Synthesis, Characterization, and Molecular Docking Studies of N-Acylated Butyro and Valerolactam Derivatives with Antiproliferative and Cytotoxic Activities

Author(s): Mark Tristan J. Quimque, Mark John P. Mandigma, Justin Allen K. Lim, Simon Budde, Hans-Martin Dahse, Oliver B. Villaflores, Arnold V. Hallare, Allan Patrick G. Macabeo*

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Electrophilic compounds bearing Michael acceptors present great promise in anticancer drug discovery.

Methods: Drawing inspirations from cytotoxic Piper lactam alkaloids, twelve N-acylated butyro- and valerolactams were prepared and evaluated for antiproliferative and cytotoxic activities against the normal human umbilical vein endothelial cells (HUVEC), chronic human myeloid leukemia cells (K- 562), and Henrietta Lacks (HeLa) cells used as model cell lines. Molecular docking of bioactive derivatives was performed against tyrosine kinase.

Results: Results of the MTT assay showed the crotonylated (5) and nitro-containing cinnamoyl (8) butyrolactams, and, the crotonylated (10), trifluoromethylated (13), and chlorinated (14) cinnamoyl valerolactam derivatives as the most antiproliferative against human myeloid leukemia cells. The trifluoromethylated cinnamoyl valerolactam (13) displayed the best selectivity on K-562 cells. Molecular docking studies of 13 against tyrosine kinase provided evidence as tyrosine kinase inhibitor, having comparable binding energy and receptor interaction with imatinib.

Conclusion: The presence of electrophilic N-acrylic moieties contributes to the potential of a compound as inspiration to develop anti-leukemia drugs.

Keywords: Lactams, antiproliferative, cytotoxic, tyrosine kinase, molecular docking, (HeLa) cells, human umbilical vein endothelial cells (HUVEC).

[1]
World Health Organization. Latest Global Cancer Data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. International Agency for Research on Cancer, 2018. Available at: http://www.who.int/cancer/PRGlobocanFinal.pdf
[2]
Sudhakar, A. History of Cancer, Ancient and Modern Treatment Methods. J. Cancer Sci. Ther., 2009, 1(2), 1-4.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[3]
Caruano, J.; Muccioli, G.G.; Robiette, R. Biologically active γ-lactams: synthesis and natural sources. Org. Biomol. Chem., 2016, 14(43), 10134-10156.
[http://dx.doi.org/10.1039/C6OB01349J] [PMID: 27748489]
[4]
Hulsbosch, J.; Claes, L.; De Vos, D.E. Zirconium-Catalysed N-Acylation of Lactams Using Unactivated Carboxylic Acids. Tetrahedron Lett., 2018, 59(17), 1646-1650.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.047]
[5]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L., Jr; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A. Key Green Chemistry Research Areas-a Perspective from Pharmaceutical Manufacturers. Green Chem., 2007, 9(5), 411-420.
[http://dx.doi.org/10.1039/B703488C]
[6]
Martha Perez Gutierrez, R.; Maria Neira Gonzalez, A.; Hoyo-Vadillo, C. Alkaloids from Piper: A Review of Its Phytochemistry and Pharmacology. Mini-Reviews. Med. Chem., 2013, 13(2), 163-193.
[PMID: 23016542]
[7]
Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; Stern, A.M.; Mandinova, A.; Schreiber, S.L.; Lee, S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475(7355), 231-234.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[8]
Wang, Y-H.; Morris-Natschke, S.L.; Yang, J.; Niu, H-M.; Long, C-L.; Lee, K-H. Anticancer Principles from Medicinal Piper (Hú Jiāo) Plants. J. Tradit. Complement. Med., 2014, 4(1), 8-16.
[http://dx.doi.org/10.4103/2225-4110.124811] [PMID: 24872928]
[9]
Xu, W.; Doshi, A.; Lei, M.; Eck, M.J.; Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell, 1999, 3(5), 629-638.
[http://dx.doi.org/10.1016/S1097-2765(00)80356-1] [PMID: 10360179]
[10]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[11]
Jirousková, Z.; Vareková, R.S.; Vanek, J.; Koca, J. Electronegativity equalization method: parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme. J. Comput. Chem., 2009, 30(7), 1174-1178.
[http://dx.doi.org/10.1002/jcc.21142] [PMID: 18988249]
[12]
Gersch, M.; Kreuzer, J.; Sieber, S.A. Electrophilic natural products and their biological targets. Nat. Prod. Rep., 2012, 29(6), 659-682.
[http://dx.doi.org/10.1039/c2np20012k] [PMID: 22504336]
[13]
Pineschi, M.; Del Moro, F.; Di Bussolo, V.; Macchia, F. Highly Enantioselective Copper-Phosphoramidite-Catalyzed Conjugate Addition of Dialkylzinc Reagents to Acyclic α,β-Unsaturated Imides. Adv. Synth. Catal., 2006, 348(3), 301-304.
[http://dx.doi.org/10.1002/adsc.200505309]
[14]
Lei, J.; Burgess, E.J.; Richardson, A.T.B.; Hawkins, B.C.; Baird, S.K.; Smallfield, B.M.; van Klink, J.W.; Perry, N.B. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum. Planta Med., 2015, 81(12-13), 1163-1168.
[http://dx.doi.org/10.1055/s-0035-1546106] [PMID: 26039266]
[15]
Pei, W.; Wang, Y.J.; Yu, C.Q. Diels-Alder Reactions of N-Functionalized Acryloyl α-Pyrrolidone Derivatives Using FeCl3•6H2O as an Efficient Catalyst under Solvent-Free Conditions. Chin. J. Chem., 2007, 25(6), 814-817.
[http://dx.doi.org/10.1002/cjoc.200790149]
[16]
Feroci, M.; Inesi, A.; Palombi, L.; Sotgiu, G. Electrogenerated base-induced N-acylation of chiral oxazolidin-2-ones. Part 2. J. Org. Chem., 2002, 67(5), 1719-1721.
[http://dx.doi.org/10.1021/jo016323a] [PMID: 11871914]
[17]
Nagasaka, T.; Momose, K.; Hamaguchi, F.; Yamada, K.; Yamada, H.; Suzuki, Y. [Synthesis of 1-trans-cinnamoyl- and 1-[trans-3-(pyridyl)acryloyl]-2-pyrrolidinone derivatives and their effect on hemicholinium-induced impairment of water maze learning in mice]. Yakugaku Zasshi, 1992, 112(2), 100-107.
[http://dx.doi.org/10.1248/yakushi1947.112.2_100] [PMID: 1517974]
[18]
Vlahovic, G.; Crawford, J. Activation of tyrosine kinases in cancer. Oncologist, 2003, 8(6), 531-538.
[http://dx.doi.org/10.1634/theoncologist.8-6-531] [PMID: 14657531]
[19]
Hartmann, J.T.; Haap, M.; Kopp, H.G.; Lipp, H.P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10(5), 470-481.
[http://dx.doi.org/10.2174/138920009788897975] [PMID: 19689244]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 6
Year: 2020
Published on: 29 June, 2020
Page: [725 - 730]
Pages: 6
DOI: 10.2174/1570180816666190716141524

Article Metrics

PDF: 29
HTML: 9
EPUB: 1
PRC: 1