Flavones as a Privileged Scaffold in Drug Discovery: Current Developments

Author(s): Pone K. Boniface*, Ferreira I. Elizabeth

Journal Name: Current Organic Synthesis

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others.

Objective: The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones.

Methods: Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others.

Results: As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases.

Conclusion: As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.

Keywords: Flavones, multifactorial diseases, drug discovery, natural products, synthetic products, therapeutic agents.

[1]
Martens, S.; Mithöfer, A. Flavones and flavone synthases. Phytochemistry, 2005, 66(20), 2399-2407.
[http://dx.doi.org/10.1016/j.phytochem.2005.07.013] [PMID: 16137727]
[2]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech., 2013, 3, 439-459.
[3]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[4]
Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[5]
Atilaw, Y.; Muiva-Mutisya, L.; Ndakala, A.; Akala, H.M.; Yeda, R.; Wu, Y.J.; Coghi, P.; Wong, V.K.W.; Erdélyi, M.; Yenesew, A. Four prenylflavone derivatives with antiplasmodial activities from the stem of Tephrosia purpurea subsp. leptostachya. Molecules, 2017, 22(9), 1514.
[http://dx.doi.org/10.3390/molecules22091514] [PMID: 28891957]
[6]
Mhalla, D.; Bouaziz, A.; Ennouri, K.; Chawech, R.; Smaoui, S.; Jarraya, R.; Tounsi, S.; Trigui, M. Antimicrobial activity and bioguided fractionation of Rumex tingitanus extracts for meat preservation. Meat Sci., 2017, 125, 22-29.
[http://dx.doi.org/10.1016/j.meatsci.2016.11.011] [PMID: 27883958]
[7]
Ma, S.G.; Yuan, S.P.; Liu, Y.B.; Qu, J.; Li, Y.; Wang, X.J.; Wang, R.B.; Xu, S.; Hou, Q.; Yu, S.S. 3-Hydroxy-3-methylglutaryl flavone glycosides from the leaves of Turpinia arguta. Fitoterapia, 2018, 124, 80-85.
[http://dx.doi.org/10.1016/j.fitote.2017.10.017] [PMID: 29111165]
[8]
Sato, A.; Tamura, H. High antiallergic activity of 5,6,4′-trihydroxy-7,8,3′-trimethoxyflavone and 5,6-dihydroxy-7,8,3′,4′-tetramethoxyflavone from eau de cologne mint (Mentha×piperita citrata). Fitoterapia, 2015, 102, 74-83.
[http://dx.doi.org/10.1016/j.fitote.2015.02.003] [PMID: 25704366]
[9]
Catarino, M.D.; Alves-Silva, J.M.; Pereira, O.R.; Cardoso, S.M. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr. Top. Med. Chem., 2015, 15(2), 105-119.
[http://dx.doi.org/10.2174/1568026615666141209144506] [PMID: 25547095]
[10]
Srividhya, M.; Hridya, H.; Shanthi, V.; Ramanathan, K. Bioactive amentoflavone isolated from Cassia fistula L. leaves exhibits therapeutic efficacy. 3 Biotech, 2017, 7(1), 33.
[11]
Lin, N.; Sato, T.; Takayama, Y.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharmacol., 2003, 65(12), 2065-2071.
[http://dx.doi.org/10.1016/S0006-2952(03)00203-X] [PMID: 12787887]
[12]
Jayakumar, T.; Lin, K-C.; Lu, W-J.; Lin, C-Y.; Pitchairaj, G.; Li, J-Y.; Sheu, J-R. Nobiletin, a citrus flavonoid, activates vasodilator-stimulated phosphoprotein in human platelets through non-cyclic nucleotide-related mechanisms. Int. J. Mol. Med., 2017, 39(1), 174-182.
[http://dx.doi.org/10.3892/ijmm.2016.2822] [PMID: 27959381]
[13]
Mao, Z.; Gan, C.; Zhu, J.; Ma, N.; Wu, L.; Wang, L.; Wang, X. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg. Med. Chem. Lett., 2017, 27(12), 2812-2817.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.076] [PMID: 28479197]
[14]
Mulvihill, E.E.; Assini, J.M.; Lee, J.K.; Allister, E.M.; Sutherland, B.G.; Koppes, J.B.; Sawyez, C.G.; Edwards, J.Y.; Telford, D.E.; Charbonneau, A.; St-Pierre, P.; Marette, A.; Huff, M.W. Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes, 2011, 60(5), 1446-1457.
[http://dx.doi.org/10.2337/db10-0589] [PMID: 21471511]
[15]
Lewinska, A.; Adamczyk-Grochala, J.; Kwasniewicz, E.; Deregowska, A.; Wnuk, M. Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity. Toxicol. Lett., 2017, 265, 117-130.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.018] [PMID: 27890807]
[16]
Ganai, S.A. Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed. Pharmacother., 2017, 85, 47-56.
[http://dx.doi.org/10.1016/j.biopha.2016.11.130] [PMID: 27930986]
[17]
Onozuka, H.; Nakajima, A.; Matsuzaki, K.; Shin, R.W.; Ogino, K.; Saigusa, D.; Tetsu, N.; Yokosuka, A.; Sashida, Y.; Mimaki, Y.; Yamakuni, T.; Ohizumi, Y. Nobiletin, a citrus flavonoid, improves memory impairment and Abeta pathology in a transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(3), 739-744.
[http://dx.doi.org/10.1124/jpet.108.140293] [PMID: 18544674]
[18]
Fatima, A.; Khanam, S.; Rahul, R.; Jyoti, S.; Naz, F.; Ali, F.; Siddique, Y.H. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease. Front. Biosci. (Elite Ed.), 2017, 9, 44-53.
[http://dx.doi.org/10.2741/e784] [PMID: 27814588]
[19]
Chen, Y.; Sun, X.B.; Lu, H.E.; Wang, F.; Fan, X.H. Effect of luteoin in delaying cataract in STZ-induced diabetic rats. Arch. Pharm. Res., 2017, 40(1), 88-95.
[http://dx.doi.org/10.1007/s12272-015-0669-5] [PMID: 26459282]
[20]
Liou, C.J.; Wu, S.J.; Chen, L.C.; Yeh, K.W.; Chen, C.Y.; Huang, W.C. Acacetin from traditionally used Saussurea involucrata Kar. Et Kir. suppressed adipogenesis in 3T3-L1 adipocytes and attenuated lipid accumulation in obese mice. Front. Pharmacol., 2017, 8, 589.
[http://dx.doi.org/10.3389/fphar.2017.00589] [PMID: 28900399]
[21]
Singh, M. Flavone: An important scaffold for medicinal chemistry. In: Key Heterocycle Cores for Designing Multitargeting Molecules; Silakari, O., Ed.; Elsevier Science: Amsterdam, 2018; pp. 133-174.
[22]
Berczyński, P.; Kładna, A.; Kruk, I.; Sarı, E.; Murat, H.N.; Bozdağ Dündar, O.; Aboul-Enein, H.Y. Synthesis and in vitro antioxidant activity study of some new piperazinyl flavone compounds. Luminescence, 2017, 32(8), 1431-1441.
[http://dx.doi.org/10.1002/bio.3342] [PMID: 28569387]
[23]
Du, G.; Zhao, Y.; Feng, L.; Yang, Z.; Shi, J.; Huang, C.; Li, B.; Guo, F.; Zhu, W.; Li, Y. Design, synthesis, and structure-activity relationships of bavachinin analogues as peroxisome proliferator-activated receptor Y agonists. ChemMedChem, 2017, 12(2), 183-193.
[http://dx.doi.org/10.1002/cmdc.201600554] [PMID: 27914122]
[24]
Dankó, B.; Tóth, S.; Martins, A.; Vágvölgyi, M.; Kúsz, N.; Molnár, J.; Chang, F.R.; Wu, Y.C.; Szakács, G.; Hunyadi, A. Synthesis and SAR study of anticancer protoflavone derivatives: Investigation of cytotoxicity and interaction with ABCB1 and ABCG2 multidrug efflux transporters. ChemMedChem, 2017, 12(11), 850-859.
