Factors which Influence the Levels of ST-2, Galectin-3 and MMP-9 in Acute Coronary Syndrome

Author(s): Luxitaa Goenka, Durga Jha, Masum Sharma, V.E. Dhandapani, Melvin George*

Journal Name: Cardiovascular & Hematological Disorders-Drug Targets
Formerly Current Drug Targets - Cardiovascular & Hematological Disorders

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Several cardiac biomarkers are being studied to explore their potential in the prognostication of Acute Coronary Syndrome (ACS). However, there are limited studies exploring the relationship between these biomarkers and clinical, laboratory and demographic characteristics.

Objective: We sought to determine the factors which influence the concentration of novel cardiac biomarkers such as Galectin-3, suppression of tumorigenicity-2 (ST-2) and Matrix Metallopeptidase-9 (MMP-9) in patients with ACS.

Methods: A total of 122 patients with ACS were enrolled in the study. The study patients were categorized into two groups namely: STEMI (n=58) and NSTEMI/UA (n=64). Plasma samples were used to determine the level of biomarkers, Galectin-3 and ST-2, and serum samples were used to determine the levels of MMP-9 using the Enzyme-linked immunosorbent assay (ELISA). The association between the plasma and serum levels of biomarkers and, demographic, clinical and laboratory variables were determined. Statistical analyses for the study were performed using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA).

Results: Elderly aged [0.107 (0.012-0.969); p=0.047] patients had higher ST-2. Galectin-3 was higher among female patients [3.693(1.253-10.887); p=0.018] and patients with low left ventricular ejection fraction [2.882 (1.041-7.978); p=0.042]. Patients with lower body mass index [3.385 (1.241-9.231); p=0.017], diabetes [3.650 (1.302-10.237); p=0.014] and high total leukocyte count [2.900 (1.114-7.551; p=0.029] had higher MMP-9 levels.

Conclusion: The concentration of galectin-3, ST-2 and MMP-9 are independently influenced by demographic, clinical and laboratory characteristics. It is estimated that these factors should be accounted for when interpreting the results of the biomarker assays.

Keywords: Acute coronary syndrome, galectin-3, ST-2, matrix metallopeptidase-9, biomarkers, diabetes.

