Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Expression Profile of VEGF-C, VEGF-D, and VEGFR-3 in Different Grades of Endometrial Cancer

Author(s): Marcin Oplawski*, Konrad Dziobek, Nikola Zmarzły, Beniamin Grabarek, Tomasz Halski, Piotr Januszyk, Agnieszka Kuś-Kierach, Iwona Adwent, Dariusz Dąbruś, Kamil Kiełbasiński and Dariusz Boroń

Volume 20, Issue 12, 2019

Page: [1004 - 1010] Pages: 7

DOI: 10.2174/1389201020666190718164431

open access plus

Abstract

Background: Vascular endothelial growth factor (VEGF)-C, -D, and VEGF receptor-3 are proteins characterized as crucial for tumor lymphangiogenesis. It is accompanied by angiogenesis during wound healing, but also in the neoplastic process. The research studies have shown that the lymphatic system plays a key role in the progression of carcinogenesis.

Objective: The aim of this study was to evaluate changes in the expression of VEGF-C, VEGF-D and VEGFR-3 in different grades of endometrial cancer (G1-G3).

Methods: The study included 45 patients diagnosed with endometrial cancer (G1=17; G2=15; G3=13) and 15 patients without neoplastic changes. The expression of VEGF-C, VEGF-D, and VEGFR-3 was assessed using microarray technique and immunohistochemistry. Statistical analysis was performed using the one-way ANOVA and Tukey's post-hoc test.

Results: Statistically significant changes in the expression at the transcriptome level were found only in the case of VEGF-C (G1 vs. C, fold change - FC = -1.15; G2 vs. C, FC = -2.33; G3 vs. C, FC = - 1.68). However, VEGF-D and VEGFR-3 were expressed at the protein level. Analysis of VEGF-D expression showed that the optical density of the reaction product in G1 reached 101.7, while the values in G2 and G3 were 142.7 and 184.4, respectively. For VEGF-R3, the optical density of the reaction product reached the following levels: 72 in control, 118.77 in G1, 145.8 in G2, and 170.9 in G3.

Conclusion: An increase in VEGF-D and VEGFR-3 levels may indicate that VEGF-D-dependent processes are intensified along with the dedifferentiation of tumor cells. The lack of VEGF-C expression in endometrial cancer samples may suggest that this tumor is characterized by a different mechanism of metastasis than EMT. Our study emphasizes that when analyzing the metastatic potential of cancer, the expression of more than one factor should be taken into account.

Keywords: VEGF-C, VEGF-D, VEGFR-3, lymphangiogenesis, endometrial cancer, ANOVA.

