A Review on Polymeric Nano Micelles Based Delivery to the Posterior Segment of the Eye

Author(s): Sheetal Devi, Shailendra Bhatt, Vipin Saini, Manish Kumar*, Aman Deep

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Introduction: Many nanoformulations have been designed and evaluated for ocular drug delivery system consistently. These nanoformulations are designed for prolonged retention and course time, stable, efficient and reversible drug loading. The ocular bioavailability is very less when the drug is given through topically. Various anatomical and physiological limitations, for example, tear turnover, nasal lachrymal waste, reflex squinting, and visual static and dynamic hindrances cause the challenges and delay the ocular drug permeation because of the limitation that less than 5% dose can reach into the ocular tissues. Different types of Polymeric micelles were prepared to overcome the above challenges. Polymeric nano micelles are prepared by different methods, such as direct dissolution, dialysis method, Oil-in-water emulsion, solvent evaporation, co-solvent evaporation, and freeze-drying method.

Keywords: Polymeric micelles, ocular bioavailability, tear turnover, dynamic hindrances, ocular drug permeation, nanoformulations.

[1]
Bourlais, C.L.; Acar, L.; Zia, H.; Sado, P.A.; Needham, T.; Leverge, R. Ophthalmic drug delivery systems--recent advances. Prog. Retin. Eye Res., 1998, 17(1), 33-58.
[http://dx.doi.org/10.1016/S1350-9462(97)00002-5] [PMID: 9537794]
[2]
Rotsos, T.G.; Moschos, M.M. Cystoid macular edema. Clin. Ophthalmol., 2008, 2(4), 919-930.
[http://dx.doi.org/10.2147/OPTH.S4033] [PMID: 19668445]
[3]
Gulsen, D.; Chauhan, A. Ophthalmic drug delivery through contact lenses. Invest. Ophthalmol. Vis. Sci., 2004, 45(7), 2342-2347.
[http://dx.doi.org/10.1167/iovs.03-0959] [PMID: 15223815]
[4]
Sahoo, S.K.; Dilnawaz, F.; Krishnakumar, S. Nanotechnology in ocular drug delivery. Drug Discov. Today, 2008, 13(3-4), 144-151.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[5]
Greaves, J.L.; Wilson, C.G. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv. Drug Deliv. Rev., 1993, 11(3), 349-1993383.
[http://dx.doi.org/10.1016/0169-409X(93)90016-W]
[6]
Robinson, J.C. Ocular anatomy and physiology relevant to ocular drug delivery. In: Ophthalmic Drug Delivery Systems; American Pharmaceutical Association: Washington, DC, 1993, pp. 29-57.
[7]
Kaur, I.P.; Smitha, R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm., 2002, 28(4), 353-369.
[http://dx.doi.org/10.1081/DDC-120002997] [PMID: 12056529]
[8]
Saettone, M.F.; Bucci, M.; Speiser, P. Factors influencing the retention of ophthalmic solutions on the eye surface, ophthalmic drug delivery. Biopharmutical, technological and clinical aspects. Fidia Res. Series, 1987, 11, 7-17.
[9]
Ban, Y.; Dota, A.; Cooper, L.J.; Fullwood, N.J.; Nakamura, T.; Tsuzuki, M.; Mochida, C.; Kinoshita, S. Tight junction-related protein expression and distribution in human corneal epithelium. Exp. Eye Res., 2003, 76(6), 663-669.
[http://dx.doi.org/10.1016/S0014-4835(03)00054-X] [PMID: 12742348]
[10]
Ja¨rvinen, K.; Ja¨rvinen, T.; Urtti, A. Ocular absorption following topical delivery. Adv. Drug Deliv. Rev., 1995, 16, 3-19.
[http://dx.doi.org/10.1016/0169-409X(95)00010-5]
[11]
Versura, P.F.; Bonvicini, R.; Caramazza, R. Laschi. Scanning electron microscopy of normal corneal epithelium obtained by scraping-off in vivo. Acta Ophthalmol. (Copenh.), 1985, 63, 361-365.
[12]
Huang, A.J.W.; Tseng, S.C.G.; Kenyon, K.R. Paracellular permeability of corneal and conjunctival epithelia. Invest. Ophthalmol. Vis. Sci., 1989, 30(4), 684-689.
[PMID: 2703309]
[13]
Yeo, A.C.H.; Carkeet, A.; Carney, L.G.; Yap, M.K.H. Relationship between goblet cell density and tear function tests. Ophthal Physiol. Opt., 2003, 23(1), 87-94.