World Health Organization. The top 10 causes of death.[home page on Internet], http://www.who.int/mediacentre/factsheets/fs310/en/
Xavier, D.; Pais, P.; Devereaux, P.J.; Xie, C.; Prabhakaran, D.; Reddy, K.S.; Gupta, R.; Joshi, P.; Kerkar, P.; Thanikachalam, S.; Haridas, K.K.; Jaison, T.M.; Naik, S.; Maity, A.K.; Yusuf, S. Treatment and outcomes of acute coronary syndromes in India (CREATE): a prospective analysis of registry data. Lancet, 2008, 371(9622), 1435-1442.
[http://dx.doi.org/10.1016/S0140-6736(08)60623-6] [PMID: 18440425]
Morrow, D.A.; de Lemos, J.A. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation, 2007, 115(8), 949-952.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.683110] [PMID: 17325253]
Wang, J.; Tan, G-J.; Han, L-N.; Bai, Y-Y.; He, M.; Liu, H-B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol., 2017, 14(2), 135-150.
[PMID: 28491088]
Pugliese, G.; Iacobini, C.; Ricci, C.; Blasetti Fantauzzi, C.; Menini, S. Galectin-3 in diabetic patients. Clin. Chem. Lab. Med., 2014, 52(10), 1413-1423.
[http://dx.doi.org/10.1515/cclm-2014-0187] [PMID: 24940712]
Agnello, L.; Bivona, G.; Lo Sasso, B.; Scazzone, C.; Bazan, V.; Bellia, C.; Ciaccio, M. Galectin-3 in acute coronary syndrome. Clin. Biochem., 2017, 50(13-14), 797-803.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.04.018] [PMID: 28456545]
Villacorta, H.; Maisel, A.S. Soluble ST2 Testing: A Promising Biomarker in the Management of Heart Failure. Arq. Bras. Cardiol., 2016, 106(2), 145-152.
[PMID: 26761075]
Xu, J-Y.; Xiong, Y-Y.; Lu, X-T.; Yang, Y-J. Regulation of type 2 immunity in myocardial infarction. Front. Immunol., 2019, 10, 62.
Lijnen, H.R. Metalloproteinases in development and progression of vascular disease. Pathophysiol. Haemost. Thromb., 2003, 33(5-6), 275-281.
[http://dx.doi.org/10.1159/000083814] [PMID: 15692229]
O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; Granger, C.B.; Krumholz, H.M.; Linderbaum, J.A.; Morrow, D.A.; Newby, L.K.; Ornato, J.P.; Ou, N.; Radford, M.J.; Tamis-Holland, J.E.; Tommaso, C.L.; Tracy, C.M.; Woo, Y.J.; Zhao, D.X. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines: Developed in collaboration with the american college of emergency physicians and society for cardiovascular angiography and interventions. Catheter. Cardiovasc. Interv., 2013, 82(1), E1-E27.
[http://dx.doi.org/10.1002/ccd.24776] [PMID: 23299937]
Amsterdam, E.A.; Wenger, N.K.; Brindis, R.G.; Casey, D.E., Jr; Ganiats, T.G.; Holmes, D.R., Jr; Jaffe, A.S.; Jneid, H.; Kelly, R.F.; Kontos, M.C.; Levine, G.N.; Liebson, P.R.; Mukherjee, D.; Peterson, E.D.; Sabatine, M.S.; Smalling, R.W.; Zieman, S.J. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: A report of the american college of cardiology/american heart association task force on practice guidelines. J. Am. Coll. Cardiol., 2014, 64(24), e139-e228.
[http://dx.doi.org/10.1016/j.jacc.2014.09.017] [PMID: 25260718]
Maiolino, G.; Rossitto, G.; Pedon, L.; Cesari, M.; Frigo, A.C.; Azzolini, M.; Plebani, M.; Rossi, G.P. Galectin-3 predicts long-term cardiovascular death in high-risk patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2015, 35(3), 725-732.
[http://dx.doi.org/10.1161/ATVBAHA.114.304964] [PMID: 25614283]
Gucuk Ipek, E.; Akin Suljevic, S.; Kafes, H.; Basyigit, F.; Karalok, N.; Guray, Y.; Dinc Asarcikli, L.; Acar, B.; Demirel, H. Evaluation of galectin-3 levels in acute coronary syndrome. Ann. Cardiol. Angeiol. (Paris), 2016, 65(1), 26-30.
[http://dx.doi.org/10.1016/j.ancard.2015.09.046] [PMID: 26619751]
Sharma, U.C.; Pokharel, S.; van Brakel, T.J.; van Berlo, J.H.; Cleutjens, J.P.; Schroen, B.; André, S.; Crijns, H.J.; Gabius, H.J.; Maessen, J.; Pinto, Y.M. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 2004, 110(19), 3121-3128.
[http://dx.doi.org/10.1161/01.CIR.0000147181.65298.4D] [PMID: 15520318]
Psarras, S.; Mavroidis, M.; Sanoudou, D.; Davos, C.H.; Xanthou, G.; Varela, A.E.; Panoutsakopoulou, V.; Capetanaki, Y. Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur. Heart J., 2012, 33(15), 1954-1963.
[http://dx.doi.org/10.1093/eurheartj/ehr119] [PMID: 21525025]