[http://dx.doi.org/10.1002/cmdc.201700225] [PMID: 28436164]
[25]
Sang, Z.; Qiang, X.; Li, Y.; Xu, R.; Cao, Z.; Song, Q.; Wang, T.; Zhang, X.; Liu, H.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of scutellarein-O-acetamidoalkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 135, 307-323.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.054] [PMID: 28458136]
[26]
Choi, E.J.; Lee, J.I.; Kim, G-H. Evaluation of the anticancer activities of thioflavanone and thioflavone in human breast cancer cell lines. Int. J. Mol. Med., 2012, 29(2), 252-256.
[PMID: 22076075]
[27]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013162750
[28]
Vakarelska-Popovska, M.H.; Velkov, Z. Monohydroxy flavones. Part IV: Ehthalpies of different ways of O-H bond dissociation. Comput. Theor. Chem., 2016, 1077, 87-91.
[http://dx.doi.org/10.1016/j.comptc.2015.10.033] [PMID: 24470791]
[29]
Kandaswami, C.; Lee, L.T.; Lee, P.P.H.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo, 2005, 19(5), 895-909.
[PMID: 16097445]
[30]
Davis, C.T.; Geissman, T.A. Basic dissociation constants of some substituted flavones. J. Am. Chem. Soc., 1954, 76, 3507-3511.
[http://dx.doi.org/10.1021/ja01642a045]
[31]
Kshatriya, R.; Jejurkar, V.P.; Saha, S. In memory of Prof. Venkataraman: Recent advances in the synthetic methodologies of flavones. Tetrahedron, 2018, 74(8), 811-833.
[http://dx.doi.org/10.1016/j.tet.2017.12.052]
[32]
Baker, W. Molecular rearrangement of some O-acyloxyacetophenones and the mechanism of the production of 3-acylchromones. J. Chem. Soc., 1933, 10, 1381-1389.
[http://dx.doi.org/10.1039/jr9330001381]
[33]
Mahal, H.S.; Venkataraman, K. Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2-acetonaphthones. J. Chem. Soc., 1934, 10, 1767-1769.
[http://dx.doi.org/10.1039/jr9340001767]
[34]
Sashidhara, K.V.; Avula, S.R.; Palnati, G.R.; Singh, S.V.; Srivastava, K.; Puri, S.K.; Saxena, J.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2012, 22(17), 5455-5459.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.028] [PMID: 22850213]
[35]
Kostanecki, S.V.; Thamobor, J. “Ueber die constitution des fisetins”. “About the constitution of the fisetins. Eur. J. Inorg. Chem., 1895, 1985(28), 2302-2309. [In German]
[36]
Allan, J.; Robinson, R. An accessible derivative of chromonol. J. Chem. Soc., 1924, 125, 2192-2195.
[http://dx.doi.org/10.1039/CT9242502192]
[37]
Sarda, S.R.; Pathan, M.Y.; Paike, V.V.; Pachmase, P.R.; Jadhav, W.N.; Pawar, R.P. A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation. ARKIVOC, 2006, 16, 43-48.
[38]
Su, W.K.; Zhu, X.Y.; Li, Z.H. First Vilsmeier-Haack synthesis of flavones using bis-(trichloromethyl) carbonate/dimethylformamide. Org. Prep. Proced. Int., 2009, 41, 69-75.
[http://dx.doi.org/10.1080/00304940802710947]
[39]
Lahyani, A.; Trabelsi, M. Ultrasonic-assisted synthesis of flavones by oxidative cyclization of 2′-hydroxychalcones using iodine monochloride. Ultrason. Sonochem., 2016, 31, 626-630.
[http://dx.doi.org/10.1016/j.ultsonch.2016.02.018] [PMID: 26964989]
[40]
Pharm Org (PO). 2018 pharmacognosy.org.ua/index.files/Page5815.htm[Accessed on 03th May 2018
[42]
Csonka-Rákosa, R. Thermal changes of flavonols and wood. Summary of PhD thesis. Sopron 2005 , 12. http://ilex.efe.hu/PhD/fmk/csonkanerakosirita/angol.pdf [Accessed on 03th May 2018.
[43]
Southwick, P.L.; Kirchner, J.R. A new synthesis of flavone involving cyclization via displacement of aromatic chlorine. J. Am. Chem. Soc., 1957, 79(3), 689-691.
[http://dx.doi.org/10.1021/ja01560a050]
[44]
Hill, D.W.; Melhuish, R.R. The structure of flavylium salts. J. Chem. Soc., 1935, 1935, 1161-1166.
[http://dx.doi.org/10.1039/jr9350001161]
[45]
Simonis, H. The hydrolysis of chromones by dilute alkali. Ber. Dtsch. Chem. Ges., 1917, 50, 779-786.
[http://dx.doi.org/10.1002/cber.191705001129]
[46]
Baker, W.; Butt, V.S. Properties and orientation of some derivatives of 3-acylchromones. J. Chem. Soc., 1949, 95, 2142-2150.
[http://dx.doi.org/10.1039/jr9490002142]
[47]
Mentzer, C.; Massicot, J. Hydrogen-transfer reactions in the flavones. Bull. Soc. Chim. Fr., 1956, 1956, 144-148.
[48]
Massicot, J.; Mentzer, C.; Pillon, D. The reduction of flavones to flavanones. Compt. Rend., 1954, 238, 111-112.
[49]
Murray, R.W. Chemistry of dioxiranes. 12. Dioxiranes. Chem. Rev., 1989, 89(5), 1187-1201.
[http://dx.doi.org/10.1021/cr00095a013]
[50]
Yang, D.; Wong, M-K.; Yip, Y-C. Epoxidation of olefins using methyl (trifluoromethyl) dioxirane generated in situ. J. Org. Chem., 1995, 60(12), 3887-3889.
[http://dx.doi.org/10.1021/jo00117a046]
[51]
Adam, W.; Golsch, D.; Hadjiarapoglou, L.; Patonay, T. Epoxidation of flavones by dimetyldioxane. J. Org. Chem., 1991, 56(26), 7292-7297.
[http://dx.doi.org/10.1021/jo00026a020]
[52]
Chakravorty, D.K. Nuclear oxidation in flavones and related compounds. Proc. Indiana Acad. Sci., 1952, 35A, 34-44.
[http://dx.doi.org/10.1007/BF03172482]
[53]
Bogert, M.T.; Marcus, J.K. The synthesis of aminoflavones, of flavone-azo beta-naphtol dyes, and of other flavone derivatives. J. Am. Chem. Soc., 1919, 41(1), 83-107.
[http://dx.doi.org/10.1021/ja01458a010]
[54]
McCusker, P.E.; Philbin, E.M.; Wheeler, T.S. Bromination and nitration of 5-hydroxyflavone. J. Chem. Soc., 1963, 1963, 2374-2381.
[http://dx.doi.org/10.1039/jr9630002374]
[55]
Seshadri, S.; Trivedi, P.L. Reactions of nitrohydroxychalcones: Synthesis of nitrohydroxyflavones. J. Org. Chem., 1958, 23(11), 1735-1738.
[http://dx.doi.org/10.1021/jo01105a042]
[56]
Merchant, J.R.; Rege, D.V. Reaction of thionylchloride with flavone. Tetrahedron Lett., 1969, 10, 3589-3591.
[http://dx.doi.org/10.1016/S0040-4039(01)88460-4]
[57]
Merchant, J.R.; Rege, D.V. Reaction of substituted flavones with thionyl and sulphuryl chlorides. Tetrahedron, 1971, 27(19), 4837-4842.
[http://dx.doi.org/10.1016/S0040-4020(01)98187-6]
[58]
Sonare, S.S.; Doshi, A.G.J. A new synthesis of 3-bromoflavones. Indian Chem. Soc., 1992, 69(12), 875.
[59]
Suresh Babu, K.; Hari., Babu T.; Srinivas, P.V.; Hara Kishore, K.; Murthy, U.S.; Rao, J.M. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett., 2006, 16(1), 221-224.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.009] [PMID: 16213726]
[60]
Schonberg, A.; Singer, E. β-γ-unsaturated ketones: via addition of fluorene of flavones. Chem. Ber., 1961, 94, 241-247.
[61]
Aĭtmambetov, A.; Menlimuratova, Z. Interaction of synthetic analogues of natural chalcones and flavones with guanidine. Bioorg. Khim., 2003, 29(2), 198-199.
