.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.070] [PMID: 27377327]
[47]
Więckowska, A.; Bajda, M.; Guzior, N.; Malawska, B. Novel alkyl- and arylcarbamate derivatives with N-benzylpiperidine and N-benzylpiperazine moieties as cholinesterases inhibitors. Eur. J. Med. Chem., 2010, 45(12), 5602-5611.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.010] [PMID: 20926161]
[48]
J.C., Verheijen J.C.; Wiig, K.A.; Du, S.; Connors, S.L.; Martin, A.N.; Ferreira, J.P.; Slepnev, V.I.; Kochendörfer, U. Novel carbamate cholinesterase inhibitors that release biologically active amines following enzyme inhibition. Bioorg. Med. Chem. Lett., 2009, 19(12), 3243-3246.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.089] [PMID: 19423342]
[49]
Mustazza, C.; Borioni, A.; Del Giudice, M.R.; Gatta, F.; Ferretti, R.; Meneguz, A.; Volpe, M.T.; Lorenzini, P. Synthesis and cholinesterase activity of phenylcarbamates related to Rivastigmine, a therapeutic agent for Alzheimer’s disease. Eur. J. Med. Chem., 2002, 37(2), 91-109.
[http://dx.doi.org/10.1016/S0223-5234(01)01324-1] [PMID: 11858843]
[50]
Weinstock, M.; Goren, T.; Youdim, M.B.H. Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer’s Disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev. Res., 2000, 50(3-4), 216-222.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<216:AID-DDR4>3.0.CO;2-Z]
[51]
Kogen, H.; Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; Yamada, N.; Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.; Kaneko, T. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer’s disease. Org. Lett., 2002, 4(20), 3359-3362.
[http://dx.doi.org/10.1021/ol026418e] [PMID: 12323018]
[52]
Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci., 2018, 10(1), 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003] [PMID: 29483867]
[53]
Xie, Q.; Wang, H.; Xia, Z.; Lu, M.; Zhang, W.; Wang, X.; Fu, W.; Tang, Y.; Sheng, W.; Li, W.; Zhou, W.; Zhu, X.; Qiu, Z.; Chen, H. Bis-(-)-nor-meptazinols as novel nanomolar cholinesterase inhibitors with high inhibitory potency on amyloid-β aggregation. J. Med. Chem., 2008, 51(7), 2027-2036.
[http://dx.doi.org/10.1021/jm070154q] [PMID: 18333606]
[54]
Feng, S.; Wang, Z.; He, X.; Zheng, S.; Xia, Y.; Jiang, H.; Tang, X.; Bai, D.; Bis-Huperzine, B. Bis-huperzine B: Highly potent and selective acetylcholinesterase inhibitors. J. Med. Chem., 2005, 48(3), 655-657.
[http://dx.doi.org/10.1021/jm0496178] [PMID: 15689148]
[55]
Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem., 2016, 24(18), 4464-4469.
[http://dx.doi.org/10.1016/j.bmc.2016.07.043] [PMID: 27492195]
[56]
Brunhofer, G.; Fallarero, A.; Karlsson, D.; Batista-Gonzalez, A.; Shinde, P.; Gopi Mohan, C.; Vuorela, P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem., 2012, 20(22), 6669-6679.
[http://dx.doi.org/10.1016/j.bmc.2012.09.040] [PMID: 23062825]
[57]
Zaheer-ul-haq. Wellenzohn, B.; Liedl, K.R.; Rode, B.M. Molecular docking studies of natural Cholinesterase-Inhibiting steroidal alkaloids from sarcococca s aligna. J. Med. Chem., 2003, 46(1), 5087-5090.
[http://dx.doi.org/10.1021/jm0309194] [PMID: 14584959]
[58]
Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M.L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; Melchiorre, C.; Rosini, M.; Cavalli, A. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem., 2012, 55(22), 9708-9721.
[http://dx.doi.org/10.1021/jm3009458] [PMID: 23033965]
[59]
Otto, R.; Penzis, R.; Gaube, F.; Adolph, O.; Föhr, K.J.; Warncke, P.; Robaa, D.; Appenroth, D.; Fleck, C.; Enzensperger, C.; Lehmann, J.; Winckler, T. Evaluation of homobivalent carbolines as designed multiple ligands for the treatment of neurodegenerative disorders. J. Med. Chem., 2015, 58(16), 6710-6715.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00958] [PMID: 26278660]
[60]
Esteban, G.; Allan, J.; Samadi, A.; Mattevi, A.; Unzeta, M.; Marco-Contelles, J.; Binda, C.; Ramsay, R.R. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1844(6), 1104-1110.