Grandin, E.W.; Jarolim, P.; Murphy, S.A.; Ritterova, L.; Cannon, C.P.; Braunwald, E.; Morrow, D.A. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin. Chem., 2012, 58(1), 267-273.
[http://dx.doi.org/10.1373/clinchem.2011.174359] [PMID: 22110019]
Singsaas, E.G.; Manhenke, C.A.; Dickstein, K.; Orn, S. Circulating galectin-3 levels are increased in patients with ischemic heart disease, but are not influenced by acute myocardial infarction. Cardiology, 2016, 134(4), 398-405.
[http://dx.doi.org/10.1159/000445103] [PMID: 27120522]
Kohli, P.; Bonaca, M.P.; Kakkar, R.; Kudinova, A.Y.; Scirica, B.M.; Sabatine, M.S.; Murphy, S.A.; Braunwald, E.; Lee, R.T.; Morrow, D.A. Role of ST2 in non-ST-elevation acute coronary syndrome in the MERLIN-TIMI 36 trial. Clin. Chem., 2012, 58(1), 257-266.
[http://dx.doi.org/10.1373/clinchem.2011.173369] [PMID: 22096031]
Coglianese, E.E.; Larson, M.G.; Vasan, R.S.; Ho, J.E.; Ghorbani, A.; McCabe, E.L.; Cheng, S.; Fradley, M.G.; Kretschman, D.; Gao, W.; O’Connor, G.; Wang, T.J.; Januzzi, J.L. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin. Chem., 2012, 58(12), 1673-1681.
[http://dx.doi.org/10.1373/clinchem.2012.192153] [PMID: 23065477]
Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc., 2013, 14(12), 877-882.
[http://dx.doi.org/10.1016/j.jamda.2013.05.009] [PMID: 23792036]
Di Stefano, R.; Di Bello, V.; Barsotti, M.C.; Grigoratos, C.; Armani, C.; Dell’Omodarme, M.; Carpi, A.; Balbarini, A. Inflammatory markers and cardiac function in acute coronary syndrome: difference in ST-segment elevation myocardial infarction (STEMI) and in non-STEMI models. Biomed. Pharmacother., 2009, 63(10), 773-780.
[http://dx.doi.org/10.1016/j.biopha.2009.06.004] [PMID: 19906505]
Bartunek, J.; Delrue, L.; Van Durme, F.; Muller, O.; Casselman, F.; De Wiest, B.; Croes, R.; Verstreken, S.; Goethals, M.; de Raedt, H.; Sarma, J.; Joseph, L.; Vanderheyden, M.; Weinberg, E.O. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J. Am. Coll. Cardiol., 2008, 52(25), 2166-2174.
[http://dx.doi.org/10.1016/j.jacc.2008.09.027] [PMID: 19095135]
Demyanets, S.; Kaun, C.; Pentz, R.; Krychtiuk, K.A.; Rauscher, S.; Pfaffenberger, S.; Zuckermann, A.; Aliabadi, A.; Gröger, M.; Maurer, G.; Huber, K.; Wojta, J. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J. Mol. Cell. Cardiol., 2013, 60, 16-26.
[http://dx.doi.org/10.1016/j.yjmcc.2013.03.020] [PMID: 23567618]
Weinberg, E.O.; Shimpo, M.; De Keulenaer, G.W.; MacGillivray, C.; Tominaga, S.; Solomon, S.D.; Rouleau, J.L.; Lee, R.T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 2002, 106(23), 2961-2966.
[http://dx.doi.org/10.1161/01.CIR.0000038705.69871.D9] [PMID: 12460879]
Tolppanen, H.; Rivas-Lasarte, M.; Lassus, J.; Sadoune, M.; Gayat, E.; Pulkki, K.; Arrigo, M.; Krastinova, E.; Sionis, A.; Parissis, J.; Spinar, J.; Januzzi, J.; Harjola, V.P.; Mebazaa, A. Combined measurement of soluble ST2 and amino-terminal pro-B-type natriuretic peptide provides early assessment of severity in cardiogenic shock complicating acute coronary syndrome. Crit. Care Med., 2017, 45(7), e666-e673.
[http://dx.doi.org/10.1097/CCM.0000000000002336] [PMID: 28403119]
Tung, Y-C.; Chang, C-H.; Chen, Y-C.; Chu, P-H. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction. PLoS One, 2015, 10(4)e0125282
[http://dx.doi.org/10.1371/journal.pone.0125282] [PMID: 25853556]
Gungor, O.; Unal, H.U.; Guclu, A.; Gezer, M.; Eyileten, T.; Guzel, F.B.; Altunoren, O.; Erken, E.; Oguz, Y.; Kocyigit, I.; Yilmaz, M.I. IL-33 and ST2 levels in chronic kidney disease: Associations with inflammation, vascular abnormalities, cardiovascular events, and survival. PLoS One, 2017, 12(6)e0178939
[http://dx.doi.org/10.1371/journal.pone.0178939] [PMID: 28614418]
Derosa, G.; Cicero, A.F.G.; Scalise, F.; Avanzini, M.A.; Tinelli, C.; Piccinni, M.N.; Peros, E.; Geroldi, D.; Fogari, E.; D’Angelo, A. Metalloproteinase-2 and -9 in diabetic and nondiabetic subjects during acute coronary syndromes. Endothelium, 2007, 14(1), 45-51.
[http://dx.doi.org/10.1080/10623320601177064] [PMID: 17364896]
Ferroni, P.; Basili, S.; Martini, F.; Cardarello, C.M.; Ceci, F.; Di Franco, M.; Bertazzoni, G.; Gazzaniga, P.P.; Alessandri, C. Serum metalloproteinase 9 levels in patients with coronary artery disease: a novel marker of inflammation. J. Investig. Med., 2003, 51(5), 295-300.