[PMID: 12708320]
[62]
Che, H.; Lim, H.; Kim, H.P.; Park, H. A chrysin analog exhibited strong inhibitory activities against both PGE2 and NO production. Eur. J. Med. Chem., 2011, 46(9), 4657-4660.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.044] [PMID: 21719163]
[63]
Deng, B.; Lepoivre, J.; Lemiere, G. Synthesis of 7‐vinylflavone and 7‐aminoflavone by palladium‐catalyzed coupling reactions. Eur. J. Org. Chem., 1999, (10), 2683-2688.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199910)1999:10<2683:AID-EJOC2683>3.0.CO;2-8]
[64]
Zheng, X.; Meng, W.; Qing, F. Synthesis of gem-difluoromethylenated biflavonoid via the Suzuki coupling reaction. Tetrahedron Lett., 2004, 45(43), 8083-8085.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.180]
[65]
Gesson, J.P.; Fonteneau, N.; Mondon, M.; Charbit, S.; Ficheux, H.; Schutze, F. Method for preparation of 7-carboxyflavone derivatives and their therapeutic use for rheumatic diseases. PCT Int. Appl., 2002.US patent. 6, 25..
[66]
Donnelly, D.M.; Philbin, E.M.; Wheeler, T.S. Wessely-Moser rearrangement of chromonols and flavonols. J. Chem. Soc., 1956, 4409-4411.
[http://dx.doi.org/10.1039/JR9560004409]
[67]
Larget, R.; Lockhart, B.; Renard, P.; Largeron, M. A convenient extension of the Wessely-Moser rearrangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro. Bioorg. Med. Chem. Lett., 2000, 10(8), 835-838.
[http://dx.doi.org/10.1016/S0960-894X(00)00110-4] [PMID: 10782697]
[68]
Daskiewicz, J.; Bayet, C.; Barron, D. Regioselective syntheses of 6-(1,1-dimethylallyl)- and 8-(3,3-dimethylallyl) chrysins. Tetrahedron, 2002, 58(18), 3589-3595.
[http://dx.doi.org/10.1016/S0040-4020(02)00309-5]
[69]
Miyahisa, I.; Funa, N.; Ohnishi, Y.; Martens, S.; Moriguchi, T.; Horinouchi, S. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl. Microbiol. Biotechnol., 2006, 71(1), 53-58.
[http://dx.doi.org/10.1007/s00253-005-0116-5] [PMID: 16133333]
[70]
Koes, R.E.; Quattrocchio, F.; Mol, J.N.M. The flavonoid biosynthetic pathway in plants: function and evolution. Biossays, 1994, 16, 123-132.
[http://dx.doi.org/10.1002/bies.950160209]
[71]
Kamto, E.L.; Carvalho, T.S.; Mbing, J.N.; Matene, M.C.; Pegnyemb, D.E.; Leitão, G.G. Alternating isocratic and step gradient elution high-speed counter-current chromatography for the isolation of minor phenolics from Ormocarpum kirkii bark. J. Chromatogr. A, 2017, 1480, 50-61.
[http://dx.doi.org/10.1016/j.chroma.2016.12.026] [PMID: 27988077]
[72]
Kamarudin, M.N.A.; Sarker, M.M.R.; Kadir, H.A.; Ming, L.C. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. J. Ethnopharmacol., 2017, 206, 245-266.
[http://dx.doi.org/10.1016/j.jep.2017.05.007] [PMID: 28495603]
[73]
Bhatt, V.; Sharma, S.; Kumar, N.; Sharma, U.; Singh, B. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS. J. Pharm. Biomed. Anal., 2017, 132, 46-55.
[http://dx.doi.org/10.1016/j.jpba.2016.09.035] [PMID: 27693952]
[74]
Ji, D.; Huang, Z.Y.; Fei, C.H.; Xue, W.W.; Lu, T.L. Comprehensive profiling and characterization of chemical constituents of rhizome of Anemarrhena asphodeloides Bge. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1060, 355-366.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.032] [PMID: 28666227]
[75]
Liao, M.; Cheng, X.; Diao, X.; Sun, Y.; Zhang, L. Metabolites identificaion of two bioactive constituents in Trollius ledebourii in rats using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 297-312.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.061] [PMID: 29127056]
[76]
Blunder, M.; Orthaber, A.; Bauer, R.; Bucar, F.; Kunert, O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem., 2017, 218, 600-609.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.077] [PMID: 27719955]
[77]
Jiang, Y.; Lin, Y.; Hu, Y.J.; Song, X.J.; Pan, H.H.; Zhang, H.J. Caffeoylquinic acid derivatives rich extract from Gnaphalium pensylvanicum willd. Ameliorates hyperuricemia and acute gouty arthritis in animal model. BMC Complement. Altern. Med., 2017, 17(1), 320.
[http://dx.doi.org/10.1186/s12906-017-1834-9] [PMID: 28623927]
[78]
Zhao, X.; Liu, J.; Wen, Z.; Zhang, Y.; Yu, M.; Pan, B.; Zeng, J.; Xie, J. The pharmacokinetics and tissue distribution of coumaroylspinosin in rat: A novel flavone C-glycoside derived from Zizyphi Spinosi Semen. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1046, 18-25.
[http://dx.doi.org/10.1016/j.jchromb.2017.01.030] [PMID: 28129552]
[79]
Amakura, Y. Characterization of phenolic constituents from Ephedra Herb extract. Yakugaku Zasshi, 2017, 137(2), 167-171.
[http://dx.doi.org/10.1248/yakushi.16-00233-2] [PMID: 28154327]
[80]
Fu, M.Q.; Xiao, G.S.; Wu, J.J.; Chen, Y.L.; Zou, B.; An, K.J.; Xu, Y.J. Chemical constituents from Pericarpium citri Reticulatae. Chin. Herb. Med., 2017, 9, 86-91.
[http://dx.doi.org/10.1016/S1674-6384(17)60081-9]
[81]
Richardson, A.T.; Lord, J.M.; Perry, N.B. Phenylanthraquinones and flavone-C-glucosides from the disjunct Bulbinella in New Zealand. Phytochemistry, 2017, 134, 64-70.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.014] [PMID: 27939308]
[82]
Sajjadi, S.E.; Ghanadian, M.; Haghighi, M. Isolation and identification of two phenolic compounds from a moderately cytotoxic fraction of Cousinia verbascifolia Bunge. Adv. Biomed. Res., 2017, 6, 66.
[http://dx.doi.org/10.4103/2277-9175.190980] [PMID: 28626741]
[83]
Wang, Y.; Qian, J.; Cao, J.; Wang, D.; Liu, C.; Yang, R.; Li, X.; Sun, C. Antioxidant capacity, anticancer ability, and flavonoids composition of 35 Citrus (Citrus reticulata Blanco) varieties. Molecules, 2017, 22(7), 1114.
[http://dx.doi.org/10.3390/molecules22071114] [PMID: 28678176]
[84]
Whaley, A.K.; Ebrahim, W.; El-Neketi, M.; Ancheeva, E.U.; Özkaya, F.C.; Pryakhina, N.I.; Sipkinam, N.U.; Luzhanin, V.G.; Liu, Z.; Proksch, P. New acetylated flavone C-glycosides from Iris lactea. Tetrahedron Lett., 2017, 58, 2171-2173.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.080]
[85]
Yaripour, S.; Delnavazi, M.R.; Asgharian, P.; Valiyari, S.; Tavakoli, S.; Nazemiyeh, H. A survey on phytochemical composition and biological activity of Zygophyllum fabago from Iran. Adv. Pharm. Bull., 2017, 7(1), 109-114.
[http://dx.doi.org/10.15171/apb.2017.014] [PMID: 28507944]
[86]
Green, P.W.C.; Belmain, S.R.; Ndakidemi, P.A.; Farrell, L.W.; Stevenson, P.C. Insecticidal activity of Tithonia diversifolia and Vernonia amygdalina. Ind. Crops Prod., 2017, 110, 15-21.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.021]
[87]
Jin, Q.; Yang, J.; Ma, L.; Wen, D.; Chen, F.; Li, J. Identification of polyphenols in mulberry (genus Morus) cultivars by liquid chromatography with time-of-flight mass spectrometer. J. Food Compos. Anal., 2017, 63, 55-64.
[http://dx.doi.org/10.1016/j.jfca.2017.07.005]
[88]
Kucharska, A.Z.; Sokół-Łetowska, A.; Oszmianski, J.; Piórecki, N.; Fecka, I. Iridoids, phenolic compounds and antioxidant activity of edible honey suckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules, 2017, 22(2017), 405.