[http://dx.doi.org/10.1016/j.bbapap.2014.03.006] [PMID: 24642166]
[61]
Passos, C.S.; Simões-Pires, C.A.; Nurisso, A.; Soldi, T.C.; Kato, L.; de Oliveira, C.M.A.; de Faria, E.O.; Marcourt, L.; Gottfried, C.; Carrupt, P.A.; Henriques, A.T. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors. Phytochemistry, 2013, 86(1), 8-20.
[http://dx.doi.org/10.1016/j.phytochem.2012.11.015] [PMID: 23261030]
[62]
Esteban, G.; Bolea, I.; Sun, P.; Solé, M.; Samadi, A.; Marco-Contelles, J.; Unzeta, M. A therapeutic approach to cerebrovascular diseases based on indole substituted hydrazides and hydrazines able to interact with human vascular adhesion protein-1, monoamine oxidases (A and B), AChE and BuChE. J. Neural Transm. (Vienna), 2013, 120(6), 911-918.
[http://dx.doi.org/10.1007/s00702-012-0949-x] [PMID: 23263540]
[63]
Filali, I.; Bouajila, J.; Znati, M.; Bousejra-El Garah, F.; Ben Jannet, H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 371-376.
[http://dx.doi.org/10.3109/14756366.2014.940932] [PMID: 25068731]
[64]
Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; Marco-Contelles, J. Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 75(5), 82-95.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.028] [PMID: 24530494]
[65]
Rosini, M.; Simoni, E.; Bartolini, M.; Soriano, E.; Marco-Contelles, J.; Andrisano, V.; Monti, B.; Windisch, M.; Hutter-Paier, B.; McClymont, D.W.; Mellor, I.R.; Bolognesi, M.L. The bivalent ligand approach as a tool for improving the in vitro anti-Alzheimer multitarget profile of dimebon. ChemMedChem, 2013, 8(8), 1276-1281.
[http://dx.doi.org/10.1002/cmdc.201300263] [PMID: 23824986]
[66]
Gupta, S.; Mohan, C.G. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening. Biomed Res. Int, 2014, 2014
[http://dx.doi.org/10.1155/2014/291214]
[67]
Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol., 2009, 175(6), 2557-2565.
[http://dx.doi.org/10.2353/ajpath.2009.090417] [PMID: 19893028]
[68]
Bal, R.; Tada, M.; Sasaki, T.; Iwasawa, Y. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed. Engl., 2006, 45(3), 448-452.
[http://dx.doi.org/10.1002/anie.200502940] [PMID: 16323233]
[69]
Hashmi, A.S.K.; Hengst, T.; Lothschütz, C.; Rominger, F. New and easily accessible nitrogen acyclic gold(I) carbenes: Structure and application in the gold-catalyzed phenol synthesis as well as the hydration of alkynes. Adv. Synth. Catal., 2010, 352(8), 1315-1337.
[http://dx.doi.org/10.1002/adsc.201000126]
[70]
Abdul Wahab, S.M.; Sivasothy, Y.; Liew, S.Y.; Litaudon, M.; Mohamad, J.; Awang, K. Natural cholinesterase inhibitors from Myristica cinnamomea King. Bioorg. Med. Chem. Lett., 2016, 26(15), 3785-3792.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.046] [PMID: 27236720]
[71]
Yu, L.; Cao, R.; Yi, W.; Yan, Q.; Chen, Z.; Ma, L.; Peng, W.; Song, H. Synthesis of 4-[(diethylamino)methyl]-phenol derivatives as novel cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorg. Med. Chem. Lett., 2010, 20(11), 3254-3258.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.059] [PMID: 20452769]
[72]
Xu, W.; Wang, X.B.; Wang, Z.M.; Wu, J.J.; Li, F.; Wang, J.; Kong, L.Y. Synthesis and evaluation of Donepezil-Ferulic Acid hybrids as Multi-Target-Directed ligands against Alzheimer’s disease. MedChemComm, 2016, 7(2), 990-998.
