Generic placeholder image

Current Environmental Management (Discontinued)

Editor-in-Chief

ISSN (Print): 2666-2140
ISSN (Online): 2666-2159

Review Article

Removal of Heavy Metal Contaminants from Wastewater by Using Chlorella vulgaris Beijerinck: A Review

Author(s): Faezeh Manzoor, Abdolreza Karbassi* and Abooali Golzary

Volume 6, Issue 3, 2019

Page: [174 - 187] Pages: 14

DOI: 10.2174/2212717806666190716160536

Abstract

Removal of heavy metals is very important in wastewater treatment process, due to their abundant hazardous effects. There are various chemical and physical methods including ion exchange, reverse osmosis, electrodialysis, and ultrafiltration for removing heavy metals from wastewater, but biological treatment has attracted researchers for years as it is cheap and efficient. Microalgae have a significant capability of absorbing and eliminating heavy metals from wastewater. One of the most attractive microalgae species for this application is the Chlorella vulgaris Beijerinck. The current study takes a literature review of using microalgae species, especially C. vulgaris, with the aim of wastewater heavy metal treatment. In this regard firstly, various methods of eliminating heavy metals using microalgae were investigated, and then the application of C. vulgaris in the process of eliminating heavy metals from wastewater is fully presented. It became obvious that the use of C. vulgaris application is more helpful in the case of Copper, Lead, Zinc, Cadmium, and Nickel. Moreover, the main factor affecting heavy metal treatment using C. vulgaris is the pH of media, and the second effective parameter is temperature that is often considered about 25°C. The appropriate time period for the treatment was 5-7 days. Generally, C. vulgaris presented a very favorable efficiency in eliminating various heavy metals and is capable of removing heavy metals from wastewater to more than 90% on average.

Keywords: Adsorption, Chlorella vulgaris, heavy metals, microalgae, pollution, ultrafiltration.