[89]
Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chem., 2017, 221, 1691-1697.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.117] [PMID: 27979149]
[90]
Elo-Manga, S.S.; Tih, A.E.; Ghogomu, R.T.; Blond, A.; Bodo, B. Chemical constituents of the leaves of Campylospermum elongatum. Z. Natforsch. C J. Biosci., 2017, 72(1-2), 71-75.
[http://dx.doi.org/10.1515/znc-2015-0260] [PMID: 27295334]
[91]
Mikulic-Petkovsek, M.; Krska, B.; Kiprovski, B.; Veberic, R. Bioactive components and antioxidant capacity of fruits from nine Sorbus genotypes. J. Food Sci., 2017, 82(3), 647-658.
[http://dx.doi.org/10.1111/1750-3841.13643] [PMID: 28182841]
[92]
Aghakhani, F.; Kharazian, N.; Lori Gooini, Z. Flavonoid constituents of phlomis (Lamiaceae) species using liquid chromatography mass spectrometry. Phytochem. Anal., 2018, 29(2), 180-195.
[http://dx.doi.org/10.1002/pca.2733] [PMID: 28983983]
[93]
Desta, K.T.; Kim, G.S.; Abd El-Aty, A.M.; Raha, S.; Kim, M-B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H-C.; Shim, J-H.; Shin, S.C. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC-ESI-MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1053, 1-8.
[http://dx.doi.org/10.1016/j.jchromb.2017.03.035] [PMID: 28411462]
[94]
Sahli, R.; Rivière, C.; Dufloer, C.; Beaufay, C.; Neut, C.; Bero, J.; Hennebelle, T.; Roumy, V.; Ksouri, R.; Quetin-Leclercq, J.; Sahpaz, S. Antiproliferative and antibacterial activities of Cirsium scabrum from Tunisia. Evid. Based Complement. Alternat. Med., 2017, 20177247016
[http://dx.doi.org/10.1155/2017/7247016] [PMID: 28785293]
[95]
Chen, H.; Ouyang, K.; Jiang, Y.; Yang, Z.; Hu, W.; Xiong, L.; Wang, N.; Liu, X.; Wang, W. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity. Int. J. Biol. Macromol., 2017, 98, 829-836.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.044] [PMID: 28223131]
[96]
Carvalho, A.R.; Costa, G.; Figueirinha, A.; Liberal, J.; Prior, J.A.V.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities. Food Res. Int., 2017, 99(Pt 1), 485-494.
[http://dx.doi.org/10.1016/j.foodres.2017.06.008] [PMID: 28784509]
[97]
Hunlun, C.; Beer, D.; Sigge, G.O.; Wyk, S.J. Characterisation of the flavonoid composition and total antioxidant capacity of juice from different citrus varieties from the Western Cape region. J. Food Compos. Anal., 2017, 62, 115-125.
[http://dx.doi.org/10.1016/j.jfca.2017.04.018]
[98]
Wang, X.L.; Jiao, F.R.; Yu, M.; Lin, L.B.; Xiao, J.; Zhang, Q.; Wang, L.; Duan, D.Z.; Xie, G. Constituents with potent α-glucosidase inhibitory activity from Pueraria lobata (Willd.) ohwi. Bioorg. Med. Chem. Lett., 2017, 27(9), 1993-1998.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.013] [PMID: 28343876]
[99]
Venditti, A.; Frezza, C.; Bianco, A.; Serafini, M.; Cianfaglione, K.; Nagy, D.U.; Iannarelli, R.; Caprioli, G.; Maggi, F. Polar constituents, essential oil and antioxidant activity of Marsh Woundwort (Stachys palustris L.). Chem. Biodivers., 2017, 14(3)
[http://dx.doi.org/10.1002/cbdv.201600401] [PMID: 27943586] [http://dx.doi.org/10.1002/cbdv.201600401]
[100]
Deladino, L.; Alvarez, I.; De Ancos, B.; Sánchez-Moreno, C.; Molina-García, A.D.; Schneider Teixeira, A. Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella. Food Res. Int., 2017, 97, 240-249.
[http://dx.doi.org/10.1016/j.foodres.2017.04.017] [PMID: 28578047]
[101]
Li, Y.P.; Hu, Q.F.; Rao, G.X. Three new C-alkylated flavonoids from Desmodium oblongum. J. Asian Nat. Prod. Res., 2017, 19(10), 954-959.
[http://dx.doi.org/10.1080/10286020.2017.1285910] [PMID: 28145124]
[102]
Khallouki, F.; Breuer, A.; Merieme, E.; Ulrich, C.M.; Owen, R.W. Characterization and quantitation of the polyphenolic compounds detected in methanol extracts of Pistacia atlantica Desf. fruits from the Guelmim region of Morocco. J. Pharm. Biomed. Anal., 2017, 134, 310-318.
[http://dx.doi.org/10.1016/j.jpba.2016.11.023] [PMID: 27984819]
[103]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 2015504253
[http://dx.doi.org/10.1155/2015/504253] [PMID: 26180591]
[104]
Nelson, N.; Szekeres, K.; Iclozan, C.; Rivera, I.O.; McGill, A.; Johnson, G.; Nwogu, O.; Ghansah, T. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One, 2017, 12(2)e0170197
[http://dx.doi.org/10.1371/journal.pone.0170197] [PMID: 28152014]
[105]
Duan, L.; Dou, L.L.; Yu, K.Y.; Guo, L.; Bai-Zhong, C.; Li, P.; Liu, E.H. Polymethoxyflavones in peel of Citrus reticulata ‘Chachi’ and their biological activities. Food Chem., 2017, 234, 254-261.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.018] [PMID: 28551233]
[106]
Zhou, M.; Shen, S.; Zhao, X.; Gong, X. Luteoloside induces G0/G1 arrest and pro-death autophagy through the ROS-mediated AKT/mTOR/p70S6K signalling pathway in human non-small cell lung cancer cell lines. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 263-269.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.042] [PMID: 29024631]
[107]
Ma, X.P.; Zhang, W.F.; Yi, P.; Lan, J.J.; Xia, B.; Jiang, S.; Lou, H.Y.; Pan, W.D. Novel flavones from the root of Phytolacca acinosa Roxb. Chem. Biodivers., 2017, 14(12)
[http://dx.doi.org/10.1002/cbdv.201700361] [PMID: 28963759] [http://dx.doi.org/10.1002/cbdv.201700361]
[108]
Zang, M.; Hu, L.; Zhang, B.; Zhu, Z.; Li, J.; Zhu, Z.; Yan, M.; Liu, B. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer. Biochem. Biophys. Res. Commun., 2017, 490(3), 913-919.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.140] [PMID: 28655612]
[109]
Weng, J.R.; Bai, L.Y.; Lin, W.Y.; Chiu, C.F.; Chen, Y.C.; Chao, S.W.; Feng, C.H. A flavone constituent from Myoporum bontioides induces M-phase cell cycle arrest of MCF-7 breast cancer cells. Molecules, 2017, 22(3)E472
[http://dx.doi.org/10.3390/molecules22030472] [PMID: 28294989]
[110]
Britto, S.M.; Shanthakumari, D.; Agilan, B.; Radhiga, T.; Kanimozhi, G.; Prasad, N.R. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts. Mutat. Res., 2017, 821, 28-35.
[http://dx.doi.org/10.1016/j.mrgentox.2017.06.002] [PMID: 28735741]
[111]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[112]
Chen, G.; Guo, M. Screening for natural inhibitors of topoisomerases I from Rhamnus davurica by affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry. Front. Plant Sci., 2017, 8, 1521.
[http://dx.doi.org/10.3389/fpls.2017.01521] [PMID: 28919906]
[113]
Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol., 2017, 232(12), 3786-3797.
[http://dx.doi.org/10.1002/jcp.25861] [PMID: 28213961]
[114]
Xu, D.; Jin, J.; Yu, H.; Zhao, Z.; Ma, D.; Zhang, C.; Jiang, H. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J. Exp. Clin. Cancer Res., 2017, 36(1), 44.
[http://dx.doi.org/10.1186/s13046-017-0514-4] [PMID: 28320429]
[115]
Zhou, R.T.; He, M.; Yu, Z.; Liang, Y.; Nie, Y.; Tai, S.; Teng, C.B. Baicalein inhibits pancreatic cancer cell proliferation and invasion via suppression of NEDD9 expression and its downstream Akt and ERK signaling pathways. Oncotarget, 2017, 8(34), 56351-56363.
