Designing of an Epitope- Based Universal Peptide Vaccine against Highly Conserved Regions in RNA Dependent RNA Polymerase Protein of Human Marburg Virus: A Computational Assay

Author(s): S.M. Neaz Mahmud*, Mahbubur Rahman, Antora Kar, Nasreen Jahan, Arif Khan*

Journal Name: Anti-Infective Agents
Anti-Infective Agents in Medicinal Chemistry

Volume 18 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Introduction: Marburg viruses are a group of negative-stranded RNA virus. It was first identified in 1967 during a small outbreak. During that outbreak, the fatality rate increased highly and so many people died by the Marburg virus. Later seven strains of Marburg virus were identified from those infected humans. This virus causes Marburg Virus Disease (MVD) in human referred to as Marburg hemorrhagic fever. Marburg virus is endemic only to Africa; however, there have been outbreaks in Europe and the U.S.A. in recent times.

Objective: However, the Marburg virus has a high fatality rate, so a preventive measure should be taken to prevent infection. As there is no effective therapeutic agent available against these viruses, effective vaccine design touching all strains would be a great step for human health.

Methods: In our recent study, we used in silico analysis for designing a novel epitope-based vaccine against all strains of Marburg virus. As it consists of several structural proteins and multiple sequence alignment (MSA) of Glycoproteins, RNA-directed RNA polymerases, Nucleoproteins, Vp24 proteins, Vp30, Vp35, and Vp40 proteins showed all strains of Marburg virus were conserved in RNA-directed RNA polymerase proteins. Using that protein’s conserved region, T-cell and B-cell epitopes were determined.

Results: Among the predicted epitope, only TIGNRAPYI was found to be highly immunogenic with 100% conservancy among all strain of human Marburg virus. The analysis also showed both types I and II major histocompatibility complex molecules interact with this epitope and found to be nonallergenic too.

Conclusion: In vivo study of the proposed peptide is suggested for novel universal vaccine production that might be an effective way to prevent human Marburg virus disease.

Keywords: Marburg virus, marburg hemorrhagic fever, universal peptide vaccine, RNA directed RNA polymerase, epitope.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [294 - 305]
Pages: 12
DOI: 10.2174/2211352517666190717143949

Article Metrics

PDF: 7