Next »
Graphical Abstract
[1]
Box, C.; Rogers, S.J.; Mendiola, M.; Eccles, S.A. Tumour-microenvironmental interactions: paths to progression and targets for treatment. Semin. Cancer Biol., 2010, 20(3), 128-138.
[http://dx.doi.org/10.1016/j.semcancer.2010.06.004] [PMID: 20599506]
[2]
Le Bitoux, M.A.; Stamenkovic, I. Tumor-host interactions: the role of inflammation. Histochem. Cell Biol., 2008, 130(6), 1079-1090.
[http://dx.doi.org/10.1007/s00418-008-0527-3] [PMID: 18953558]
[3]
Zumsteg, A.; Christofori, G. Corrupt policemen: Inflammatory cells promote tumor angiogenesis. Curr. Opin. Oncol., 2009, 21(1), 60-70.
[http://dx.doi.org/10.1097/CCO.0b013e32831bed7e] [PMID: 19125020]
[4]
Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.I. The vascular network of tumours-what is it not for? J. Pathol., 2003, 201(2), 173-180.
[http://dx.doi.org/10.1002/path.1355] [PMID: 14517833]
[5]
Cursiefen, C.; Chen, L.; Borges, L.P.; Jackson, D.; Cao, J.; Radziejewski, C.; D’Amore, P.A.; Dana, M.R.; Wiegand, S.J.; Streilein, J.W. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest., 2004, 113(7), 1040-1050.
[http://dx.doi.org/10.1172/JCI20465] [PMID: 15057311]
[6]
Schoppmann, S.F.; Birner, P.; Stöckl, J.; Kalt, R.; Ullrich, R.; Caucig, C.; Kriehuber, E.; Nagy, K.; Alitalo, K.; Kerjaschki, D. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol., 2002, 161(3), 947-956.
[http://dx.doi.org/10.1016/S0002-9440(10)64255-1] [PMID: 12213723]
[7]
Tammela, T.; Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010, 140(4), 460-476.
[http://dx.doi.org/10.1016/j.cell.2010.01.045] [PMID: 20178740]
[8]
Tseng, H.S.; Chen, L.S.; Kuo, S.J.; Chen, S.T.; Wang, Y.F.; Chen, D.R. Tumor characteristics of breast cancer in predicting axillary lymph node metastasis. Med. Sci. Monit., 2014, 20, 1155-1161.
[http://dx.doi.org/10.12659/MSM.890491] [PMID: 24998473]
[9]
Zhang, S.; Zhang, D.; Yi, S.; Gong, M.; Lu, C.; Cai, Y.; Tang, X.; Zou, L. The relationship of lymphatic vessel density, lymphovascular invasion, and lymph node metastasis in breast cancer: A systematic review and meta-analysis. Oncotarget, 2017, 8(2), 2863-2873.
[http://dx.doi.org/10.18632/oncotarget.13752] [PMID: 27926511]
[10]
Asai, A.; Miyata, Y.; Matsuo, T.; Shida, Y.; Hakariya, T.; Ohba, K.; Sakai, H. Changes in lymphangiogenesis and vascular endothelial growth factor expression by neo-adjuvant hormonal therapy in prostate cancer patients. Prostate, 2017, 77(3), 255-262.
[http://dx.doi.org/10.1002/pros.23244] [PMID: 27527525]
[11]
Kumar, N.P.; Banurekha, V.V.; Nair, D.; Babu, S. Circulating angiogenic factors as biomarkers of disease severity and bacterial burden in pulmonary tuberculosis. PLoS One, 2016, 11(1)e0146318
[http://dx.doi.org/10.1371/journal.pone.0146318] [PMID: 26727122]
[12]
Robering, J.W.; Weigand, A.; Pfuhlmann, R.; Horch, R.E.; Beier, J.P.; Boos, A.M. Mesenchymal stem cells promote lymphangiogenic properties of lymphatic endothelial cells. J. Cell. Mol. Med., 2018, 22, 3740-3750.
[http://dx.doi.org/10.1111/jcmm.13590] [PMID: 29752774]
[13]
Kowanetz, M.; Ferrara, N. Vascular endothelial growth factor signaling pathways: Therapeutic perspective. Clin. Cancer Res., 2006, 12(17), 5018-5022.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1520] [PMID: 16951216]
[14]
Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med., 2012, 2(7)a006502
[http://dx.doi.org/10.1101/cshperspect.a006502] [PMID: 22762016]
[15]
Karkkainen, M.J.; Petrova, T.V. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene, 2000, 19(49), 5598-5605.
[http://dx.doi.org/10.1038/sj.onc.1203855] [PMID: 11114740]
[16]
Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 2007, 8(6), 464-478.
[http://dx.doi.org/10.1038/nrm2183] [PMID: 17522591]
[17]
