Differential Expression of TOM34, AL1A1, PADI2 and KLRBA in NNK Induced Lung Cancer in Wistar Rats and their Implications

Author(s): Mohammad Asad, Saima Wajid, Deepshikha Pande Katare, Ruchi Jakhmola Mani, Swatantra Kumar Jain*

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 11 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Lung cancer is the most common cancer with a high mortality rate. The diagnosis only at advanced stages and lack of effective treatment are the main factors responsible for high mortality. Tobacco smoke is the major responsible factor for inflammation and tumor development in lungs.

Objective: The present study was carried out to identify differentially expressed proteins and elucidate their role in carcinogenesis.

Methods: The lung cancer was developed in Wistar rats by using NNK as carcinogen and cancer development was confirmed by histopathological examination. The 2D SDS PAGE was used to analyse total proteins and find out differentially expressed proteins in NNK treated lung tissue vis-a-vis control tissue. The findings of proteomic analysis were further validated by quantification of corresponding transcripts using Real Time PCR. Finally, Cytoscape was used to find out protein-protein interaction.

Results: The histopathological examinations showed neoplasia at 9th month after NNK treatment. The proteomic analysis revealed several differentially expressed proteins, four of which were selected for further studies. (TOM34, AL1A1, PADI2 and KLRBA) that were up regulated in NNK treated lung tissue. The real time analysis showed over expression of the genes coding for the selected proteins. Thus, the proteomic and transcriptomic data corroborate each other. Further, these proteins showed interaction with the members of NF-κB family and STAT3.

Conclusion: We conclude that these proteins play a substantial role in the induction of lung cancer through NF-κB and STAT3 pathway. Therefore, these may have the potential to be used as therapeutic targets and for early detection of lung cancer.

Keywords: Lung cancer, TOM34, AL1A1, PADI2, KLRBA, proteomics.