[http://dx.doi.org/10.1039/C6MD00053C]
[73]
Chung, P.Y.; Bian, Z.X.; Pun, H.Y.; Chan, D.; Chan, A.S.C.; Chui, C.H.; Tang, J.C.O.; Lam, K.H. Recent advances in research of natural and synthetic bioactive quinolines. Future Med. Chem., 2015, 7(7), 947-967.
[http://dx.doi.org/10.4155/fmc.15.34] [PMID: 26061110]
[74]
Tian, X.R.; Tang, H.F.; Tian, X.L.; Hu, J.J.; Huang, L.L.; Gustafson, K.R. Review of bioactive secondary metabolites from marine bryozoans in the progress of new drugs discovery. Future Med. Chem., 2018, 10(12), 1497-1514.
[http://dx.doi.org/10.4155/fmc-2018-0012] [PMID: 29788787]
[75]
Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A.J.; Pawlowski, M.; Wesolowska, A. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: novel antipsychotic agents? Future Med. Chem., 2014, 6(1), 57-75.
[http://dx.doi.org/10.4155/fmc.13.158] [PMID: 24358948]
[76]
Li, Y.P.; Ning, F.X.; Yang, M.B.; Li, Y.C.; Nie, M.H.; Ou, T.M.; Tan, J.H.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Syntheses and characterization of novel oxoisoaporphine derivatives as dual inhibitors for cholinesterases and amyloid beta aggregation. Eur. J. Med. Chem., 2011, 46(5), 1572-1581.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.005] [PMID: 21367493]
[77]
Park, B.; Nam, J.H.; Kim, J.H.; Kim, H.J.; Onnis, V.; Balboni, G.; Lee, K.T.; Park, J.H.; Catto, M.; Carotti, A.; Lee, J.Y. 3,4-Dihydroquinazoline derivatives inhibit the activities of cholinesterase enzymes. Bioorg. Med. Chem. Lett., 2017, 27(5), 1179-1185.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.068] [PMID: 28189420]
[78]
Samadi, A.; Chioua, M.; Bolea, I.; de Los Ríos, C.; Iriepa, I.; Moraleda, I.; Bastida, A.; Esteban, G.; Unzeta, M.; Gálvez, E.; Marco-Contelles, J. Synthesis, biological assessment and molecular modeling of new multipotent MAO and cholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2011, 46(9), 4665-4668.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.048] [PMID: 21669479]
[79]
Tomassoli, I.; Ismaili, L.; Pudlo, M.; de Los Ríos, C.; Soriano, E.; Colmena, I.; Gandía, L.; Rivas, L.; Samadi, A.; Marco-Contelles, J.; Refouvelet, B. Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists. Eur. J. Med. Chem., 2011, 46(1), 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.054] [PMID: 21111515]
[80]
Kumar, J.; Meena, P.; Singh, A.; Jameel, E.; Maqbool, M.; Mobashir, M.; Shandilya, A.; Tiwari, M.; Hoda, N.; Jayaram, B. Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur. J. Med. Chem., 2016, 119, 260-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.053] [PMID: 27227482]
[81]
Wei, S.; Chen, W.; Qin, J.; Huangli, Y.; Wang, L.; Shen, Y.; Tang, H. Multitarget-directed oxoisoaporphine derivatives: Anti-acetylcholinesterase, anti-β-amyloid aggregation and enhanced autophagy activity against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(22), 6031-6039.
[http://dx.doi.org/10.1016/j.bmc.2016.09.061] [PMID: 27720328]
[82]
Wu, M.Y.; Esteban, G.; Brogi, S.; Shionoya, M.; Wang, L.; Campiani, G.; Unzeta, M.; Inokuchi, T.; Butini, S.; Marco-Contelles, J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem., 2016, 121(5), 864-879.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.001] [PMID: 26471320]
[83]
Eskandari, K.; Rafieian-Kopaei, M. Synthesis of 5,6-Dihydro-2H-Pyran-2-Ones (Microreview). Chem. Heterocycl. Compd., 2016, 52(1), 158-160.
[http://dx.doi.org/10.1007/s10593-016-1853-3]
[84]
Farahi, M.; Karami, B.; Jokar, A.; Eskandari, K. An environmentally benign synthesis of pyrimidine-fused coumarin and triazole motifs via a catalytic domino reaction. Org. Prep. Proced. Int., 2017, 49(6), 514-524.