[http://dx.doi.org/10.18632/oncotarget.16912] [PMID: 28915595]
[116]
Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed. Pharmacother., 2017, 88, 232-241.
[http://dx.doi.org/10.1016/j.biopha.2017.01.053] [PMID: 28110189]
[117]
Yeon Park, J.; Young Kim, H.; Shibamoto, T.; Su Jang, T.; Cheon Lee, S.; Suk Shim, J.; Hahm, D.H.; Lee, H.J.; Lee, S.; Sung Kang, K. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorg. Med. Chem. Lett., 2017, 27(17), 3968-3973.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.070] [PMID: 28784292]
[118]
Ke, Y.; Bao, T.; Wu, X.; Tang, H.; Wang, Y.; Ge, J.; Fu, B.; Meng, X.; Chen, L.; Zhang, C.; Tan, Y.; Chen, H.; Guo, Z.; Ni, F.; Lei, X.; Shi, Z.; Wei, D.; Wang, L. Scutellarin suppresses migration and invasion of human hepatocellular carcinoma by inhibiting the STAT3/Girdin/Akt activity. Biochem. Biophys. Res. Commun., 2017, 483(1), 509-515.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.114] [PMID: 27998773]
[119]
Gao, C.; Zhou, Y.; Jiang, Z.; Zhao, Y.; Zhang, D.; Cong, X.; Cao, R.; Li, H.; Tian, W. Cytotoxic and chemosensitization effects of Scutellarin from traditional Chinese herb Scutellaria altissima L. in human prostate cancer cells. Oncol. Rep., 2017, 38(3), 1491-1499.
[http://dx.doi.org/10.3892/or.2017.5850] [PMID: 28737827]
[120]
Bevara, G.B.; Kumar, A.D.N.; Koteswramma, K. L.; Badana, A.K.; Kumari, S.; Yarla, N.S.; Malla, R.R. C-glycosyl flavone from Urginea indica inhibits growth and dissemination of Erlich Ascites carcinoma cells in mice. Anticancer. Agents Med. Chem., 2017, 17(9), 1256-1266.
[http://dx.doi.org/10.2174/1871520617666170103101844] [PMID: 28044935]
[121]
Bronikowska, J.; Szliszka, E.; Kostrzewa-Susłow, E.; Jaworska, D.; Czuba, Z.P.; Bednarski, P.; Król, W. Novel structurally related flavones augment cell death induced by rhsTRAIL. Int. J. Mol. Sci., 2017, 18(6)E1211
[http://dx.doi.org/10.3390/ijms18061211] [PMID: 28587286]
[122]
Orzechowska, M.; Fabijańska, M.; Ochocki, J.; Małecki, M. Anticancer activity of a trans-platinum(II) complex of 3-aminoflavone to ovarian cancer cells. Ginekol. Pol., 2017, 88(2), 68-74.
[http://dx.doi.org/10.5603/GP.a2017.0014] [PMID: 28326515]
[123]
Gong, W.Y.; Zhao, Z.X.; Liu, B.J.; Lu, L.W.; Dong, J.C. Exploring the chemopreventive properties and perspectives of baicalin and its aglycone baicalein in solid tumors. Eur. J. Med. Chem., 2017, 126, 844-852.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.058] [PMID: 27960146]
[124]
Soo, H.C.; Chung, F.F.; Lim, K.H.; Yap, V.A.; Bradshaw, T.D.; Hii, L.W.; Tan, S.H.; See, S.J.; Tan, Y.F.; Leong, C.O.; Mai, C.W. Fei-Lei Chung, F.; Lim, K.-H.; Alicia Yap, V.; Bradshaw, T.D.; Hii, L.-W.; Tan, S.-H.; See, S.-J.; Tan, Y.-F.; Leong, C.O.; Mai, C.W. Cudraflavone C induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. PLoS One, 2017, 12(1)e0170551
[http://dx.doi.org/10.1371/journal.pone.0170551] [PMID: 28107519]
[125]
Bai, H.H.; Wang, N.N.; Mi, J.; Yang, T.; Fang, D.M.; Wu, L.W. Hydroxycinnammoylmalated flavone C-glycosides from Lemna japonica. , 2017, (17), 31334-31335. Fitoterapia, 2017, S0367-326X(17), 31334-31335.
[126]
El-Kashak, W.A.; Osman, S.M.; Gaara, A.H.; El-Toumy, S.A.; Mohamed, T.K.; Brouard, I. Phenolic metabolites, biological activities, and isolated compounds of Terminalia muelleri extract. Pharm. Biol., 2017, 55(1), 2277-2284.
[http://dx.doi.org/10.1080/13880209.2017.1406531] [PMID: 29179615]
[127]
Tang, W.Z.; Wang, Y.A.; Gao, T.Y.; Wang, X.J.; Zhao, Y.X. Identification of C-geranylated flavonoids from Paulownia catalpifolia Gong Tong fruits by HPLC-DAD-ESI-MS/MS and their anti-aging effects on 2BS cells induced by H2O2. Chin. J. Nat. Med., 2017, 15(5), 384-391.
[http://dx.doi.org/10.1016/S1875-5364(17)30059-6] [PMID: 28558874]
[128]
Zhang, S.; Guo, C.; Chen, Z.; Zhang, P.; Li, J.; Li, Y. Vitexin alleviates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling activation. Mol. Immunol., 2017, 85, 214-221.
[http://dx.doi.org/10.1016/j.molimm.2017.02.020] [PMID: 28288411]
[129]
Xiong, J.; Wang, K.; Yuan, C.; Xing, R.; Ni, J.; Hu, G.; Chen, F.; Wang, X. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int. J. Mol. Med., 2017, 39(1), 113-125.
[http://dx.doi.org/10.3892/ijmm.2016.2809] [PMID: 27878246]
[130]
Wang, F.; Zhou, R-J.; Zhao, Z.; Ye, H.; Xie, M-L. Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes. J. Appl. Biomed., 2018, 16(1), 75-80.
[http://dx.doi.org/10.1016/j.jab.2017.11.006]
[131]
Tsai, Y.F.; Chu, T.C.; Chang, W.Y.; Wu, Y.C.; Chang, F.R.; Yang, S.C.; Wu, T.Y.; Hsu, Y.M.; Chen, C.Y.; Chang, S.H.; Hwang, T.L. 6-Hydroxy-5,7-dimethoxy-flavone suppresses the neutrophil respiratory burst via selective PDE4 inhibition to ameliorate acute lung injury. Free Radic. Biol. Med., 2017, 106, 379-392.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.002] [PMID: 28263828]
[132]
de Souza, P.; Boeing, T.; Somensi, L.B.; Cechinel-Zanchett, C.C.; Bastos, J.K.; Petreanu, M.; Niero, R.; Cechinel-Filho, V.; da Silva, L.M.; de Andrade, S.F. Diuretic effect of extracts, fractions and two compounds 2α,3β,19α-trihydroxy-urs-12-en-28-oic acid and 5-hydroxy-3,6,7,8,4′-pentamethoxyflavone from Rubus rosaefolius Sm. (Rosaceae) leaves in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(4), 351-360.
[http://dx.doi.org/10.1007/s00210-016-1333-4] [PMID: 28013356]
[133]
Yang, Y.; Wang, S.; Bao, Y.R.; Li, T.J.; Yang, G.L.; Chang, X.; Meng, X.S. Anti-ulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. J. Ethnopharmacol., 2017, 199, 175-182.
[http://dx.doi.org/10.1016/j.jep.2017.01.053] [PMID: 28159726]
[134]
Anilkumar, K.; Reddy, G.V.; Azad, R.; Sastry Yarla, N.; Dharmapuri, G.; Srivastava, A.; Kamal, M.A.; Pallu, R. Evaluation of anti-inflammatory properties of isoorientin isolated from tubers of Pueraria tuberosa; Oxid. Med. Cell. Longev, 2017, 2017, p. 10p.
[http://dx.doi.org/10.1155/2017/5498054]
[135]
Shi, X.; Fu, Y.; Zhang, S.; Ding, H.; Chen, J. Baicalin attenuates subarachnoid hemorrhagic brain injury by modulating blood brain-barrier disruption, inflammation, and oxidative damage in mice. Oxid. Med. Cell. Longev., 2017, 20171401790
[http://dx.doi.org/10.1155/2017/1401790] [PMID: 28912935]
[136]
Zhang, X.; Yang, Y.; Du, L.; Zhang, W.; Du, G. Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int. Immunopharmacol., 2017, 50, 38-47.
