Cyclo(L-Pro-L-Tyr) from Streptomyces sp. 150: Exploiting in vitro Potential in Controlling Foodborne Pathogens and Phytopathogens

Author(s): Atiqur Rahman*, Shah A. Siddiqui, M. Oliur Rahman, Sun C. Kang*

Journal Name: Anti-Infective Agents
Anti-Infective Agents in Medicinal Chemistry

Volume 18 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In the prokaryotic unicellular bacteria, Streptomyces species are the most frequent producers of bioactive secondary metabolites. Our continuous quest for new antibiotics from Actinomycetes genera was put forward for isolation of a strain Streptomyces sp. 150 from the soil samples collected at the Daegu University premises in Korea.

Objectives: The aims of this study were to isolate and identify bioactive compounds from the isolated microorganism and assess the efficacy of the compounds in controlling foodborne pathogens and phytopathogens.

Methods: The isolated bacterium was characterized by the taxonomic analyses and a compound was isolated from the fermentation broth by applying different chromatographic techniques e.g., column chromatography, TLC and PTLC. The structure of the compound was established by UV, IR, 1H-NMR and 13CNMR spectral data analyses. The antibacterial and antifungal efficacy of the compound was assessed by disc diffusion assay, poisoned food technique, MIC determination and SEM analysis.

Results: Different chromatographic techniques resulted in isolation and purification of a secondary metabolite from the fermentation broth of Streptomyces sp. 150. The analyses of the spectroscopic data identified the compound as cyclo(L-Pro-L-Tyr). The compound exhibited potential efficacy in controlling all the seven foodborne pathogenic bacteria with corresponding inhibition zone and minimum inhibitory concentration (MIC) ranging from 15.1 to 20.1 mm and 15.6 to 62.5 μg/mL respectively, and tested phytopathogenic fungi with mycelium growth inhibition varying from 57.1 to 68.5% and MIC from 125 to 250 μg/mL. Moreover, in scanning electron microscopy, the compound was found to bring morphological changes in Listeria monocytogenes ATCC 19166 at MIC dose.

Conclusion: This study demonstrated the possibility to use the compound cyclo(L-Pro-L-Tyr) in food and agrochemical industries to control foodborne pathogens and phytopathogens.

Keywords: Cyclo(L-Pro-L-Tyr), Streptomyces, foodborne pathogens, phytopathogens, MIC, SEM.