[http://dx.doi.org/10.1136/jim-51-05-17] [PMID: 14577520]
Uemura, S.; Matsushita, H.; Li, W.; Glassford, A.J.; Asagami, T.; Lee, K.H.; Harrison, D.G.; Tsao, P.S. Diabetes mellitus enhances vascular matrix metalloproteinase activity: Role of oxidative stress. Circ. Res., 2001, 88(12), 1291-1298.
[http://dx.doi.org/10.1161/hh1201.092042] [PMID: 11420306]
Heo, J.M.; Park, J.H.; Kim, J.H.; You, S.H.; Kim, J.S.; Ahn, C.M.; Hong, S.J.; Shin, K.H.; Lim, D.S. Comparison of inflammatory markers between diabetic and nondiabetic ST segment elevation myocardial infarction. J. Cardiol., 2012, 60(3), 204-209.
[http://dx.doi.org/10.1016/j.jjcc.2012.03.006] [PMID: 22658696]
Lewandowski, K.C.; Banach, E.; Bieńkiewicz, M.; Lewiński, A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Arch. Med. Sci., 2011, 7(2), 294-303.
[http://dx.doi.org/10.5114/aoms.2011.22081] [PMID: 22291770]
Duhamel-Clérin, E.; Orvain, C.; Lanza, F.; Cazenave, J.P.; Klein-Soyer, C. Thrombin receptor-mediated increase of two matrix metalloproteinases, MMP-1 and MMP-3, in human endothelial cells. Arterioscler. Thromb. Vasc. Biol., 1997, 17(10), 1931-1938.
[http://dx.doi.org/10.1161/01.ATV.17.10.1931] [PMID: 9351356]
Chavey, C.; Mari, B.; Monthouel, M.N.; Bonnafous, S.; Anglard, P.; Van Obberghen, E.; Tartare-Deckert, S. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem., 2003, 278(14), 11888-11896.
[http://dx.doi.org/10.1074/jbc.M209196200] [PMID: 12529376]
Biga, P.R.; Froehlich, J.M.; Greenlee, K.J.; Galt, N.J.; Meyer, B.M.; Christensen, D.J. Gelatinases impart susceptibility to high-fat diet-induced obesity in mice. J. Nutr. Biochem., 2013, 24(8), 1462-1468.
[http://dx.doi.org/10.1016/j.jnutbio.2012.12.005] [PMID: 23465590]
Hastie, C.E.; Padmanabhan, S.; Slack, R.; Pell, A.C.; Oldroyd, K.G.; Flapan, A.D.; Jennings, K.P.; Irving, J.; Eteiba, H.; Dominiczak, A.F.; Pell, J.P. Obesity paradox in a cohort of 4880 consecutive patients undergoing percutaneous coronary intervention. Eur. Heart J., 2010, 31(2), 222-226.
[http://dx.doi.org/10.1093/eurheartj/ehp317] [PMID: 19687163]
Gruberg, L.; Weissman, N.J.; Waksman, R.; Fuchs, S.; Deible, R.; Pinnow, E.E.; Ahmed, L.M.; Kent, K.M.; Pichard, A.D.; Suddath, W.O.; Satler, L.F.; Lindsay, J., Jr The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? J. Am. Coll. Cardiol., 2002, 39(4), 578-584.
[http://dx.doi.org/10.1016/S0735-1097(01)01802-2] [PMID: 11849854]
Niedziela, J.; Hudzik, B.; Niedziela, N.; Gąsior, M.; Gierlotka, M.; Wasilewski, J.; Myrda, K.; Lekston, A.; Poloński, L.; Rozentryt, P. The obesity paradox in acute coronary syndrome: A meta-analysis. Eur. J. Epidemiol., 2014, 29(11), 801-812.
[http://dx.doi.org/10.1007/s10654-014-9961-9] [PMID: 25354991]
Hamed, G.M.; Fattah, M.F. Clinical Relevance of matrix metalloproteinase 9 in patients with acute coronary syndrome. Clin. Appl. Thromb. Hemost., 2015, 21(8), 705-711.
[http://dx.doi.org/10.1177/1076029614567309] [PMID: 25616488]
Lahdentausta, L.; Leskelä, J.; Winkelmann, A.; Tervahartiala, T.; Sorsa, T.; Pesonen, E.; Pussinen, P.J. Serum MMP-9 diagnostics, prognostics, and activation in acute coronary syndrome and its recurrence. J. Cardiovasc. Transl. Res., 2018, 11(3), 210-220.
[http://dx.doi.org/10.1007/s12265-018-9789-x] [PMID: 29349668]
Derosa, G.; Ferrari, I.; D’Angelo, A.; Tinelli, C.; Salvadeo, S.A.; Ciccarelli, L.; Piccinni, M.N.; Gravina, A.; Ramondetti, F.; Maffioli, P.; Cicero, A.F. Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium, 2008, 15(4), 219-224.
[http://dx.doi.org/10.1080/10623320802228815] [PMID: 18663625]
Ritter, A.M.; de Faria, A.P.; Barbaro, N.; Sabbatini, A.R.; Corrêa, N.B.; Brunelli, V.; Amorim, R.; Modolo, R.; Moreno, H. Crosstalk between obesity and MMP-9 in cardiac remodelling -a cross-sectional study in apparent treatment-resistant hypertension. Blood Press., 2017, 26(2), 122-129.
[http://dx.doi.org/10.1080/08037051.2016.1249336] [PMID: 27825280]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 26 February, 2020
Page: [64 - 73]
Pages: 10
DOI: 10.2174/1871529X19666190719104005
Price: $65

Article Metrics

PDF: 22