[http://dx.doi.org/10.1080/00304948.2017.1380495]
[85]
Eskandari, K.; Khodabakhshi, S. An eco-friendly solvent-free synthesis of trisubstituted methane derivatives catalyzed by magnetic iron oxide nanoparticles as a highly efficient and recyclable catalyst. Lett. Org. Chem., 2018, 15(6), 463-471.
[http://dx.doi.org/10.2174/1570178614666170621095045]
[86]
Eskandari, K.; Karami, B.; Farahi, M.; Mouzari, V. Silica sodium carbonate catalyzed in water synthesis of novel Benzylbarbiturocoumarin derivatives. Tetrahedron Lett., 2016, 57(4), 487-491.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.065]
[87]
Karami, B.; Khodabakhshi, S.; Eskandari, K. A new application of Mohr’s Salt as a cheap and powerful catalyst for synthesis of novel pyranocoumarins. Lett. Org. Chem., 2013, 10(2), 105-110.
[http://dx.doi.org/10.2174/1570178611310020007]
[88]
Eskandari, K.; Karami, B. Graphene Oxide Nanosheets-Catalyzed synthesis of novel Benzylbarbiturocoumarin derivatives under green conditions. Monatsh. Chem., 2016, 147(12), 2119-2126.
[http://dx.doi.org/10.1007/s00706-016-1724-8]
[89]
Pourshojaei, Y.; Jadidi, M.H.; Eskandari, K.; Foroumadi, A.; Asadipour, A. An Eco-Friendly synthesis of 4-Aryl-Substituted pyrano-fuzed coumarins as potential pharmacological active heterocycles using molybdenum oxide nanoparticles as an effective and recyclable catalyst. Res. Chem. Intermed., 2018, 44(7), 4195-4212.
[http://dx.doi.org/10.1007/s11164-018-3363-7]
[90]
Matos, M.J.; Janeiro, P.; González Franco, R.M.; Vilar, S.; Tatonetti, N.P.; Santana, L.; Uriarte, E.; Borges, F.; Fontenla, J.A.; Viña, D. Synthesis, pharmacological study and docking calculations of new benzo[f]coumarin derivatives as dual inhibitors of enzymatic systems involved in neurodegenerative diseases. Future Med. Chem., 2014, 6(4), 371-383.
[http://dx.doi.org/10.4155/fmc.14.9] [PMID: 24635520]
[91]
Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77(1), 311-319.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.013] [PMID: 29421707]
[92]
Alipour, M.; Khoobi, M.; Moradi, A.; Nadri, H.; Homayouni Moghadam, F.; Emami, S.; Hasanpour, Z.; Foroumadi, A.; Shafiee, A. Synthesis and anti-cholinesterase activity of new 7-hydroxycoumarin derivatives. Eur. J. Med. Chem., 2014, 82(2), 536-544.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.056] [PMID: 24941128]
[93]
Joubert, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125(2), 853-864.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.041] [PMID: 27744252]
[94]
Viña, D.; Matos, M.J.; Yáñez, M.; Santana, L.; Uriarte, E. 3-Substituted Coumarins as Dual Inhibitors of AChE and MAO for the Treatment of Alzheimer’s Disease. MedChemComm, 2012, 3(2), 213-218.
[http://dx.doi.org/10.1039/C1MD00221J]
[95]
Wang, Z.M.; Li, X.M.; Xue, G.M.; Xu, W.; Wang, X.B.; Kong, L.Y. Synthesis and evaluation of 6-Substituted 3-Arylcoumarin derivatives as multifunctional Acetylcholinesterase/Monoamine Oxidase B dual inhibitors for the treatment of Alzheimer’s Disease. RSC Advances, 2015, 5(2), 104122-104137.
[http://dx.doi.org/10.1039/C5RA22296F]
[96]
Pisani, L.; Farina, R.; Soto-Otero, R.; Denora, N.; Mangiatordi, G.F.; Nicolotti, O.; Mendez-Alvarez, E.; Altomare, C.D.; Catto, M.; Carotti, A. Searching for Multi-Targeting Neurotherapeutics against Alzheimer’s: Discovery of potent AChE-MAO B inhibitors through the decoration of the 2H-Chromen-2-one structural motif. Molecules, 2016, 21(3), 362.