Davydova, N.; Harris, N.C.; Roufail, S.; Paquet-Fifield, S.; Ishaq, M.; Streltsov, V.A.; Williams, S.P.; Karnezis, T.; Stacker, S.A.; Achen, M.G. Differential receptor binding and regulatory mechanisms for the lymphangiogenic growth factors Vascular Endothelial Growth Factor (VEGF)-C and -D. J. Biol. Chem., 2016, 291(53), 27265-27278.
[http://dx.doi.org/10.1074/jbc.M116.736801] [PMID: 27852824]
[18]
Chen, H.; Guan, R.; Lei, Y.; Chen, J.; Ge, Q.; Zhang, X.; Dou, R.; Chen, H.; Liu, H.; Qi, X.; Zhou, X.; Chen, C. Lymphangiogenesis in gastric cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer, 2015, 15, 103.
[http://dx.doi.org/10.1186/s12885-015-1109-0] [PMID: 25884175]
[19]
Sopo, M.; Anttila, M.; Hämäläinen, K.; Kivelä, A.; Ylä-Herttuala, S.; Kosma, V.M.; Keski-Nisula, L.; Sallinen, H. Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in distant metastases than in matched primary high grade epithelial ovarian cancer. BMC Cancer, 2019, 19(1), 584.
[20]
Kuerti, S.; Oliveira-Ferrer, L.; Milde-Langosch, K.; Schmalfeldt, B.; Legler, K.; Woelber, L.; Prieske, K.; Mahner, S.; Trillsch, F. VEGF-C expression attributes the risk for lymphatic metastases to ovarian cancer patients. Oncotarget, 2017, 8(26), 43218-43227.
[http://dx.doi.org/10.18632/oncotarget.17978] [PMID: 28591727]
[21]
Dai, Y.; Tong, R.; Guo, H.; Yu, T.; Wang, C. Association of CXCR4, CCR7, VEGF-C and VEGF-D expression with lymph node metastasis in patients with cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol., 2017, 214, 178-183.
[http://dx.doi.org/10.1016/j.ejogrb.2017.04.043] [PMID: 28535405]
[22]
Opławski, M.; Michalski, M.; Witek, A.; Michalski, B.; Zmarzły, N.; Jęda-Golonka, A.; Styblińska, M.; Gola, J.; Kasprzyk-Żyszczyńska, M.; Mazurek, U.; Plewka, A. Identification of a gene expression profile associated with the regulation of angiogenesis in endometrial cancer. Mol. Med. Rep., 2017, 16(3), 2547-2555.
[http://dx.doi.org/10.3892/mmr.2017.6868] [PMID: 28656251]
[23]
de Haydu, C.; Black, J.D.; Schwab, C.L.; English, D.P.; Santin, A.D. An update on the current pharmacotherapy for endometrial cancer. Expert Opin. Pharmacother., 2016, 17(4), 489-499.
[http://dx.doi.org/10.1517/14656566.2016.1127351] [PMID: 26629895]
[24]
Ryan, A.J.; Susil, B.; Jobling, T.W.; Oehler, M.K. Endometrial cancer. Cell Tissue Res., 2005, 322(1), 53-61.
[http://dx.doi.org/10.1007/s00441-005-1109-5] [PMID: 15947972]
[25]
Sapoznik, S.; Cohen, B.; Tzuman, Y.; Meir, G.; Ben-Dor, S.; Harmelin, A.; Neeman, M. Gonadotropin-regulated lymphangiogenesis in ovarian cancer is mediated by LEDGF-induced expression of VEGF-C. Cancer Res., 2009, 69(24), 9306-9314.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1213] [PMID: 19934313]
[26]
Takehara, M.; Ueda, M.; Yamashita, Y.; Terai, Y.; Hung, Y.C.; Ueki, M. Vascular endothelial growth factor A and C gene expression in endometriosis. Hum. Pathol., 2004, 35(11), 1369-1375.
[http://dx.doi.org/10.1016/j.humpath.2004.07.020] [PMID: 15668894]
[27]
Xu, H.; Zhang, T.; Man, G.C.; May, K.E.; Becker, C.M.; Davis, T.N.; Kung, A.L.; Birsner, A.E.; D’Amato, R.J.; Wong, A.W.; Wang, C.C. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis, 2013, 16(3), 541-551.
[http://dx.doi.org/10.1007/s10456-013-9333-1] [PMID: 23334337]
[28]
Donoghue, J.F.; Lederman, F.L.; Susil, B.J.; Rogers, P.A. Lymphangiogenesis of normal endometrium and endometrial adenocarcinoma. Hum. Reprod., 2007, 22(6), 1705-1713.
[http://dx.doi.org/10.1093/humrep/dem037] [PMID: 17347164]
[29]
Hirai, M.; Nakagawara, A.; Oosaki, T.; Hayashi, Y.; Hirono, M.; Yoshihara, T. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol. Oncol., 2001, 80(2), 181-188.
[http://dx.doi.org/10.1006/gyno.2000.6056] [PMID: 11161857]
[30]
Dobrzycka, B.; Terlikowski, S.J.; Kowalczuk, O.; Kulikowski, M.; Niklinski, J. Serum levels of VEGF and VEGF-C in patients with endometrial cancer. Eur. Cytokine Netw., 2011, 22(1), 45-51.