[http://dx.doi.org/10.1046/j.1475-1313.2003.00092.x] [PMID: 12535061]
[14]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[15]
Gaudana, R.; Jwala, J.; Boddu, S.H.; Mitra, A.K. Recent perspectives in ocular drug delivery. Pharm. Res., 2009, 26(5), 1197-1216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[16]
Bochot, A.; Fattal, E. Liposomes for intravitreal drug delivery: A state of the art. J. Control. Release, 2012, 161(2), 628-634.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.019] [PMID: 22289436]
[17]
Versura, P.; Bonvicini, F.; Caramazza, R.; Laschi, R. Scanning electron microscopy of normal human corneal epithelium obtained by scraping-off in vivo. Acta Ophthalmol. (Copenh.), 1985, 63(3), 361-365.
[http://dx.doi.org/10.1111/j.1755-3768.1985.tb06821.x] [PMID: 4036566]
[18]
Encyclopedia, Drug Discovery, Development, and Manufacturing, 2006, 27, 851-881.
[19]
Klyce, S.D.; Crosson, C.E. Transport processes across the rabbit corneal epithelium: A review. Curr. Eye Res., 1985, 4(4), 323-331.
[http://dx.doi.org/10.3109/02713688509025145] [PMID: 3893897]
[20]
Moughton, A.O.; O’Reilly, R.K. Noncovalently connected micelles, nanoparticles, and metal-functionalized nanocages using supramolecular self-assembly. J. Am. Chem. Soc., 2008, 130(27), 8714-8725.
[http://dx.doi.org/10.1021/ja800230k] [PMID: 18549205]
[21]
Wang, M.; Zhang, G.; Chen, D.; Jiang, M.; Liu, S. Non covalently connected polymeric micelles based on a homo polymer pair in solutions. Macromolecules, 2001, 34, 7172-7178.
[http://dx.doi.org/10.1021/ma0105845]
[22]
Greaves, J.L.; Wilson, C.G. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv. Drug Deliv. Rev., 1993, 11(3), 349-383.
[http://dx.doi.org/10.1016/0169-409X(93)90016-W]
[23]
Huang, A.J.W.; Tseng, S.C.G.; Kenyon, K.R. Paracellular permeability of corneal and conjunctival epithelia. Invest. Ophthalmol. Vis. Sci., 1989, 30(4), 684-689.
[PMID: 2703309]
[24]
Macha, S.; Hughes, P.M.; Mitra, A.K. Overview of ocular drug delivery. Ophthal Drug Deliv. Sys., 2003, 2, 1-11.
[25]
Robinson, J.C.; Mitra, A.K.; Dekker, M. Ocular anatomy and physiology relevant to ocular drug delivery.In: Ophthalmic Drug Delivery Systems; New York 1993, pp. 29-58.
[26]
Mikkelson, T.J.; Chrai, S.S.; Robinson, J.R. Altered bioavailability of drugs in the eye due to drug-protein interaction. J. Pharm. Sci., 1973, 62(10), 1648-1653.
[http://dx.doi.org/10.1002/jps.2600621014] [PMID: 4752109]
[27]
Stjernschantz, J.; Astin, M.; Edman, P. Anatomy and physiology of the eye. Physiological aspects of ocular drug therapy. Eur. J. Pharm. Biopharm., 1993, 44, 1-25.
[28]
Hornof, M.; Toropainen, E.; Urtti, A. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm., 2005, 60(2), 207-225.
[http://dx.doi.org/10.1016/j.ejpb.2005.01.009] [PMID: 15939234]
[29]
Jumbe, N.L.; Miller, M.H.; Mitra, A.K.; Dekker, M. Ocular drug transfer following systemic drug administration. Ophthalmic Drug Deliv. Sys., 2003, 2, 109-133.
[http://dx.doi.org/10.1201/9780203912072.ch4]
[30]
Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev., 2006, 58(11), 1131-1135.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[31]
Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular delivery of macromolecules. J. Control. Release, 2014, 190, 172-181.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.043] [PMID: 24998941]
[32]
Lee, J.; Pelis, R.M. Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab. Dispos., 2016, 44(10), 1675-1681.