[http://dx.doi.org/10.3390/molecules21030362] [PMID: 26999091]
[97]
Knez, D.; Sova, M.; Košak, U.; Gobec, S. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer’s disease. Future Med. Chem., 2017, 9(8), 811-832.
[http://dx.doi.org/10.4155/fmc-2017-0036] [PMID: 28504893]
[98]
Halimehjani, A.Z.; Pourshojaei, Y.; Saidi, M.R. Highly efficient and Catalyst-Free synthesis of unsymmetrical thioureas under Solvent-Free conditions. Tetrahedron Lett., 2009, 50(6), 32-34.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.063]
[99]
Saidi, M.R.; Pourshojaei, Y.; Aryanasab, F. Highly efficient michael addition reaction of amines catalyzed by Silica-Supported Aluminum Chloride. Synth. Commun., 2009, 39(5), 1109-1119.
[http://dx.doi.org/10.1080/00397910802499559]
[100]
Pourshojaei, Y.; Nikzad, M.; Eskandari, K.; Darijani, M-H.; Hassanzadeh, A.; Faghih-Mirzaei, E.; Asadipour, A. Ultrasound-Assisted and efficient knoevenagel condensation reaction catalyzed by silica sodium carbonate nanoparticles. Croat. Chem. Acta, 2018, 91(1), 19-28.
[http://dx.doi.org/10.5562/cca3261]
[101]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and Pharmacological Properties of Chalcones: A review. Res. Chem. Intermed., 2017, 43(1), 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[102]
Rao, V.; Kiran, S.; Rohini, P.; Bhagyasree, P. Flavonoid: A Review on Naringenin. J. Pharmacogn. Phytochem., 2017, 6, 2778-2783.
[103]
Teles, Y.C.F.; Souza, M.S.R.; Souza, M.F.V. Sulphated Flavonoids: Biosynthesis, Structures, and Biological activities. Molecules, 2018, 23(2), 23.
[http://dx.doi.org/10.3390/molecules23020480] [PMID: 29473839]
[104]
Farina, R.; Pisani, L.; Catto, M.; Nicolotti, O.; Gadaleta, D.; Denora, N.; Soto-Otero, R.; Mendez-Alvarez, E.; Passos, C.S.; Muncipinto, G.; Altomare, C.D.; Nurisso, A.; Carrupt, P.A.; Carotti, A. Structure-Based Design and optimization of multitarget-directed 2H-Chromen-2-one Derivatives as potent inhibitors of monoamine oxidase B and cholinesterases. J. Med. Chem., 2015, 58(14), 5561-5578.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00599] [PMID: 26107513]
[105]
Luo, W.; Chen, Y.; Wang, T.; Hong, C.; Chang, L.P.; Chang, C.C.; Yang, Y.C.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorg. Med. Chem., 2016, 24(4), 672-680.
[http://dx.doi.org/10.1016/j.bmc.2015.12.031] [PMID: 26752094]
[106]
Leong, S.W.; Abas, F.; Lam, K.W.; Shaari, K.; Lajis, N.H. 2-Benzoyl-6-benzylidenecyclohexanone analogs as potent dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2016, 24(16), 3742-3751.
[http://dx.doi.org/10.1016/j.bmc.2016.06.016] [PMID: 27328658]
[107]
Wang, L.; Wang, Y.; Tian, Y.; Shang, J.; Sun, X.; Chen, H.; Wang, H.; Tan, W. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 360-371.
[http://dx.doi.org/10.1016/j.bmc.2016.11.002] [PMID: 27856236]
[108]
Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Ertürk, F.; Yencilek, B.; Taslimi, P.; Gülçin, İ.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem., 2018, 124(1), 61-68.
[http://dx.doi.org/10.1080/13813455.2017.1360914] [PMID: 28792233]
[109]
Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Zheng, Y.; Cao, Z.; Sang, Z.; Su, F.; Deng, Y. Multitarget drug design strategy against Alzheimer’s disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg. Med. Chem., 2017, 25(2), 714-726.
[http://dx.doi.org/10.1016/j.bmc.2016.11.048] [PMID: 27923535]
[110]
Wang, Y.; Sun, Y.; Guo, Y.; Wang, Z.; Huang, L.; Li, X. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 389-397.
[PMID: 25798687]
[111]
Panek, D.; Wichur, T.; Godyń, J.; Pasieka, A.; Malawska, B. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med. Chem., 2017, 9(15), 1835-1854.