[PMID: 21411409]
[31]
Zhang, H.; Muders, M.H.; Li, J.; Rinaldo, F.; Tindall, D.J.; Datta, K. Loss of NKX3.1 favors vascular endothelial growth factor-C expression in prostate cancer. Cancer Res., 2008, 68(21), 8770-8778.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1912] [PMID: 18974119]
[32]
Enholm, B.; Paavonen, K.; Ristimäki, A.; Kumar, V.; Gunji, Y.; Klefstrom, J.; Kivinen, L.; Laiho, M.; Olofsson, B.; Joukov, V.; Eriksson, U.; Alitalo, K. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene, 1997, 14(20), 2475-2483.
[http://dx.doi.org/10.1038/sj.onc.1201090] [PMID: 9188862]
[33]
Bredholt, G.; Mannelqvist, M.; Stefansson, I.M.; Birkeland, E.; Bø, T.H.; Øyan, A.M.; Trovik, J.; Kalland, K.H.; Jonassen, I.; Salvesen, H.B.; Wik, E.; Akslen, L.A. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses. Oncotarget, 2015, 6(37), 39676-39691.
[http://dx.doi.org/10.18632/oncotarget.5344] [PMID: 26485755]
[34]
Li, C.; Zhu, M.; Lou, X.; Liu, C.; Chen, H.; Lin, X.; Ji, W.; Li, Z.; Su, C. Transcriptional factor OCT4 promotes esophageal cancer metastasis by inducing epithelial-mesenchymal transition through VEGF-C/VEGFR-3 signaling pathway. Oncotarget, 2017, 8(42), 71933-71945.
[http://dx.doi.org/10.18632/oncotarget.18035] [PMID: 29069758]
[35]
Jüttner, S.; Wissmann, C.; Jöns, T.; Vieth, M.; Hertel, J.; Gretschel, S.; Schlag, P.M.; Kemmner, W.; Höcker, M. Vascular endothelial growth factor-D and its receptor VEGFR-3: Two novel independent prognostic markers in gastric adenocarcinoma. J. Clin. Oncol., 2006, 24(2), 228-240.
[http://dx.doi.org/10.1200/JCO.2004.00.3467] [PMID: 16344322]
[36]
Yokoyama, Y.; Charnock-Jones, D.S.; Licence, D.; Yanaihara, A.; Hastings, J.M.; Holland, C.M.; Emoto, M.; Sakamoto, A.; Sakamoto, T.; Maruyama, H.; Sato, S.; Mizunuma, H.; Smith, S.K. Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin. Cancer Res., 2003, 9(4), 1361-1369.
[PMID: 12684405]
[37]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[38]
Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[39]
White, J.D.; Hewett, P.W.; Kosuge, D.; McCulloch, T.; Enholm, B.C.; Carmichael, J.; Murray, J.C. Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res., 2002, 62(6), 1669-1675.
[PMID: 11912138]
[40]
Wang, J.; Taylor, A.; Showeil, R.; Trivedi, P.; Horimoto, Y.; Bagwan, I.; Ewington, L.; Lam, E.W.; El-Bahrawy, M.A. Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma. Cytokine, 2014, 68(2), 94-100.
[http://dx.doi.org/10.1016/j.cyto.2014.04.005] [PMID: 24845798]
[41]
Park, Y.G.; Choi, J.; Jung, H.K.; Song, I.K.; Shin, Y.; Park, S.Y.; Seol, J.W. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy. Int. J. Mol. Med., 2017, 40(4), 1210-1216.
[http://dx.doi.org/10.3892/ijmm.2017.3108] [PMID: 28849193]
[42]
Tsoi, L.C.; Stuart, P.E.; Tian, C.; Gudjonsson, J.E.; Das, S.; Zawistowski, M.; Ellinghaus, E.; Barker, J.N.; Chandran, V.; Dand, N.; Duffin, K.C.; Enerbäck, C.; Esko, T.; Franke, A.; Gladman, D.D.; Hoffmann, P.; Kingo, K.; Kõks, S.; Krueger, G.G.; Lim, H.W.; Metspalu, A.; Mrowietz, U.; Mucha, S.; Rahman, P.; Reis, A.; Tejasvi, T.; Trembath, R.; Voorhees, J.J.; Weidinger, S.; Weichenthal, M.; Wen, X.; Eriksson, N.; Kang, H.M.; Hinds, D.A.; Nair, R.P.; Abecasis, G.R.; Elder, J.T. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat. Commun., 2017, 8, 15382.
[http://dx.doi.org/10.1038/ncomms15382] [PMID: 28537254]
[43]
Opławski, M.; Dziobek, K.; Adwent, I.; Dąbruś, D.; Grabarek, B.; Zmarzły, N.; Plewka, A.; Boroń, D. Expression profile of endoglin in different grades of endometrial cancer. Curr. Pharm. Biotechnol., 2018, 19(12), 990-995.
[http://dx.doi.org/10.2174/1389201020666181127152605] [PMID: 30479213]

© 2024 Bentham Science Publishers | Privacy Policy