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[PMID: 30350310]
[2]
Goldstraw, P.; Crowley, J.; Chansky, K.; Giroux, D.J.; Groome, P.A.; Rami-Porta, R.; Postmus, P.E.; Rusch, V.; Sobin, L. The IASLC lung cancer staging project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J. Thorac. Oncol., 2007, 2(8), 706-714.
[http://dx.doi.org/10.1097/JTO.0b013e31812f3c1a] [PMID: 17762336]
[3]
Noone, A.M. SEER cancer statistics review, 1975-2015; National Cancer Institute: Bethesda, MD, 2018.
[4]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[5]
Ranjpour, M.; Katare, D.P.; Wajid, S.; Jain, S.K. HCC specific protein network involving interactions of EGFR with A-Raf and transthyretin: experimental analysis and computational biology correlates. Anticancer. Agents Med. Chem., 2018, 18(8), 1163-1176.
[http://dx.doi.org/10.2174/1871520618666180507141632] [PMID: 29732980]
[6]
Smoking and cancer. MMWR Morb. Mortal. Wkly. Rep., 1982, 31(7), 77-80.
[PMID: 6801462]
[7]
Hoffmann, D.; Hoffmann, I.; El-Bayoumy, K. The less harmful cigarette: A controversial issue. a tribute to Ernst L. Wynder. Chem. Res. Toxicol., 2001, 14(7), 767-790.
[http://dx.doi.org/10.1021/tx000260u] [PMID: 11453723]
[8]
Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst., 1999, 91(14), 1194-1210.
[http://dx.doi.org/10.1093/jnci/91.14.1194] [PMID: 10413421]
[9]
Hecht, S.S. Cigarette smoking and lung cancer: Chemical mechanisms and approaches to prevention. Lancet Oncol., 2002, 3(8), 461-469.
[http://dx.doi.org/10.1016/S1470-2045(02)00815-X] [PMID: 12147432]
[10]
Bhatnagar, S.; Chaudhary, N.; Katare, D.P.; Jain, S.K. A non-surgical method for induction of lung cancer in Wistar rats using a combination of NNK and high dietary fats. Protoplasma, 2013, 250(4), 919-929.
[http://dx.doi.org/10.1007/s00709-012-0478-3] [PMID: 23315092]
[11]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[12]
Chaudhary, N.; Bhatnagar, S.; Malik, S.; Katare, D.P.; Jain, S.K. Proteomic analysis of differentially expressed proteins in lung cancer in Wistar rats using NNK as an inducer. Chem. Biol. Interact., 2013, 204(2), 125-134.
[http://dx.doi.org/10.1016/j.cbi.2013.05.004] [PMID: 23692979]
[13]
Shevchenko, A.; Jensen, O.N.; Podtelejnikov, A.V.; Sagliocco, F.; Wilm, M.; Vorm, O.; Mortensen, P.; Shevchenko, A.; Boucherie, H.; Mann, M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA, 1996, 93(25), 14440-14445.
[http://dx.doi.org/10.1073/pnas.93.25.14440] [PMID: 8962070]
[14]
Ganaie, I.A.; Naqvi, S.H.; Jain, S.K.; Wajid, S. Reduced expression of SETD2 and SNX9 proteins in chemically induced mammary tumorigenesis in Wistar rats: A prognostic histological and proteomic study. Protoplasma, 2017, 254(3), 1451-1466.
[http://dx.doi.org/10.1007/s00709-016-1035-2] [PMID: 27766425]
[15]
Khowal, S.; Naqvi, S.H.; Monga, S.; Jain, S.K.; Wajid, S. Assessment of cellular and serum proteome from tongue squamous cell carcinoma patient lacking addictive proclivities for tobacco, betel nut, and alcohol: Case study. J. Cell. Biochem., 2018, 119(7), 5186-5221.
[http://dx.doi.org/10.1002/jcb.26554] [PMID: 29236289]
[16]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[17]
Fan, Y.; Mao, R.; Yang, J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell, 2013, 4(3), 176-185.
[http://dx.doi.org/10.1007/s13238-013-2084-3] [PMID: 23483479]
[18]
Naugler, W.E.; Karin, M. NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev., 2008, 18(1), 19-26.
[http://dx.doi.org/10.1016/j.gde.2008.01.020] [PMID: 18440219]
[19]
Dan, H.C.; Cooper, M.J.; Cogswell, P.C.; Duncan, J.A.; Ting, J.P.; Baldwin, A.S. Akt-dependent regulation of NF-kappaB is controlled by mTOR and Raptor in association with IKK. Genes Dev., 2008, 22(11), 1490-1500.
[http://dx.doi.org/10.1101/gad.1662308] [PMID: 18519641]
[20]
Kortylewski, M.; Kujawski, M.; Wang, T.; Wei, S.; Zhang, S.; Pilon-Thomas, S.; Niu, G.; Kay, H.; Mulé, J.; Kerr, W.G.; Jove, R.; Pardoll, D.; Yu, H. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med., 2005, 11(12), 1314-1321.
[http://dx.doi.org/10.1038/nm1325] [PMID: 16288283]
[21]
Shimokawa, T.; Matsushima, S.; Tsunoda, T.; Tahara, H.; Nakamura, Y.; Furukawa, Y. Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target. Int. J. Oncol., 2006, 29(2), 381-386.
[http://dx.doi.org/10.3892/ijo.29.2.381] [PMID: 16820880]
[22]
Mukhopadhyay, A.; Avramova, L.V.; Weiner, H. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch. Biochem. Biophys., 2002, 400(1), 97-104.