[http://dx.doi.org/10.4155/fmc-2017-0094] [PMID: 28925729]
[112]
Asif, M. Mini review on important biological properties of benzofuran derivatives. J. Anal. Pharm. Res, 2016, 3
[113]
Karami, B.; Khodabakhshi, S.; Eskandari, K. Regiospecific synthesis of Novel Furo[4,5- c ]coumarins in a One-Pot reaction. Synlett, 2013, 24(1), 998-1000.
[http://dx.doi.org/10.1055/s-0032-1316895]
[114]
Goyal, D.; Kaur, A.; Goyal, B. Benzofuran and Indole: Promising scaffolds for drug development in Alzheimer’s disease. ChemMedChem, 2018, 13(13), 1275-1299.
[http://dx.doi.org/10.1002/cmdc.201800156] [PMID: 29742314]
[115]
Kumar, A.; Pintus, F.; Di Petrillo, A.; Medda, R.; Caria, P.; Matos, M.J.; Viña, D.; Pieroni, E.; Delogu, F.; Era, B.; Delogu, G.L.; Fais, A. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep., 2018, 8(1), 4424.
[http://dx.doi.org/10.1038/s41598-018-22747-2] [PMID: 29535344]
[116]
Rizzo, S.; Rivière, C.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.; Andrisano, V.; Morroni, F.; Tarozzi, A.; Monti, J.P.; Rampa, A. Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, β amyloid aggregation, and abeta neurotoxicity. J. Med. Chem., 2008, 51(10), 2883-2886.
[http://dx.doi.org/10.1021/jm8002747] [PMID: 18419109]
[117]
Luo, W.; Li, Y.P.; Tan, J.H.; Gu, L.Q.; Huang, Z.S. Synthesis and biological evaluation of novel N, N′-bis-methylenedioxybenzyl-alkylenediamines as bivalent anti-Alzheimer disease ligands. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 706-711.
[http://dx.doi.org/10.3109/14756366.2010.548329] [PMID: 21250822]
[118]
Design, C.D. Purine Homo-N-Nucleoside+coumarin Hybrids as pleiotropic agents for the potential treatment of alzheimer’s disease. Future Med. Chem., 1985, 28, 1133-1139.
[119]
Mao, F.; Chen, J.; Zhou, Q.; Luo, Z.; Huang, L.; Li, X. Novel tacrine-ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett., 2013, 23(24), 6737-6742.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.034] [PMID: 24220172]
[120]
Benchekroun, M.; Ismaili, L.; Pudlo, M.; Luzet, V.; Gharbi, T.; Refouvelet, B.; Marco-Contelles, J. Donepezil-ferulic acid hybrids as anti-Alzheimer drugs. Future Med. Chem., 2015, 7(1), 15-21.
[http://dx.doi.org/10.4155/fmc.14.148] [PMID: 25582330]
[121]
Sun, Y.; Chen, J.; Chen, X.; Huang, L.; Li, X. Inhibition of cholinesterase and monoamine Oxidase-B activity by Tacrine-Homoisoflavonoid hybrids. Bioorg. Med. Chem., 2013, 21(23), 7406-7417.
[http://dx.doi.org/10.1016/j.bmc.2013.09.050] [PMID: 24128814]
[122]
Pérez-Areales, F.J.; Betari, N.; Viayna, A.; Pont, C.; Espargaró, A.; Bartolini, M.; De Simone, A.; Rinaldi Alvarenga, J.F.; Pérez, B.; Sabate, R.; Lamuela-Raventós, R.M.; Andrisano, V.; Luque, F.J.; Muñoz-Torrero, D. Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein-huprine hybrids. Future Med. Chem., 2017, 9(10), 965-981.
[http://dx.doi.org/10.4155/fmc-2017-0049] [PMID: 28632395]
[123]
Kia, Y.; Osman, H.; Kumar, R.S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Razak, I.A. A facile chemo-, regio- and stereoselective synthesis and cholinesterase inhibitory activity of spirooxindole-pyrrolizine-piperidine hybrids. Bioorg. Med. Chem. Lett., 2013, 23(10), 2979-2983.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.027] [PMID: 23570788]
[124]
Rampa, A.; Montanari, S.; Pruccoli, L.; Bartolini, M.; Falchi, F.; Feoli, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Tarozzi, A.; Bisi, A. Chalcone-based carbamates for Alzheimer’s disease treatment. Future Med. Chem., 2017, 9(8), 749-764.