Graphical Abstract
[1]
Greene B. Removal of heavy metal ions from contaminated waters by Chlorella vulgaris. In: Proceedings of the 28th Annual New Mexico Water Conference. Las Cruces, NM. 1984; pp. 103-5.
[2]
Sörme L, Lagerkvist R. Sources of heavy metals in urban wastewater in Stockholm. Sci Total Environ 2002; 298(1-3): 131-45.
[http://dx.doi.org/10.1016/S0048-9697(02)00197-3] [PMID: 12449334]
[3]
Eslami A, Nemati R. Removal of heavy metal from aqueous environments using bioremediation technology. Rev J Health Field 2017; 3(2): 1-11.
[4]
Wang LK, Tay JH, Tay ST, Hung YT, Eds. Environmental bioengineering. Springer Science & Business Media 2010; Vol. 11.
[http://dx.doi.org/10.1007/978-1-60327-031-1]
[5]
Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009; 27(2): 195-226.
[http://dx.doi.org/10.1016/j.biotechadv.2008.11.002] [PMID: 19103274]
[6]
Dwivedi S. Bioremediation of heavy metal by algae: Current and future perspective. J Adv Lab Res Biol 2012; 3(3): 229-33.
[7]
Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K, et al. Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 2010; 57(2): 71-5.
[http://dx.doi.org/10.1042/BA20100196] [PMID: 20923412]
[8]
Travieso L, Cañizares RO, Borja R, et al. Heavy metal removal by microalgae. Bull Environ Contam Toxicol 1999; 62(2): 144-51.
[http://dx.doi.org/10.1007/s001289900853] [PMID: 9933311]
[9]
Van Hille RP, Boshoff GA, Rose PD, Duncan JR. A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resour Conserv Recycling 1999; 27(1): 157-67.
[http://dx.doi.org/10.1016/S0921-3449(99)00010-5]
[10]
Daliry S, Hallajsani A, Mohammadi Roshandeh J, Nouri H, Golzary A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J Environ Sci Manage 2017; 3(2): 217-30.
[11]
Scarsella M, Belotti G, De Filippis P, Bravi M. Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Chem Eng 2010; 20: 85-90.
[12]
Kong W, Song H, Cao Y, Yang H, Hua S, Xia C. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr J Biotechnol 2011; 10(55): 11620-30.
[13]
Aung WL, Kyaw N, Nway N. Biosorption of lead (Pb2+) by using Chlorella vulgaris. Int J Chem Environ Biol Sci 2013; 1(2): 2320-4087.
[14]
Depledge MH, Weeks JM, Bjerregaard P. Heavy metals. In: Calow p. (Ed.), Handbook of Ecotoxicology CRC Press (Vol. 2, pp. 79-105). UK.
[15]
S. Kumar K,Dahms HU, Won EJ, Lee JS, Shin KH. Microalgae - A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 2015; 113: 329-52.
[http://dx.doi.org/10.1016/j.ecoenv.2014.12.019] [PMID: 25528489]
[16]
Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv 2006; 24(5): 427-51.
[http://dx.doi.org/10.1016/j.biotechadv.2006.03.001] [PMID: 16737792]
[17]
Volesky B. Biosorbents for metal recovery. Trends Biotechnol 1987; 5(4): 96-101.
[http://dx.doi.org/10.1016/0167-7799(87)90027-8]
[18]
Volesky B. Biosorption of heavy metals. Bocaraton, FL: CRC Press 1990.
[19]
Darnall DW, Greene B, Henzl MT, et al. Selective recovery of gold and other metal ions from an algal biomass. Environ Sci Technol 1986; 20(2): 206-8.
[http://dx.doi.org/10.1021/es00144a018] [PMID: 22288814]
[20]
Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 2011; 102(1): 17-25.
[http://dx.doi.org/10.1016/j.biortech.2010.06.035] [PMID: 20594826]
[21]
Kiran B, Kaushik A, Kaushik CP. Biosorption of Cr(VI) by native isolate of Lyngbya putealis (HH-15) in the presence of salts. J Hazard Mater 2007; 141(3): 662-7.
[http://dx.doi.org/10.1016/j.jhazmat.2006.07.026] [PMID: 16956722]
[22]
Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB. Microalgae and wastewater treatment. Saudi J Biol Sci 2012; 19(3): 257-75.
[http://dx.doi.org/10.1016/j.sjbs.2012.04.005] [PMID: 24936135]
[23]
Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A. Sorption of mercury, cadmium and lead by microalgae. Sci Asia 2002; 28: 253-61.
[http://dx.doi.org/10.2306/scienceasia1513-874.2002.28.253]
[24]
Zhang X, Luo S, Yang Q, Zhang H, Li J. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. J Appl Phycol 1997; 9(1): 65-71.
[http://dx.doi.org/10.1023/A:1007911119029]
[25]
Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Żyłkiewicz B. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 2012; 52: 52-65.