[http://dx.doi.org/10.1124/dmd.116.069369] [PMID: 26895982]
[33]
Bochot, A.; Fattal, E. Liposomes for intravitreal drug delivery: A state of the art. J. Control. Release, 2012, 161(2), 628-634.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.019] [PMID: 22289436]
[34]
Cunha-Vaz, J. The blood-ocular barriers. Surv. Ophthalmol., 1979, 23(5), 279-296.
[http://dx.doi.org/10.1016/0039-6257(79)90158-9] [PMID: 380030]
[35]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[36]
Lovriæ, J.; Filipoviæ-Grèiæ, J. Polymeric micelles in ocular drug delivery. Rationale, strategies and challenges. Chem. Biochem. Eng. Q., 2012, 26(4), 365-377.
[37]
Nagarwal, R.C.; Kant, S.; Singh, P.N.; Maiti, P.; Pandit, J.K. Polymeric nanoparticulate system: A potential approach for ocular drug delivery. J. Control. Release, 2009, 136(1), 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.018] [PMID: 19331856]
[38]
Motwani, S.K.; Chopra, S.; Talegaonkar, S.; Kohli, K.; Ahmad, F.J.; Khar, R.K. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur. J. Pharm. Biopharm., 2008, 68(3), 513-525.
[PMID: 17983737]
[39]
Diebold, Y.; Jarrín, M.; Sáez, V.; Carvalho, E.L.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials, 2007, 28(8), 1553-1564.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.028] [PMID: 17169422]
[40]
Hickok, R.S.; Wedge, S.A.; Hansen, L.A.; Morris, K.F.; Billiot, F.H.; Warner, I.M. Pulsed field gradient NMR investigation of solubilization equilibria in amino acid and dipeptide terminated micellar and polymeric surfactant solutions. Magn. Reson. Chem., 2002, 40, 755-761.
[http://dx.doi.org/10.1002/mrc.1099]
[41]
Jones, M. Leroux, J. Polymeric micelles - a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm., 1999, 48(2), 101-111.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9] [PMID: 10469928]
[42]
Lens, A.L. Ocular anatomy and physiology, 1st ed; Slack Inc.: USA, 1999.
[43]
Ahmed, I.; Mitra, A.K. The noncorneal route in ocular drug delivery, Ophthalmic Drug Delivery Systems, 2nd ed; Marcel Dekker: New York, 2003, pp. 335-363.
[44]
Bouchemal, K.; Agnely, F.; Koffi, A.; Ponchel, G. A concise analysis of the effect of temperature and propanediol-1, 2 on Pluronic F127 micellization using isothermal titration microcalorimetry. J. Colloid Interface Sci., 2009, 338(1), 169-176.
[http://dx.doi.org/10.1016/j.jcis.2009.05.075] [PMID: 19580975]
[45]
Ranger, M.; Jones, M.C.; Yessine, M.A.; Leroux, J.C. From well-defined di-block copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J. Polym. Sci. A Polym. Chem., 2001, 39, 3861-3874.
[http://dx.doi.org/10.1002/pola.10029]
[46]
Zhang, J.; Ma, P.X. Host-guest interaction mediated polymeric core-shell assemblies: Versatile nano carriers for drug delivery. Angew. Chem. Int. Ed. Engl., 2009, 48, 964-968.
[http://dx.doi.org/10.1002/anie.200804135] [PMID: 19101966]
[47]
Jeong, Y.I.; Kim, S.H.; Jung, T.Y.; Kim, I.Y.; Kang, S.S.; Jin, Y.H.; Ryu, H.H.; Sun, H.S.; Jin, S.; Kim, K.K.; Ahn, K.Y.; Jung, S. Polyion complex micelles composed of all-trans retinoic acid and poly (ethylene glycol)-grafted-chitosan. J. Pharm. Sci., 2006, 95(11), 2348-2360.
[http://dx.doi.org/10.1002/jps.20586] [PMID: 16886178]
[48]
Li, C.; Chen, R.; Xu, M.; Qiao, J.; Yan, L.; Guo, X.D. Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Deliv., 2018, 25(1), 1258-1265.
[http://dx.doi.org/10.1080/10717544.2018.1474972] [PMID: 29847210]
[49]
Sayed, S.; Elsayed, I.; Ismail, M.M. Optimization of β-cyclodextrin consolidated micellar dispersion for promoting the transcorneal permeation of a practically insoluble drug. Int. J. Pharm., 2018, 549(1-2), 249-260.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.001] [PMID: 30077759]
[50]
Di Prima, G.; Saladino, S.; Bongiovì, F.; Adamo, G.; Ghersi, G.; Pitarresi, G.; Giammona, G. Novel inulin-based mucoadhesive micelles loaded with corticosteroids as potential transcorneal permeation enhancers. Eur. J. Pharm. Biopharm., 2017, 117, 385-399.
