[1]
Hill, A.V. The possible effects of aggregation of the molecule of haemoglobin on its dissociation curves. J. Physiol., 1910, 40(Suppl.), iv-vii.
[2]
Hill, A.V. XLVII. The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J., 1913, 7(5), 471-480.
[3]
Wyman, J., Jr Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem., 1964, 19, 223-286.
[4]
Wyman, J.; Gill, S.J. Binding and linkage; University Science Books: Mill Valley, CA, USA, 1990.
[5]
Pauling, L. The oxygen equilibrium of hemoglobin and its structural interpretation. Proc. Natl. Acad. Sci. USA, 1935, 21(4), 186-191.
[6]
Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 1965, 12, 88-118.
[7]
Milo, R.; Hou, J.H.; Springer, M.; Brenner, M.P.; Kirschner, M.W. The relationship between evolutionary and physiological variation in hemoglobin. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16998-17003.
[8]
Rapp, O.; Yifrach, O. Using the MWC model to describe heterotropic interactions in hemoglobin. PLoS One, 2017, 12(8), e0182871.
[9]
Crick, F.H.; Wyman, J. A footnote on allostery. J. Mol. Biol., 2013, 425(9), 1500-1508.
[10]
Forsén, S.; Linse, S. Cooperativity: over the Hill. Trends Biochem. Sci., 1995, 20(12), 495-497.
[11]
Imai, K. Allosteric effects in haemoglobin; Cambridge University Press: Cambridge, UK, 1982.
[12]
Adair, G.S. The hemoglobin system. VI The oxygen dissociation curve of hemoglobin. J. Biol. Chem., 1925, 109, 292-300.
[13]
Poitevin, F.; Edelstein, S.J. Derivation of the Crick-Wyman equation for allosteric proteins defining the difference between the number of binding sites and the Hill coefficient., Erratum in: J Mol Biol. J. Mol. Biol., 2013, 425(9), 1497-1499
[14]
Edelstein, S.J. A novel equation for cooperativity of the allosteric state function. J. Mol. Biol., 2014, 426(1), 39-42.
[15]
Bunn, H.F.; Guidotti, G. Stabilizing interactions in hemoglobin. J. Biol. Chem., 1972, 247(8), 2345-2350.
[16]
Edelstein, S.J. Cooperative interactions of hemoglobin. Annu. Rev. Biochem., 1975, 44, 209-232.
[17]
Dahlquist, F.W. The meaning of Scatchard and Hill plots. Methods Enzymol., 1978, 48, 270-299.
[18]
Kegeles, G. The Hill coefficient for a Monod-Wyman-Changeux allosteric system. FEBS Lett., 1979, 103(1), 5-6.
[19]
Zhou, G.; Ho, P.S.; van Holde, K.E. An analytic solution to the Monod-Wyman-Changeux model and all parameters in this model. Biophys. J., 1989, 55(2), 275-280.
[20]
Koshland, D.E., Jr; Némethy, G.; Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 1966, 5(1), 365-385.
[21]
Bellelli, A.; Carey, J. Reversible ligand binding; Wiley, 2018.
[22]
Ikeda-Saito, M.; Yonetani, T.; Chiancone, E.; Ascoli, F.; Verzili, D.; Antonini, E. Thermodynamic properties of oxygen equilibria of dimeric and tetrameric hemoglobins from Scapharca inaequivalvis. J. Mol. Biol., 1983, 170(4), 1009-1018.
[23]
Bellelli, A. Non allosteric cooperativity in hemoglobin. Curr. Protein Pept. Sci., 2018, 19(6), 573-588.
[24]
Robert, C.H.; Decker, H.; Richey, B.; Gill, S.J.; Wyman, J. Nesting: hierarchies of allosteric interactions. Proc. Natl. Acad. Sci. USA, 1987, 84(7), 1891-1895.
[25]
Royer, W.E., Jr; Sharma, H.; Strand, K.; Knapp, J.E.; Bhyravbhatla, B. Lumbricus erythrocruorin at 3.5 A resolution: Architecture of a megadalton respiratory complex. Structure, 2006, 14(7), 1167-1177.