[http://dx.doi.org/10.1006/abbi.2002.2777] [PMID: 11913975]
[23]
Chewawiwat, N.; Yano, M.; Terada, K.; Hoogenraad, N.J.; Mori, M. Characterization of the novel mitochondrial protein import component, Tom34, in mammalian cells. J. Biochem., 1999, 125(4), 721-727.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022342] [PMID: 10101285]
[24]
Terada, K.; Ueno, S.; Yomogida, K.; Imai, T.; Kiyonari, H.; Takeda, N.; Yano, M.; Abe, S.; Aizawa, S.; Mori, M. Expression of Tom34 splicing isoforms in mouse testis and knockout of Tom34 in mice. J. Biochem., 2003, 133(5), 625-631.
[http://dx.doi.org/10.1093/jb/mvg080] [PMID: 12801914]
[25]
Young, J.C.; Obermann, W.M.; Hartl, F.U. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J. Biol. Chem., 1998, 273(29), 18007-18010.
[http://dx.doi.org/10.1074/jbc.273.29.18007] [PMID: 9660753]
[26]
Yang, C.S.; Weiner, H. Yeast two-hybrid screening identifies binding partners of human Tom34 that have ATPase activity and form a complex with Tom34 in the cytosol. Arch. Biochem. Biophys., 2002, 400(1), 105-110.
[http://dx.doi.org/10.1006/abbi.2002.2778] [PMID: 11913976]
[27]
Dai, R.M.; Li, C.C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol., 2001, 3(8), 740-744.
[http://dx.doi.org/10.1038/35087056] [PMID: 11483959]
[28]
Watts, G.D.; Wymer, J.; Kovach, M.J.; Mehta, S.G.; Mumm, S.; Darvish, D.; Pestronk, A.; Whyte, M.P.; Kimonis, V.E. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet., 2004, 36(4), 377-381.
[http://dx.doi.org/10.1038/ng1332] [PMID: 15034582]
[29]
Kittler, R.; Putz, G.; Pelletier, L.; Poser, I.; Heninger, A.K.; Drechsel, D.; Fischer, S.; Konstantinova, I.; Habermann, B.; Grabner, H.; Yaspo, M.L.; Himmelbauer, H.; Korn, B.; Neugebauer, K.; Pisabarro, M.T.; Buchholz, F. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature, 2004, 432(7020), 1036-1040.
[http://dx.doi.org/10.1038/nature03159] [PMID: 15616564]
[30]
Yoshida, A.; Hsu, L.C.; Davé, V. Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme, 1992, 46(4-5), 239-244.
[http://dx.doi.org/10.1159/000468794] [PMID: 1292933]
[31]
Balicki, D. Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell, 2007, 1(5), 485-487.
[http://dx.doi.org/10.1016/j.stem.2007.10.015] [PMID: 18938743]
[32]
Sreerama, L.; Sladek, N.E. Class 1 and class 3 aldehyde dehydrogenase levels in the human tumor cell lines currently used by the National Cancer Institute to screen for potentially useful antitumor agents. Adv. Exp. Med. Biol., 1997, 414, 81-94.
[http://dx.doi.org/10.1007/978-1-4615-5871-2_11] [PMID: 9059610]
[33]
Patel, M.; Lu, L.; Zander, D.S.; Sreerama, L.; Coco, D.; Moreb, J.S. ALDH1A1 and ALDH3A1 expression in lung cancers: Correlation with histologic type and potential precursors. Lung Cancer, 2008, 59(3), 340-349.
[http://dx.doi.org/10.1016/j.lungcan.2007.08.033] [PMID: 17920722]
[34]
Ucar, D.; Cogle, C.R.; Zucali, J.R.; Ostmark, B.; Scott, E.W.; Zori, R.; Gray, B.A.; Moreb, J.S. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem. Biol. Interact., 2009, 178(1-3), 48-55.
[http://dx.doi.org/10.1016/j.cbi.2008.09.029] [PMID: 18952074]
[35]
Jiang, F.; Qiu, Q.; Khanna, A.; Todd, N.W.; Deepak, J.; Xing, L.; Wang, H.; Liu, Z.; Su, Y.; Stass, S.A.; Katz, R.L. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res., 2009, 7(3), 330-338.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0393] [PMID: 19276181]
[36]
Li, S.; Jiao, L.; Zhen, H. Identification of novel proteins in chemoresistant lung cancer cells by quantitative proteomics. Int. J. Clin. Exp. Pathol., 2018, 11(3), 1101-1111.
[37]
Park, J.W.; Jung, K.H.; Lee, J.H.; Moon, S.H.; Cho, Y.S.; Lee, K.H. Inhibition of aldehyde dehydrogenase 1 enhances the cytotoxic effect of retinaldehyde on A549 cancer cells. Oncotarget, 2017, 8(59), 99382-99393.
[http://dx.doi.org/10.18632/oncotarget.19544] [PMID: 29245909]
[38]
Ranjpour, M.; Wajid, S. Jain, S.K. Elevated expression of A-Raf and FA2H in hepatocellular carcinoma is associated with lipid metabolism dysregulation and cancer progression. Anticancer. Agents Med. Chem., 2019, 19(2), 236-247.
[39]
Wang, L.; Song, G.; Zhang, X.; Feng, T.; Pan, J.; Chen, W.; Yang, M.; Bai, X.; Pang, Y.; Yu, J.; Han, J.; Han, B. PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res., 2017, 77(21), 5755-5768.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0150] [PMID: 28819028]
[40]
Vossenaar, E.R.; Zendman, A.J.; van Venrooij, W.J.; Pruijn, G.J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays, 2003, 25(11), 1106-1118.