[http://dx.doi.org/10.4155/fmc-2017-0029] [PMID: 28498775]
[125]
Ramos, E.; Egea, J.; de Los Ríos, C.; Marco-Contelles, J.; Romero, A. Melatonin as a versatile molecule to design novel multitarget hybrids against neurodegeneration. Future Med. Chem., 2017, 9(8), 765-780.
[http://dx.doi.org/10.4155/fmc-2017-0014] [PMID: 28498717]
[126]
Dgachi, Y.; Martin, H.; Bonet, A.; Chioua, M.; Iriepa, I.; Moraleda, I.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Synthesis and biological assessment of racemic benzochromenopyrimidinetriones as promising agents for Alzheimer’s disease therapy. Future Med. Chem., 2017, 9(8), 715-721.
[http://dx.doi.org/10.4155/fmc-2017-0004] [PMID: 28504912]
[127]
Estrada, M.; Pérez, C.; Soriano, E.; Laurini, E.; Romano, M.; Pricl, S.; Morales-García, J.A.; Pérez-Castillo, A.; Rodríguez-Franco, M.I. New neurogenic lipoic-based hybrids as innovative Alzheimer’s drugs with σ-1 agonism and β-secretase inhibition. Future Med. Chem., 2016, 8(11), 1191-1207.
[http://dx.doi.org/10.4155/fmc-2016-0036] [PMID: 27402296]
[128]
Karami, B.; Eskandari, K.; Farahi, M.; Barmas, A. An Effective and New Method for the Synthesis of Polysubstituted Imidazoles by the Use of CrCl 3. 6H 2 O as a Green and Reusable Catalyst: Synthasis of Some Novel Imidazole Derivatives. J. Chin. Chem. Soc., 2012, 59(4), 473-479.
[http://dx.doi.org/10.1002/jccs.201100555]
[129]
Karami, B.; Ferdosian, R.; Eskandari, K. New conditions for the effective synthesis of Tri and Tetrasubstituted Imidazoles Catalysed by recyclable Indium (III). Triflate and Magnesium Sulfate Heptahydrate. J. Chem. Res., 2014, 38(1), 41-45.
[130]
Gurjar, A.S.; Darekar, M.N.; Yeong, K.Y.; Ooi, L. In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(8), 1511-1522.
[http://dx.doi.org/10.1016/j.bmc.2018.01.029] [PMID: 29429576]
[131]
Nisa, M.U.; Munawar, M.A.; Iqbal, A.; Ahmed, A.; Ashraf, M.; Gardener, Q.A.; Khan, M.A. Synthesis of novel 5-(aroylhydrazino-carbonyl)escitalopram as cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 138(1), 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.036] [PMID: 28688279]
[132]
Khan, I.; Ibrar, A.; Zaib, S.; Ahmad, S.; Furtmann, N.; Hameed, S.; Simpson, J.; Bajorath, J.; Iqbal, J. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorg. Med. Chem., 2014, 22(21), 6163-6173.
[http://dx.doi.org/10.1016/j.bmc.2014.08.026] [PMID: 25257911]
[133]
Alza, N.P.; Richmond, V.; Baier, C.J.; Freire, E.; Baggio, R.; Murray, A.P. Synthesis and cholinesterase inhibition of cativic acid derivatives. Bioorg. Med. Chem., 2014, 22(15), 3838-3849.
[http://dx.doi.org/10.1016/j.bmc.2014.06.030] [PMID: 25017625]
[134]
Singh, M.; Kaur, M.; Chadha, N.; Silakari, O. Hybrids: A new paradigm to treat Alzheimer’s disease. Mol. Divers., 2016, 20(1), 271-297.
[http://dx.doi.org/10.1007/s11030-015-9628-9] [PMID: 26328942]
[135]
Camerino, E.; Wong, D.M.; Tong, F.; Körber, F.; Gross, A.D.; Islam, R.; Viayna, E.; Mutunga, J.M.; Li, J.; Totrov, M.M.; Bloomquist, J.R.; Carlier, P.R. Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase. Bioorg. Med. Chem. Lett., 2015, 25(20), 4405-4411.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.019] [PMID: 26386602]
[136]
Abet, V.; Mariani, A.; Truscott, F.R.; Britton, S.; Rodriguez, R. Biased and unbiased strategies to identify biologically active small molecules. Bioorg. Med. Chem., 2014, 22(16), 4474-4489.