[http://dx.doi.org/10.1016/j.intimp.2017.06.007] [PMID: 28623717]
[137]
Shin, M.S.; Park, J.Y.; Lee, J.; Yoo, H.H.; Hahm, D.H.; Lee, S.C.; Lee, S.; Hwang, G.S.; Jung, K.; Kang, K.S. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorg. Med. Chem. Lett., 2017, 27(14), 3076-3080.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.051] [PMID: 28554870]
[138]
Erukainure, O.L.; Mesaik, M.A.; Atolani, O.; Muhammad, A.; Chukwuma, C.I.; Islam, M.S. Pectolinarigenin from the leaves of Clerodendrum volubile shows potent immunomodulatory activity by inhibiting T-cell proliferation and modulating T-cell proliferation and modulating respiratory oxidative burst phagocytes. Biomed. Pharmacother., 2017, 93, 529-535.
[http://dx.doi.org/10.1016/j.biopha.2017.06.060] [PMID: 28686966]
[139]
Hou, Y.Z.; Chen, K.K.; Deng, X.L.; Fu, Z.L.; Chen, D.F.; Wang, Q. Anti-complementary constituents of Anchusa italica. Nat. Prod. Res., 2017, 31(21), 2572-2574.
[http://dx.doi.org/10.1080/14786419.2017.1320789] [PMID: 28438039]
[140]
Zhang, X.; Du, L.; Zhang, W.; Yang, Y.; Zhou, Q.; Du, G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci. Rep., 2017, 7(1), 9968.
[http://dx.doi.org/10.1038/s41598-017-07442-y] [PMID: 28855526]
[141]
Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact., 2017, 269, 67-79.
[http://dx.doi.org/10.1016/j.cbi.2017.03.016] [PMID: 28389404]
[142]
Kim, S.M.; Park, Y.J.; Shin, M.S.; Kim, H.R.; Kim, M.J.; Lee, S.H.; Yun, S.P.; Kwon, S.H. Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg. Med. Chem. Lett., 2017, 27(23), 5207-5212.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.048] [PMID: 29089232]
[143]
Zou, Z.; Xu, P.; Zhang, G.; Cheng, F.; Chen, K.; Li, J.; Zhu, W.; Cao, D.; Xu, K.; Tan, G. Selagintriflavonoids with BACE1 inhibitory activity from the fern Selaginella doederleinii. Phytochemistry, 2017, 134, 114-121.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.011] [PMID: 27889245]
[144]
Marsh, D.T.; Das, S.; Ridell, J.; Smid, S.D. Structure-activity relationships for flavone interactions with amyloid β reveal a novel anti-aggregatory and neuroprotective effect of 2′,3′,4′-trihydroxyflavone (2-D08). Bioorg. Med. Chem., 2017, 25(14), 3827-3834.
[http://dx.doi.org/10.1016/j.bmc.2017.05.041] [PMID: 28559058]
[145]
Telerman, A.; Ofir, R.; Kashman, Y.; Elmann, A. 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling. BMC Complement. Altern. Med., 2017, 17(1), 332.
[http://dx.doi.org/10.1186/s12906-017-1840-y] [PMID: 28645294]
[146]
Nguyen, D.H.; Seo, U.M.; Zhao, B.T.; Le, D.D.; Seong, S.H.; Choi, J.S.; Min, B.S.; Woo, M.H. Ellagitannin and flavonoid constituents from Agrimonia pilosa Ledeb. with their protein tyrosine phosphatase and acetylcholinesterase inhibitory activities. Bioorg. Chem., 2017, 72, 293-300.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.017] [PMID: 28499190]
[147]
Chen, L.; Xie, W.; Xie, W.; Zhuang, W.; Jiang, C.; Liu, N. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch. Gerontol. Geriatr., 2017, 73, 29-36. c.
[148]
Bertozzi, M.M.; Rossaneis, A.C.; Fattori, V.; Longhi-Balbinot, D.T.; Freitas, A.; Cunha, F.Q.; Alves-Filho, J.C.; Cunha, T.M.; Casagrande, R.; Verri, W.A. Jr. Diosmin reduces chronic constriction injury-induced neuropathic pain in mice. Chem. Biol. Interact., 2017, 273, 180-189.
[http://dx.doi.org/10.1016/j.cbi.2017.06.014] [PMID: 28625489]
[149]
Montenegro, C.A.; Gonçalves, G.F.; Oliveira Filho, A.A.; Lira, A.B.; Cassiano, T.T.M.; Lima, N.T.R.; Barbosa-Filho, J.M.; Diniz, M.F.F.M.; Pessôa, H.L.F. In silico study and bioprospection of the antibacterial and antioxidant effects of flavone and its hydroxylated derivatives. Molecules, 2017, 22(6)E869
[http://dx.doi.org/10.3390/molecules22060869] [PMID: 28538688]
[150]
Hawas, U.W.; Abou El-Kassem, L.T.; Thalassiolin, D. A new flavone O-glucoside Sulphate from the seagrass Thalassia hemprichii. Nat. Prod. Res., 2017, 31(20), 2369-2374.
[http://dx.doi.org/10.1080/14786419.2017.1308367] [PMID: 28355883]
[151]
Ma, Q.; Zhang, X.M.; Jiang, J.G.; Zhu, W. Apigenin-7-O-β-D-glucuronide inhibits modified low-density lipoprotein uptake and foam cell formation in macrophages. J. Funct. Foods, 2017, 3, 615-621.
[http://dx.doi.org/10.1016/j.jff.2017.06.026]
[152]
Lv, J.L.; Li, Z.Z.; Zhang, L.B. Two new flavonoids from Artemisia argyi with their anticoagulation activities. Nat. Prod. Res., 2017, 25, 1-8.
[PMID: 28539062]
[153]
Zhang, N.; Wei, W.Y.; Yang, Z.; Che, Y.; Jin, Y.G.; Liao, H.H.; Wang, S.S.; Deng, W.; Tang, Q.Z. Nobiletin, a polymethoxy flavonoid, protects against cardiac hypertrophy induced by pressure-overload via inhibition of NADPH oxidases and endoplasmic reticulum stress. Cell. Physiol. Biochem., 2017, 42(4), 1313-1325.
[http://dx.doi.org/10.1159/000478960] [PMID: 28700997]
[154]
Sengupta, B.; Sahihi, M.; Dehkhodaei, M.; Kelly, D.; Arany, I. Differential roles of 3-Hydroxyflavone and 7-hxydroxyflavone against nicotine-induced oxidative stress in rat renal proximal tubule cells. PLoS One, 2017, 12(6)e0179777
[http://dx.doi.org/10.1371/journal.pone.0179777] [PMID: 28640852]
[155]
Han, Y.; Zhang, T.; Su, J.; Zhao, Y. Chenchen; Wang; Li, X. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J. Clin. Neurosci., 2017, 40, 157-162.
[http://dx.doi.org/10.1016/j.jocn.2017.03.003] [PMID: 28342702]
[156]
Wang, S.; Yang, C.; Tu, H.; Zhou, J.; Liu, X.; Cheng, Y.; Luo, J.; Deng, X.; Zhang, H.; Xu, J. Characterization and metabolic diversity of flavonoids in Citrus species. Sci. Rep., 2017, 7(1), 10549.
[http://dx.doi.org/10.1038/s41598-017-10970-2] [PMID: 28874745]
[157]
Du, L.; Chen, J.; Xing, Y.Q. Eupatilin prevents H2O2-induced oxidative stress and apoptosis in human retinal pigment epithelial cells. Biomed. Pharmacother., 2017, 85, 136-140.
[http://dx.doi.org/10.1016/j.biopha.2016.11.108] [PMID: 27930977]
[158]
Wang, Y-A. Xue. J.; Jia, X.-H.; Du, C.-L.; Tang, W.-Z.; Wang, X.-J. New antioxidant C-geranylated flavonoids from the fruit peels of Paulownia catalpifolia T. Gong ex D.Y. Hong. Phytochem. Lett., 2017, 21, 169-173.