[http://dx.doi.org/10.1002/bies.10357] [PMID: 14579251]
[41]
McElwee, J.L.; Mohanan, S.; Horibata, S.; Sams, K.L.; Anguish, L.J.; McLean, D.; Cvitaš, I.; Wakshlag, J.J.; Coonrod, S.A. PAD2 overexpression in transgenic mice promotes spontaneous skin neoplasia. Cancer Res., 2014, 74(21), 6306-6317.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0749] [PMID: 25213324]
[42]
Proost, P.; Loos, T.; Mortier, A.; Schutyser, E.; Gouwy, M.; Noppen, S.; Dillen, C.; Ronsse, I.; Conings, R.; Struyf, S.; Opdenakker, G.; Maudgal, P.C.; Van Damme, J. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J. Exp. Med., 2008, 205(9), 2085-2097.
[http://dx.doi.org/10.1084/jem.20080305] [PMID: 18710930]
[43]
Gasparoto, T.H.; de Oliveira, C.E.; de Freitas, L.T.; Pinheiro, C.R.; Ramos, R.N.; da Silva, A.L.; Garlet, G.P.; da Silva, J.S.; Campanelli, A.P. Inflammatory events during murine squamous cell carcinoma development. J. Inflamm. (Lond.), 2012, 9(1), 46.
[http://dx.doi.org/10.1186/1476-9255-9-46] [PMID: 23176085]
[44]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/dx.d oi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[45]
Lanier, L.L.; Chang, C.; Phillips, J.H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol., 1994, 153(6), 2417-2428.
[PMID: 8077657]
[46]
Poggi, A.; Rubartelli, A.; Moretta, L.; Zocchi, M.R. Expression and function of NKRP1A molecule on human monocytes and dendritic cells. Eur. J. Immunol., 1997, 27(11), 2965-2970.
[http://dx.doi.org/10.1002/eji.1830271132] [PMID: 9394825]
[47]
O’Keeffe, J.; Doherty, D.G.; Kenna, T.; Sheahan, K.; O’Donoghue, D.P.; Hyland, J.M.; O’Farrelly, C. Diverse populations of T cells with NK cell receptors accumulate in the human intestine in health and in colorectal cancer. Eur. J. Immunol., 2004, 34(8), 2110-2119.
[http://dx.doi.org/10.1002/eji.200424958] [PMID: 15259008]
[48]
Iliopoulou, E.G.; Karamouzis, M.V.; Missitzis, I.; Ardavanis, A.; Sotiriadou, N.N.; Baxevanis, C.N.; Rigatos, G.; Papamichail, M.; Perez, S.A. Increased frequency of CD4+ cells expressing CD161 in cancer patients. Clin. Cancer Res., 2006, 12(23), 6901-6909.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0977] [PMID: 17145807]
[49]
Aust, J.G.; Gays, F.; Mickiewicz, K.M.; Buchanan, E.; Brooks, C.G. The expression and function of the NKRP1 receptor family in C57BL/6 mice. J. Immunol., 2009, 183(1), 106-116.
[http://dx.doi.org/10.4049/jimmunol.0804281] [PMID: 19535641]
[50]
Aldemir, H.; Prod’homme, V.; Dumaurier, M.J.; Retiere, C.; Poupon, G.; Cazareth, J.; Bihl, F.; Braud, V.M. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol., 2005, 175(12), 7791-7795.
[http://dx.doi.org/10.4049/jimmunol.175.12.7791] [PMID: 16339512]
[51]
Rosen, D.B.; Bettadapura, J.; Alsharifi, M.; Mathew, P.A.; Warren, H.S.; Lanier, L.L. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol., 2005, 175(12), 7796-7799.
[http://dx.doi.org/10.4049/jimmunol.175.12.7796] [PMID: 16339513]
[52]
Germain, C.; Meier, A.; Jensen, T.; Knapnougel, P.; Poupon, G.; Lazzari, A.; Neisig, A.; Håkansson, K.; Dong, T.; Wagtmann, N.; Galsgaard, E.D.; Spee, P.; Braud, V.M. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-γ contributes to modulate immune responses. J. Biol. Chem., 2011, 286(44), 37964-37975.
[http://dx.doi.org/10.1074/jbc.M111.285312] [PMID: 21930700]
[53]
Braud, V.M.; Biton, J.; Becht, E.; Knockaert, S.; Mansuet-Lupo, A.; Cosson, E.; Damotte, D.; Alifano, M.; Validire, P. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. OncoImmunology, 2018, 7(5)e1423184
[54]
Li, B.Q.; You, J.; Chen, L.; Zhang, J.; Zhang, N.; Li, H.P.; Huang, T.; Kong, X.Y.; Cai, Y.D. Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. BioMed Res. Int., 2013.2013267375
[http://dx.doi.org/10.1155/2013/267375] [PMID: 23762832]
[55]
Taguchi, A.; Politi, K.; Pitteri, S.J.; Lockwood, W.W.; Faça, V.M.; Kelly-Spratt, K.; Wong, C.H.; Zhang, Q.; Chin, A.; Park, K.S.; Goodman, G.; Gazdar, A.F.; Sage, J.; Dinulescu, D.M.; Kucherlapati, R.; Depinho, R.A.; Kemp, C.J.; Varmus, H.E.; Hanash, S.M. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell, 2011, 20(3), 289-299.
[http://dx.doi.org/10.1016/j.ccr.2011.08.007] [PMID: 21907921]
[56]
Wang, Y.C.; Chen, B.S. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med. Genomics, 2011, 4, 2.
[http://dx.doi.org/10.1186/1755-8794-4-2] [PMID: 21211025]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 11
Year: 2019
Page: [919 - 929]
Pages: 11
DOI: 10.2174/1871525717666190717162646
Price: $65

Article Metrics

PDF: 32
HTML: 3