[http://dx.doi.org/10.1016/j.plaphy.2011.11.009] [PMID: 22305067]
[26]
Singh L, Pavankumar AR, Lakshmanan R, Rajarao GK. Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecol Eng 2012; 38(1): 119-24.
[http://dx.doi.org/10.1016/j.ecoleng.2011.10.007]
[27]
Feng D, Aldrich C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy 2004; 73(1): 1-10.
[http://dx.doi.org/10.1016/S0304-386X(03)00138-5]
[28]
Volesky B. Removal and recovery of heavy metals by biosorption biosorption of heavy metals. FL, USA: CRC Press Boca Raton 1990; pp. 7-44.
[29]
Itoh M, Yuasa M, Kobayashi T. Adsorption of metal ions on yeast cells at varied cell concentrations. Plant Cell Physiol 1975; 16(6): 1167-9.
[http://dx.doi.org/10.1093/oxfordjournals.pcp.a075237]
[30]
Kalyani S, Srinivasa Rao P, Krishnaiah A. Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 2004; 57(9): 1225-9.
[http://dx.doi.org/10.1016/j.chemosphere.2004.08.057] [PMID: 15504484]
[31]
Feachem R, Mara DD, Bradley DJ. Sanitation and disease. Washington, DC, USA: John Wiley & Sons 1983.
[32]
Pearson H, Mara DD, Bartone CR. Guidelines for the minimum evaluation of the performance of full-scale waste stabilization pond systems. Water Res 1987; 21(9): 1067-75.
[http://dx.doi.org/10.1016/0043-1354(87)90028-5]
[33]
Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. J Hazard Mater 2008; 155(1-2): 327-33.
[http://dx.doi.org/10.1016/j.jhazmat.2007.11.064] [PMID: 18178002]
[34]
Chen CY, Chang HW, Kao PC, Pan JL, Chang JS. Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour Technol 2012; 105: 74-80.
[http://dx.doi.org/10.1016/j.biortech.2011.11.124] [PMID: 22178497]
[35]
Khalil ZI, Asker MM, El-Sayed S, Kobbia IA. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microbiol Biotechnol 2010; 26(7): 1225-31.
[http://dx.doi.org/10.1007/s11274-009-0292-z] [PMID: 24026927]
[36]
Khan SA, Hussain MZ, Prasad S, Banerjee UC. Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 2009; 13(9): 2361-72.
[http://dx.doi.org/10.1016/j.rser.2009.04.005]
[37]
Khoeyi ZA, Seyfabadi J, Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult Int 2012; 20(1): 41-9.
[http://dx.doi.org/10.1007/s10499-011-9440-1]
[38]
Golzary A, Imanian S, Abdoli MA, Khodadadi A, Karbassi A. A cost-effective strategy for marine microalgae separation by electro-coagulation-flotation process aimed at bio-crude oil production: Optimization and evaluation study. Separ Purif Tech 2015; 147: 156-65.
[http://dx.doi.org/10.1016/j.seppur.2015.04.011]
[39]
Gong Q, Feng Y, Kang L, Luo M, Yang J. Effects of light and pH on cell density of Chlorella vulgaris. Energ Proc 2014; 61: 2012-5.
[http://dx.doi.org/10.1016/j.egypro.2014.12.064]
[40]
Cassidy KO. Evaluating algal growth at different temperaturesThesis and Dissertations Biosystems and Agricultural Engineering 2011: 3-47 pages
[41]
Barghbani R, Rezaei K, Javanshir A. Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi’s experimental approach. Int J Biotechnol Wellness Ind 2012; 1(2): 128.
[42]
González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 1997; 60(3): 259-62.
[http://dx.doi.org/10.1016/S0960-8524(97)00029-1]
[43]
Mamun AA, Amid A, Karim IA, Rashid SS. Phytoremediation of partially treated wastewater by Chlorella vulgaris. International Conference on Chemical Processes and Environmental Issues (ICCEEI). Singapore. 2012.
[44]
Ahmad F, Khan AU, Yasar A. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak J Bot 2013; 45(S1): 461-5.
[45]
Salgueiro JL, Perez L, Maceiras R, Sanchez A, Cancela A. Bioremediation of wastewater using Chlorella vulgaris microalgae: Phosphorus and organic matter. Int J Environ Res 2016; 10(3): 465-70.
[46]
Chan A, Salsali H, McBean E. Heavy metal removal (copper and zinc) in secondary effluent from wastewater treatment plants by microalgae. ACS Sustain Chem& Eng 2013; 2(2): 130-7.
[http://dx.doi.org/10.1021/sc400289z]
[47]
Kumar D, Santhanam SP, Jayalakshmi T, et al. Excessive nutrients and heavy metals removal from diverse wastewaters using marine microalga Chlorella marina. Butcher 2015; 40(1): 29-35.
[48]
Rai LC, Mallick N. Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 1992; 8(2): 110-4.