[http://dx.doi.org/10.1016/j.phytol.2017.06.025]
[159]
Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med., 2017, 10(8), 792-801.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.024] [PMID: 28942828]
[160]
Kırmızıbekmez, H.; Tiftik, K.; Kúsz, N.; Orban-Gyapai, O.; Zomborszki, Z.P.; Hohmann, J. Three new iridoid glycosides from the aerial parts of Asperula involucrata. Chem. Biodivers., 2017, 14(3)
[http://dx.doi.org/10.1002/cbdv.201600288] [PMID: 27935658] [http://dx.doi.org/10.1002/cbdv.201600288]
[161]
Guo, Y.; Liang, X.; Meng, M.; Chen, H.; Wei, X.; Li, M.; Li, J.; Huang, R.; Wei, J. Hepatoprotective effects of Yulangsan flavone against carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Phytomedicine, 2017, 33, 28-35.
[http://dx.doi.org/10.1016/j.phymed.2017.07.005] [PMID: 28887917]
[162]
de Oliveira, A.P.; Coppede, J.S.; Bertoni, B.W.; Crotti, A.E.M.; França, S.C.; Pereira, A.M.S.; Taleb-Contini, S.H. Costus spiralis (Jacq.) Roscoe: A novel source of flavones with α-glycosidase inhibitory activity. Chem. Biodivers., 2018, 15(1)
[http://dx.doi.org/10.1002/cbdv.201700421] [PMID: 29124880] [http://dx.doi.org/10.1002/cbdv.201700421]
[163]
Liu, H.J.; Fan, Y.L.; Liao, H.H.; Liu, Y.; Chen, S.; Ma, Z.G.; Zhang, N.; Yang, Z.; Deng, W.; Tang, Q.Z. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol. Cell. Biochem., 2017, 428(1-2), 9-21.
[http://dx.doi.org/10.1007/s11010-016-2913-9] [PMID: 28176247]
[164]
Huang, Q.H.; Lei, C.; Wang, P.P.; Li, J.Y.; Li, J.; Hou, A.J. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba. Fitoterapia, 2017, 122, 138-143.
[http://dx.doi.org/10.1016/j.fitote.2017.09.006] [PMID: 28916258]
[165]
Nurdiana, S.; Goh, Y.M.; Ahmad, H.; Dom, S.M.; Syimal’ain Azmi, N.; Noor Mohamad Zin, N.S.; Ebrahimi, M. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complement. Altern. Med., 2017, 17(1), 290.
[http://dx.doi.org/10.1186/s12906-017-1762-8] [PMID: 28576138]
[166]
Miyata, Y.; Nagase, T.; Katsura, Y.; Takahashi, H.; Natsugari, H.; Oshitari, T.; Kosano, H. In vitro studies on nobiletin isolated from citrus plants and the bioactive metabolites, inhibitory action against gelatinase enzymatic activity and the molecular mechanisms in human retinal Müller cell line. Biomed. Pharmacother., 2017, 93, 70-80.
[http://dx.doi.org/10.1016/j.biopha.2017.06.017] [PMID: 28623785]
[167]
Jenis, J.; Kim, J.Y.; Uddin, Z.; Song, Y.H.; Lee, H.H.; Park, K.H. Phytochemical profile and angiotensin I converting enzyme (ACE) inhibitory activity of Limonium michelsonii Lincz. J. Nat. Med., 2017, 71(4), 650-658.
[http://dx.doi.org/10.1007/s11418-017-1095-4] [PMID: 28550653]
[168]
Wen, G.; Liu, Q.; Hu, H.; Wang, D.; Wu, S. Design, synthesis, biological evaluation, and molecular docking of novel flavones as H3 R inhibitors. Chem. Biol. Drug Des., 2017, 90(4), 580-589.
[http://dx.doi.org/10.1111/cbdd.12981] [PMID: 28328173]
[169]
Jia, W.Z.; Cheng, F.; Zhang, Y.J.; Ge, J.Y.; Yao, S.Q.; Zhu, Q. Rapid synthesis of flavone-based monoamine oxidase (MAO) inhibitors targeting two active sites using click chemistry. Chem. Biol. Drug Des., 2017, 89(1), 141-151.
[http://dx.doi.org/10.1111/cbdd.12841] [PMID: 27666135]
[170]
Mahfoudi, R.; Djeridane, A.; Benarous, K.; Gaydou, E.M.; Yousfi, M. Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors. Bioorg. Chem., 2017, 74, 201-211.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.001] [PMID: 28843840]
[171]
Espargaró, A.; Ginex, T.; Vadell, M.D.; Busquets, M.A.; Estelrich, J.; Muñoz-Torrero, D.; Luque, F.J.; Sabate, R. Combined in vitro cell-based/in silico screening of naturally occuring flavonoids and phenolic compounds as potential anti-alzheimer drugs. J. Nat. Prod., 2017, 80(2), 278-289.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00643] [PMID: 28128562]
[172]
Sheeja Malar, D.; Beema Shafreen, R.; Karutha Pandian, S.; Pandima Devi, K. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study. Pharm. Biol., 2017, 55(1), 381-393.
[http://dx.doi.org/10.1080/13880209.2016.1241811] [PMID: 27931177]
[173]
Sharma, N.; Akhtar, S.; Jamal, Q.M.S.; Kamal, M.A.; Khan, M.K.A.; Siddiqui, M.H.; Sayeed, U. Elucidation of antiangiogenic potential of vitexin obtained from Cucumis sativus targeting Hsp90 protein: A novel multipathway targeted approach to restrain angiogenic phenomena. Med. Chem., 2017, 13(3), 282-291.
[http://dx.doi.org/10.2174/1573406413666161111152720] [PMID: 27834134]
[174]
Spilovska, K.; Korabecny, J.; Sepsova, V.; Jun, D.; Hrabinova, M.; Jost, P.; Muckova, L.; Soukup, O.; Janockova, J.; Kucera, T.; Dolezal, R.; Mezeiova, E.; Kaping, D.; Kuca, K. Novel tacrine-scutellarin hybrids as multipotent anti-alzheimer’s agents: design, synthesis and biological evaluation. Molecules, 2017, 22(6)pii:E1006
[http://dx.doi.org/10.3390/molecules22061006]
[175]
Verma, S.; Singh, A.; Kumari, A.; Tyagi, C.; Goyal, S.; Jamal, S.; Grover, A. Natural polyphenolic inhibitors against the antiapoptotic BCL-2. J. Recept. Signal Transduct. Res., 2017, 37(4), 391-400.
[http://dx.doi.org/10.1080/10799893.2017.1298129] [PMID: 28264627]
[176]
Zhang, L.; Ren, T.; Wang, Z.; Wang, R.; Chang, J. Comparative study of the binding of 3 flavonoids to the fat mass and obesity-associated protein by spectroscopy and molecular modeling. J. Mol. Recognit., 2017, 30(6)
[http://dx.doi.org/10.1002/jmr.2606] [PMID: 28058739] [http://dx.doi.org/10.1002/jmr.2606]
[177]
Zhang, L.; Zhao, X.; Tao, G.J.; Chen, J.; Zheng, Z.P. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem., 2017, 223, 40-48.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.017] [PMID: 28069121]
[178]
Wang, T-Y.; Li, Q.; Bi, K-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004]
[179]
Pallauf, K.; Duckstein, N.; Hasler, M.; Klotz, L.O.; Rimbach, G. Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARy. Oxid. Med. Cell. Longev., 2017, 20174397340
[http://dx.doi.org/10.1155/2017/4397340] [PMID: 28761622]
[180]
Chen, Y.H.; Yang, Z.S.; Wen, C.C.; Chang, Y.S.; Wang, B.C.; Hsiao, C.A.; Shih, T.L. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem., 2012, 134(2), 717-724.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.166] [PMID: 23107683]
[181]
Ratain, M.J.; Plunkett, W.K. Principles of Pharmacokinetics. In: Holland-Frei Cancer Medicine, 6th ed; Kufe, D.W.; Pollock, R.E.; Weichselbaum, R.R.; Bast, R.C., Eds.; Missouri Agric. Exp. Stn: Columbia, MO, 2003; p. 6.
[182]
Engelhardt, U.H.; Finger, A.; Kuhr, S. Determination of flavone C-glycosides in tea. Z. Lebensm. Unters. Forsch., 1993, 197(3), 239-244.