[http://dx.doi.org/10.1016/j.ejpb.2017.05.005] [PMID: 28512019]
[51]
Danafar, H.; Rostamizadeh, K.; Davaran, S.; Hamidi, M. Co-delivery of hydrophilic and hydrophobic drugs by micelles: A new approach using drug conjugated PEG-PCLNanoparticles. Drug Dev. Ind. Pharm., 2017, 43(11), 1908-1918.
[http://dx.doi.org/10.1080/03639045.2017.1355922] [PMID: 28737462]
[52]
Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Salehi, R.; Jelvehgari, M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran. J. Basic Med. Sci., 2018, 21(2), 153-164.
[PMID: 29456812]
[53]
Bongiovi, F.; Fiorica, C.; Palumbo, F.S.; Di Prima, G.; Giammona, G.; Pitarresi, G. Imatinib-loaded micelles of hyaluronic acid derivatives for the potential treatment of neovascular ocular diseases. Mol. Pharm., 2018, 15(11), 5031-5045.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00620] [PMID: 30248267]
[54]
Xu, L.; Xu, X.; Chen, H.; Li, X. Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloids Surf. B Biointerfaces, 2013, 112, 30-34.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.047] [PMID: 23939422]
[55]
Song, K.; Xin, M.; Yu, H.; Zheng, Z.; Li, J.; Li, M.; Guo, H.; Tan, Y.; Wu, X. Novel ultra-small micelles based on rebaudioside A: A potential nanoplatform for ocular drug delivery. Int. J. Pharm., 2018, 552(1-2), 265-276.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.006] [PMID: 30291959]
[56]
Grimaudo, M.A.; Pescina, S.; Padula, C.; Santi, P.; Concheiro, A.; Alvarez-Lorenzo, C.; Nicoli, S. Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Mol. Pharm., 2018, 15(2), 571-584.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00939] [PMID: 29313693]
[57]
Kutlehria, S.; Vhora, I.; Bagde, A.; Chowdhury, N.; Behl, G.; Patel, K.; Singh, M. Tacrolimus Loaded PEG-Cholecalciferol Based Micelles for Treatment of Ocular Inflammation. Pharm. Res., 2018, 35(6), 117.
[http://dx.doi.org/10.1007/s11095-018-2376-7] [PMID: 29663141]
[58]
Yu, Y.; Chen, D.; Li, Y.; Yang, W.; Tu, J.; Shen, Y. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Deliv., 2018, 25(1), 888-899.
[http://dx.doi.org/10.1080/10717544.2018.1458923] [PMID: 29631468]
[59]
Mandal, A.; Bisht, R.; Rupenthal, I.D.; Mitra, A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release, 2017, 248, 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[60]
Taha, E.I.; Badran, M.M.; El-Anazi, M.H.; Bayomi, M.A.; El-Bagory, I.M. Role of Pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin. J. Mol. Liq., 2014, 199, 251-256.
[http://dx.doi.org/10.1016/j.molliq.2014.09.021]
[61]
Zhou, T.; Zhu, L.; Xia, H.; He, J.; Liu, S.; He, S.; Wang, L.; Zhang, J. Micelle carriers based on macrogol 15 hydroxystearate for ocular delivery of terbinafine hydrochloride: In vitro characterization and in vivo permeation. Eur. J. Pharm. Sci., 2017, 109, 288-296.
[http://dx.doi.org/10.1016/j.ejps.2017.08.020] [PMID: 28823856]
[62]
Varela-Garcia, A.; Concheiro, A.; Alvarez-Lorenzo, C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int. J. Pharm., 2018, 552(1-2), 39-47.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.053] [PMID: 30253214]
[63]
Kataoka, K.; Matsumoto, T.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Fukushima, S.; Okamoto, K.; Kwon, G.S. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J. Control. Release, 2000, 64(1-3), 143-153.