[http://dx.doi.org/10.1016/j.bmc.2014.04.019] [PMID: 24811300]
[137]
Yiğit, B.; Yiğit, M.; Taslimi, P.; Gök, Y.; Gülçin, İ. Schiff bases and their amines: Synthesis and discovery of carbonic anhydrase and acetylcholinesterase enzymes inhibitors. Arch. Pharm. (Weinheim), 2018, 351(9)e1800146
[http://dx.doi.org/10.1002/ardp.201800146] [PMID: 30033646]
[138]
Dutta, S.; Malla, R.K.; Bandyopadhyay, S.; Spilling, C.D.; Dupureur, C.M. Synthesis and kinetic analysis of some phosphonate analogs of cyclophostin as inhibitors of human acetylcholinesterase. Bioorg. Med. Chem., 2010, 18(6), 2265-2274.
[http://dx.doi.org/10.1016/j.bmc.2010.01.063] [PMID: 20189400]
[139]
Timur, İ.; Kocyigit, Ü.M.; Dastan, T.; Sandal, S.; Ceribası, A.O.; Taslimi, P.; Gulcin, İ.; Koparir, M.; Karatepe, M.; Çiftçi, M. In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones-Evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles. J. Biochem. Mol. Toxicol., 2018, 33(1)e22239
[PMID: 30368973]
[140]
Xu, Y.; Zhang, J.; Wang, H.; Mao, F.; Bao, K.; Liu, W.; Zhu, J.; Li, X.; Zhang, H.; Li, J. Rational design of novel selective dual-target inhibitors of acetylcholinesterase and monoamine oxidase b as potential Anti-Alzheimer’s disease agents. ACS Chem. Neurosci., 2019, 10(1), 482-496.
[http://dx.doi.org/10.1021/acschemneuro.8b00357] [PMID: 30110536]
[141]
Barmak, A.; Niknam, K.; Mohebbi, G.; Pournabi, H. Antibacterial studies of hydroxyspiro[indoline-3,9-xanthene]trione against spiro[indoline3,9-xanthene]trione and their use as acetyl and butyrylcholinesterase inhibitors. Microb. Pathog., 2019, 130(1), 95-99.
[http://dx.doi.org/10.1016/j.micpath.2019.03.002] [PMID: 30851360]
[142]
Biçer, A.; Taslimi, P.; Yakalı, G.; Gülçin, I.; Serdar Gültekin, M.; Turgut Cin, G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg. Chem., 2019, 82(1), 393-404.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.001] [PMID: 30428418]
[143]
Reis, J.; Cagide, F.; Valencia, M.E.; Teixeira, J.; Bagetta, D.; Pérez, C.; Uriarte, E.; Oliveira, P.J.; Ortuso, F.; Alcaro, S.; Rodríguez-Franco, M.I.; Borges, F. Multi-target-directed ligands for Alzheimer’s disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur. J. Med. Chem., 2018, 158(2), 781-800.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.056] [PMID: 30245401]
[144]
Lalut, J.; Santoni, G.; Karila, D.; Lecoutey, C.; Davis, A.; Nachon, F.; Silman, I.; Sussman, J.; Weik, M.; Maurice, T.; Dallemagne, P.; Rochais, C. Novel multitarget-directed ligands targeting acetylcholinesterase and σ1 receptors as lead compounds for treatment of Alzheimer’s disease: Synthesis, evaluation, and structural characterization of their complexes with acetylcholinesterase. Eur. J. Med. Chem., 2019, 162(1), 234-248.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.064] [PMID: 30447434]
[145]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[146]
Huang, C.; Xiong, J.; Guan, H.D.; Wang, C.H.; Lei, X.; Hu, J.F. Discovery, synthesis, biological evaluation and molecular docking study of (R)-5-methylmellein and its analogs as selective monoamine oxidase an inhibitor. Bioorg. Med. Chem., 2019, 27(10), 2027-2040.
[http://dx.doi.org/10.1016/j.bmc.2019.03.060] [PMID: 30975503]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 19
Year: 2019
Page: [1577 - 1598]
Pages: 22
DOI: 10.2174/1389557519666190719143112
Price: $65

Article Metrics

PDF: 35
HTML: 5