[http://dx.doi.org/10.1007/BF01185278] [PMID: 8237118]
[183]
Hanske, L.; Loh, G.; Sczesny, S.; Blaut, M.; Braune, A. The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J. Nutr., 2009, 139(6), 1095-1102.
[http://dx.doi.org/10.3945/jn.108.102814] [PMID: 19403720]
[184]
Bilia, A.R.; Giomi, M.; Innocenti, M.; Gallori, S.; Vincieri, F.F. HPLC-DAD-ESI-MS analysis of the constituents of aqueous preparations of verbena and lemon verbena and evaluation of the antioxidant activity. J. Pharm. Biomed. Anal., 2008, 46(3), 463-470.
[http://dx.doi.org/10.1016/j.jpba.2007.11.007] [PMID: 18155378]
[185]
Ma, L.Y.; Liu, R.H.; Xu, X.D.; Yu, M.Q.; Zhang, Q.; Liu, H.L. The pharmacokinetics of C-glycosyl flavones of Hawthorn leaf flavonoids in rat after single dose oral administration. Phytomedicine, 2010, 17(8-9), 640-645.
[http://dx.doi.org/10.1016/j.phymed.2009.12.010] [PMID: 20096549]
[186]
Zhang, Y.; Tie, X.; Bao, B.; Wu, X.; Zhang, Y. Metabolism of flavone C-glucosides and p-coumaric acid from antioxidant of bamboo leaves (AOB) in rats. Br. J. Nutr., 2007, 97(3), 484-494.
[http://dx.doi.org/10.1017/S0007114507336830] [PMID: 17313710]
[187]
Whitted, C.L.; Palau, V.E.; Torrenegra, R.D.; Harirforoosh, S. Development of reversed-phase high performance liquid chromatography methods for quantification of two isomeric flavones and the application of the methods to pharmacokinetic studies in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1001, 150-155.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.039] [PMID: 26280282]
[188]
Hung, W.L.; Chang, W.S.; Lu, W.C.; Wei, G.J.; Wang, Y.; Ho, C.T.; Hwang, L.S. Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat. Yao Wu Shi Pin Fen Xi, 2018, 26(2), 849-857.
[http://dx.doi.org/10.1016/j.jfda.2017.08.003] [PMID: 29567257]
[189]
Janssen, K.; Mensink, R.P.; Cox, F.J.; Harryvan, J.L.; Hovenier, R.; Hollman, P.C.; Katan, M.B. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am. J. Clin. Nutr., 1998, 67(2), 255-262.
[http://dx.doi.org/10.1093/ajcn/67.2.255] [PMID: 9459373]
[190]
Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of apigenin from apiin-rich parsley in humans. Ann. Nutr. Metab., 2006, 50(3), 167-172.
[http://dx.doi.org/10.1159/000090736] [PMID: 16407641]
[191]
Cao, J.; Zhang, Y.; Chen, W.; Zhao, X. The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. Br. J. Nutr., 2010, 103(2), 249-255.
[http://dx.doi.org/10.1017/S000711450999170X] [PMID: 19747418]
[192]
Wittemer, S.M.; Ploch, M.; Windeck, T.; Müller, S.C.; Drewelow, B.; Derendorf, H.; Veit, M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine, 2005, 12(1-2), 28-38.
[http://dx.doi.org/10.1016/j.phymed.2003.11.002] [PMID: 15693705]
[193]
Nielsen, S.E.; Young, J.F.; Daneshvar, B.; Lauridsen, S.T.; Knuthsen, P.; Sandström, B.; Dragsted, L.O. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br. J. Nutr., 1999, 81(6), 447-455.
[http://dx.doi.org/10.1017/S000711459900080X] [PMID: 10615220]
[194]
Li, L.P.; Jiang, H.D. Determination and assay validation of luteolin and apigenin in human urine after oral administration of tablet of Chrysanthemum morifolium extract by HPLC. J. Pharm. Biomed. Anal., 2006, 41(1), 261-265.
[http://dx.doi.org/10.1016/j.jpba.2005.10.019] [PMID: 16318906]
[195]
Giarolla, J.; Pasqualoto, K.F.; Rando, D.G.; Zaim, M.H.; Ferreira, E.I. Molecular modeling study on the disassembly of dendrimers designed as potential antichagasic and antileishmanial prodrugs. J. Mol. Model., 2012, 18(5), 2257-2269.
[http://dx.doi.org/10.1007/s00894-011-1244-8] [PMID: 21965079]
[196]
Giarolla, J.; Pasqualoto, K.F.; Ferreira, E.I. Design and exploratory data analysis of a second generation of dendrimer prodrugs potentially antichagasic and leishmanicide. Mol. Divers., 2013, 17(4), 711-720.
[http://dx.doi.org/10.1007/s11030-013-9467-5] [PMID: 23990201]
[197]
Rajnarayana, K.; Reddy, M.S.; Krishna, D.R. Diosmin pretreatment affects bioavailability of metronidazole. Eur. J. Clin. Pharmacol., 2003, 58(12), 803-807.
[http://dx.doi.org/10.1007/s00228-002-0543-5] [PMID: 12698306]
[198]
Rajnarayana, K.; Venkatesham, A.; Nagulu, M.; Srinivas, M.; Krishna, D.R. Influence of diosmin pretreatment on the pharmacokinetics of chlorzoxazone in healthy male volunteers. Drug Metabol. Drug Interact., 2008, 23(3-4), 311-321.
[http://dx.doi.org/10.1515/DMDI.2008.23.3-4.311] [PMID: 19326774]
[199]
Quintieri, L.; Bortolozzo, S.; Stragliotto, S.; Moro, S.; Pavanetto, M.; Nassi, A.; Palatini, P.; Floreani, M. Flavonoids diosmetin and hesperetin are potent inhibitors of cytochrome P450 2C9-mediated drug metabolism in vitro. Drug Metab. Pharmacokinet., 2010, 25(5), 466-476.
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RG-044] [PMID: 20877134]
[200]
Rajnarayana, K.; Venkatesham, A.; Krishna, D.R. Bioavailability of diclofenac sodium after pretreatment with diosmin in healthy volunteers. Drug Metabol. Drug Interact., 2007, 22(2-3), 165-174.
[http://dx.doi.org/10.1515/DMDI.2007.22.2-3.165] [PMID: 17708066]
[201]
Quintieri, L.; Palatini, P.; Nassi, A.; Ruzza, P.; Floreani, M. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem. Pharmacol., 2008, 75(6), 1426-1437.
[http://dx.doi.org/10.1016/j.bcp.2007.11.012] [PMID: 18191104]
[202]
Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol., 2010, 48(1), 429-435.
[http://dx.doi.org/10.1016/j.fct.2009.10.041] [PMID: 19883715]
[203]
Cao, L.; Kwara, A.; Greenblatt, D.J. Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J. Pharm. Pharmacol., 2017, 69(12), 1762-1772.
[http://dx.doi.org/10.1111/jphp.12812] [PMID: 28872689]
[204]
Nakazumi, H.; Ueyama, T.; Kitao, T. Synthesis and antibacterial activity of 2-phenyl-4H-benzo[b] thiopyran-4-ones (thioflavones) and related compounds. J. Heterocycl. Chem., 1984, 21(1), 193-196.
[http://dx.doi.org/10.1002/jhet.5570210138]
[205]
Dare, P.; Colleoni, A.; Setnikar, I. Research on coronary dilators in the chromone group ethyl esters and basic esters of chromone-hydroxyacetic acid and flavone-hydroxyacetic acid. Farmaco, Sci., 1958, 13(8), 561-573.
[206]
Weller, L.E.; Redemann, C.T.; Gottshall, R.Y.; Roberts, J.M.; Lucas, E.H.; Sell, H.M. Antibacterial substances in seed plants active against tubercle bacilli. II. The antibacterial principles of Primula malacoides and Buxus sempervirens. Antibiot Chemother (Northfield), 1953, 3(6), 603-606.
[PMID: 24542685]
[207]
Carrieri, A.; Pérez-Nueno, V.I.; Lentini, G.; Ritchie, D.W. Recent trends and future prospects in computational GPCR drug discovery: From virtual screening to polypharmacology. Curr. Top. Med. Chem., 2013, 13(9), 1069-1097.
[http://dx.doi.org/10.2174/15680266113139990028] [PMID: 23651484]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [968 - 1001]
Pages: 34
DOI: 10.2174/1570179416666190719125730
Price: $65

Article Metrics

PDF: 25
HTML: 7