[1]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo), 2005, 58(1), 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[2]
Kim, S.H.; Shin, Y.; Lee, S.H.; Oh, K.B.; Lee, S.K.; Shin, J.; Oh, D.C. Salternamides A-D from a halophilic Streptomyces sp. J. Nat. Prod., 2015, 78(4), 836-843.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00002] [PMID: 25700232]
[3]
Nett, M.; Ikeda, H.; Moore, B.S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep., 2009, 26(11), 1362-1384.
[http://dx.doi.org/10.1039/b817069j] [PMID: 19844637]
[4]
Dyson, P.J. Streptomyces: Molecular Biology and Biotechnology 2011, 105-123.
[5]
Aldemir, H.; Kohlhepp, S.V.; Gulder, T.; Gulder, T.A.M. Structure of a putative fluorinated natural product from Streptomyces sp. TC1. J. Nat. Prod., 2014, 77(11), 2331-2334.
[http://dx.doi.org/10.1021/np500643g] [PMID: 25402430]
[6]
Yang, Y.H.; Fu, X.L.; Li, L.Q.; Zeng, Y.; Li, C.Y.; He, Y.N.; Zhao, P.J. Naphthomycins L-N, ansamycin antibiotics from Streptomyces sp. CS. J. Nat. Prod., 2012, 75(7), 1409-1413.
[http://dx.doi.org/10.1021/np300109s] [PMID: 22742732]
[7]
Hwang, K.S.; Kim, H.U.; Charusanti, P.; Palsson, B.O.; Lee, S.Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv., 2014, 32(2), 255-268.
[http://dx.doi.org/10.1016/j.biotechadv.2013.10.008] [PMID: 24189093]
[8]
Lu, J.; Ma, Y.; Liang, J.; Xing, Y.; Xi, T.; Lu, Y. Aureolic acids from a marine-derived Streptomyces sp. WBF16. Microbiol. Res., 2012, 167(10), 590-595.
[http://dx.doi.org/10.1016/j.micres.2012.06.001] [PMID: 22789867]
[9]
Dietz, A.; Thayer, D.W. Actinomycete taxonomy. Soc. Indust. Microbiol., 1980, 6, 26-31.
[10]
Kageyama, A.; Poonwan, N.; Yazawa, K.; Mikami, Y.; Nishimura, K. Nocardia asiatica sp. nov., isolated from patients with nocardiosis in Japan and clinical specimens from Thailand. Int. J. Syst. Evol. Microbiol., 2004, 54(Pt 1), 125-130.
[http://dx.doi.org/10.1099/ijs.0.02676-0] [PMID: 14742469]
[11]
Lee, T.S.; Krupa, R.A.; Zhang, F.; Hajimorad, M.; Holtz, W.J.; Prasad, N.; Lee, S.K.; Keasling, J.D. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng., 2011, 5, 12.
[http://dx.doi.org/10.1186/1754-1611-5-12] [PMID: 21933410]
[12]
Kavitha, A.; Prabhakar, P.; Vijayalakshmi, M.; Venkateswarlu, Y. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Res. Microbiol., 2010, 161(5), 335-345.
[http://dx.doi.org/10.1016/j.resmic.2010.03.011] [PMID: 20403429]
[13]
Poonwan, N.; Mekha, N.; Yazawa, K.; Thunyaharn, S.; Yamanaka, A.; Mikami, Y. Characterization of clinical isolates of pathogenic Nocardia strains and related actinomycetes in Thailand from 1996 to 2003. Mycopathologia, 2005, 159(3), 361-368.
[http://dx.doi.org/10.1007/s11046-005-1045-7] [PMID: 15883719]
[14]
Naragani, K.; Munaganti, R.K.; Sirigiri, C.K.; Muvva, V. Antimicrobial potential of Streptomyces violaceoruber VLK-4 isolated from south coast of Andhra Pradesh, India. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 125-129.
[15]
Cappuccino, J.G.; Sherman, N. Microbiology: A Laboratory Manual., 2002, 263-264.
[16]
Nene, Y.L.; Thapliyal, P.N. Fungicides in plant disease control., 1979, 413.
[17]
Kockro, R.A.; Hampl, J.A.; Jansen, B.; Peters, G.; Scheihing, M.; Giacomelli, R.; Kunze, S.; Aschoff, A. Use of scanning electron microscopy to investigate the prophylactic efficacy of rifampin-impregnated CSF shunt catheters. J. Med. Microbiol., 2000, 49(5), 441-450.
[http://dx.doi.org/10.1099/0022-1317-49-5-441] [PMID: 10798557]
[18]
Prasad, C. Bioactive cyclic dipeptides. Peptides, 1995, 16(1), 151-164.
[http://dx.doi.org/10.1016/0196-9781(94)00017-Z] [PMID: 7716068]
[19]
De Rosa, S.; Mitova, M.; Tommonaro, G. Marine bacteria associated with sponge as source of cyclic peptides. Biomol. Eng., 2003, 20(4-6), 311-316.
[http://dx.doi.org/10.1016/S1389-0344(03)00038-8] [PMID: 12919814]
[20]
Martins, M.B.; Carvalho, I. Diketopiperazines: biological activity and synthesis. Tetrahedron, 2007, 63, 9923-9932.
[http://dx.doi.org/10.1016/j.tet.2007.04.105]
[21]
Cimmino, A.; Puopolo, G.; Perazzolli, M.; Andolfi, A.; Melck, D.; Pertot, I.; Evidente, A. Cyclo(L-Pro-L-Tyr), the fungicide isolated from Lysobacter capsici AZ78: a structure-activity relationship study. Chem. Heterocycl. Compd., 2014, 50, 290-295.
[http://dx.doi.org/10.1007/s10593-014-1475-6]
[22]
Wattana-Amorn, P.; Charoenwongsa, W.; Williams, C.; Crump, M.P.; Apichaisataienchote, B. Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Nat. Prod. Res., 2016, 30(17), 1980-1983.
[http://dx.doi.org/10.1080/14786419.2015.1095747] [PMID: 26469746]
[23]
Nishanth Kumar, S.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J. Cyclo(D-Tyr-D-Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode. J. Pept. Sci., 2014, 20(3), 173-185.
[http://dx.doi.org/10.1002/psc.2594] [PMID: 24353056]
[24]
Nishanth Kumar, S.; Nath, V.S.; Pratap Chandran, R.; Nambisan, B. Cyclic dipeptides from rhabditid entomopathogenic nematode-associated Bacillus cereus have antimicrobial activities. World J. Microbiol. Biotechnol., 2014, 30(2), 439-449.
[http://dx.doi.org/10.1007/s11274-013-1461-7] [PMID: 23979826]
[25]
Souagui, S.; Djoudi, W.; Boudries, H.; Béchet, M.; Leclère, V.; Kecha, M. Modeling and statistical optimization of culture conditions for improvement of antifungal compounds production by streptomyces albidoflavus S19 Strain of wastewater origin. Antiinfect. Agents, 2019, 17(1), 39-49.
[http://dx.doi.org/10.2174/2211352516666180813102424] [PMID: 31328084]
[26]
Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol., 2010, 8(6), 423-435.
[http://dx.doi.org/10.1038/nrmicro2333] [PMID: 20440275]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2020
Page: [169 - 177]
Pages: 9
DOI: 10.2174/2211352517666190716155147

Article Metrics

PDF: 19
HTML: 1