[http://dx.doi.org/10.1016/S0168-3659(99)00133-9] [PMID: 10640653]
[64]
Salama, A.H.; Shamma, R.N. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int. J. Pharm., 2015, 492(1-2), 28-39.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.010] [PMID: 26151106]
[65]
Ma, F.; Nan, K.; Lee, S.; Beadle, J.R.; Hou, H.; Freeman, W.R.; Hostetler, K.Y.; Cheng, L. Micelle formulation of hexadecyloxypropyl-cidofovir (HDP-CDV) as an intravitreal long-lasting delivery system. Eur. J. Pharm. Biopharm., 2015, 89, 271-279.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.010] [PMID: 25513956]
[66]
Djordjevic, J.; Michniak, B.; Uhrich, K.E. Amphiphilic star-like macromolecules as novel carriers for topical delivery of nonsteroidal anti-inflammatory drugs. AAPS PharmSci, 2003, 5(4)E26
[http://dx.doi.org/10.1208/ps050426] [PMID: 15198514]
[67]
Shuai, X.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release, 2004, 98(3), 415-426.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.003] [PMID: 15312997]
[68]
Le Garrec, D.; Gori, S.; Luo, L.; Lessard, D.; Smith, D.C.; Yessine, M.A.; Ranger, M.; Leroux, J.C. Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J. Control. Release, 2004, 99(1), 83-101.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.018] [PMID: 15342183]
[69]
Duan, Y.; Cai, X.; Du, H.; Zhai, G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf. B Biointerfaces, 2015, 128, 322-330.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.007] [PMID: 25707750]
[70]
Lu, C.; Yoganathan, R.B.; Kociolek, M.; Allen, C. Hydrogel containing silica shell cross-linked micelles for ocular drug delivery. J. Pharm. Sci., 2013, 102(2), 627-637.
[http://dx.doi.org/10.1002/jps.23390] [PMID: 23203974]
[71]
Urtti, A.; Salminen, L.; Mitra, A.K. Animal pharmacokinetic studies, Ophthalmic drug delivery systems; Marcel Dekker: New York, 1993, pp. 121-136.
[72]
Duvvuri, S.; Majumdar, S.; Mitra, A.K. Drug delivery to the retina: Challenges and opportunities. Expert Opin. Biol. Ther., 2003, 3(1), 45-56.
[http://dx.doi.org/10.1517/14712598.3.1.45] [PMID: 12718730]
[73]
Lavasanifar, A.; Samuel, J.; Kwon, G.S. Micelles of poly(ethylene oxide)-block-poly(N-alkyl stearate L-aspartamide): Synthetic analogues of lipoproteins for drug delivery. J. Biomed. Mater. Res., 2000, 52(4), 831-835.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4831:AID-JBM293.0.CO;2-K] [PMID: 11033567]
[74]
Di Tommaso, C.; Bourges, J.L.; Valamanesh, F.; Trubitsyn, G.; Torriglia, A.; Jeanny, J.C.; Behar-Cohen, F.; Gurny, R.; Möller, M. Novel micelle carriers for cyclosporin A topical ocular delivery: In vivo cornea penetration, ocular distribution and efficacy studies. Eur. J. Pharm. Biopharm., 2012, 81(2), 257-264.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.014] [PMID: 22445900]
[75]
Figueroa-Ochoa, E.B.; Villar-Alvarez, E.M.; Cambón, A.; Mistry, D.; Llovo, J.; Attwood, D.; Barbosa, S.; Soltero, J.F.; Taboada, P. Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs. Int. J. Pharm., 2016, 510(1), 17-29.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.013] [PMID: 27289012]
[76]
Civiale, C.; Licciardi, M.; Cavallaro, G.; Giammona, G.; Mazzone, M.G. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J. Pharm., 2009, 378(1-2), 177-186.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.028] [PMID: 19465101]
[77]
Jaiswal, M.; Kumar, M.; Pathak, K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B Biointerfaces, 2015, 130, 23-30.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.059] [PMID: 25889081]
[78]
Rapoport, N.Y.; Herron, J.N.; Pitt, W.G.; Pitina, L. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J. Control. Release, 1999, 58(2), 153-162.
[http://dx.doi.org/10.1016/S0168-3659(98)00149-7] [PMID: 10053188]
[79]
Song, R.; Zhou, Y.; Li, Y.; Yang, Z.; Li, F.; Huang, Q.; Shi, T.; Zhang, G. Preparation and characterization of mPEG-g-α-zein biohybrid micelles as a nano-carrier. J. Appl. Polym. Sci., 2015, 132, 42555.
[http://dx.doi.org/10.1002/app.42555]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 5
Year: 2020
Page: [591 - 601]
Pages: 11
DOI: 10.2174/2210681209666190717162913
Price: $25

Article Metrics

PDF: 11
HTML: 2