[http://dx.doi.org/10.1007/BF01195827] [PMID: 24425389]
[49]
Mehta SK, Gaur JP. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit Rev Biotechnol 2005; 25(3): 113-52.
[http://dx.doi.org/10.1080/07388550500248571] [PMID: 16294830]
[50]
Chekroun KB, Baghour M. The role of algae in phytoremediation of heavy metals: A review. J Mater Environ Sci 2013; 4(6): 873-80.
[51]
Csonto J, Kadukova J, Polak M. Artificial life simulation of living alga cells and its sorption mechanisms. J Med Syst 2001; 25(3): 221-31.
[http://dx.doi.org/10.1023/A:1010785000977] [PMID: 11433549]
[52]
Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 2006; 64(1): 1-10.
[http://dx.doi.org/10.1016/j.chemosphere.2005.11.024] [PMID: 16405948]
[53]
Dhokpande SR, Kaware JP. Biological methods for heavy metal removal. A review. Int J Eng Sci Innov Technol 2013; 2(5): 304-9.
[54]
Moustafa M, Idris G. Biological removal of heavy metals from wastewater. Alexandria Eng J 2003; 42(6): 767-71.
[55]
Bwapwa J, Jaiyeola A, Chetty R. Bioremediation of acid mine drainage using algae strains: A review. South African J Chem Eng 2017; 24: 62-70.
[http://dx.doi.org/10.1016/j.sajce.2017.06.005]
[56]
Mehta SK, Gaur JP. Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 2001; 18(1): 1-13.
[http://dx.doi.org/10.1016/S0925-8574(00)00174-9]
[57]
Babel S, Del Mundo Dacera D. Heavy metal removal from contaminated sludge for land application: A review. Waste Manag 2006; 26(9): 988-1004.
[http://dx.doi.org/10.1016/j.wasman.2005.09.017] [PMID: 16298121]
[58]
Al-Rub FA, El-Naas MH, Ashour I, Al-Marzouqi M. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 2006; 41(2): 457-64.
[http://dx.doi.org/10.1016/j.procbio.2005.07.018]
[59]
Akhtar N, Iqbal M, Zafar SI, Iqbal J. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci (China) 2008; 20(2): 231-9.
[http://dx.doi.org/10.1016/S1001-0742(08)60036-4] [PMID: 18574966]
[60]
Aksu Z, Dönmez G. Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochem 2006; 41(4): 860-8.
[http://dx.doi.org/10.1016/j.procbio.2005.10.025]
[61]
Ferreira LS, Rodrigues MS, De Carvalho JC, et al. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris I. Single metal systems. Chem Eng J 2011; 173(2): 326-33.
[http://dx.doi.org/10.1016/j.cej.2011.07.039]
[62]
Liu Y, Cao Q, Luo F, Chen J. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater 2009; 163(2-3): 931-8.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.046] [PMID: 18755544]
[63]
Wang L, Wang Y, Chen P, Ruan R. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Appl Biochem Biotechnol 2010; 162(8): 2324-32.
[http://dx.doi.org/10.1007/s12010-010-9005-1] [PMID: 20567935]
[64]
Pagnanelli F, Altimari P, Trabucco F, Toro L. Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: Interaction between glucose and nitrate. J Chem Technol Biotechnol 2014; 89(5): 652-61.
[http://dx.doi.org/10.1002/jctb.4179]
[65]
Hammouda O, Abdel-Raouf N, Shaaban M, Kamal M, Plant BS. Treatment of mixed domestic-industrial wastewater using microalgae Chlorella sp. J Am Sci 2015; 11(12): 303-15.
[66]
Yang J, Cao J, Xing G, Yuan H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 2015; 175: 537-44.
[http://dx.doi.org/10.1016/j.biortech.2014.10.124] [PMID: 25459865]
[67]
Malakootian M, Yousefi Z, Khodashenas Limoni Z. Removal of zinc from industrial wastewaters using microscopic green algae Chlorella vulgaris. Sci J Ilam Univ Med Sci 2016; 23(6): 40-50.
[68]
Aksu Z, Açikel Ü. Modelling of a single-staged bioseparation process for simultaneous removal of iron (III) and chromium (VI) by using Chlorella vulgaris. Biochem Eng J 2000; 4(3): 229-38.
[http://dx.doi.org/10.1016/S1369-703X(99)00053-4]
[69]
Goldstone M, Lester J. The balance of heavy metals through sewage treatment works. Sci Total Environ 1991; 105: 259-66.
[http://dx.doi.org/10.1016/0048-9697(91)90344-E]
[70]
Rodrigues MS, Ferreira LS, de Carvalho JC, Lodi A, Finocchio E, Converti A. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: Multi-metal systems. J Hazard Mater 2012; 217-218: 246-55.
[http://dx.doi.org/10.1016/j.jhazmat.2012.03.022] [PMID: 22480702]

© 2024 Bentham Science Publishers | Privacy Policy