Catalytic Dimerization of Bio-Based 5-methylfurfuryl Alcohol to Bis(5-methylfuran-2-yl) Methane with a Solid Acidic Nanohybrid

Author(s): Duo Jin, Chengjiang Fang, Yuanzhong Li, Yuanhui Shi, Yan Liu, Hu Li*, Song Yang*

Journal Name: Current Nanoscience

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Liquid C8-C15 long-chain alkanes, as the main components of jet fuels or diesel, can be synthetized from abundant and renewable biomass derivatives by extending the carbon- chain length through cascade C-C coupling over acidic catalysts and hydrodeoxygenation over metal particles.

Objective: This research aims to develop a carbon-increasing catalytic process through the dimerization of 5-methylfurfuryl alcohol to produce the C11 oxygenate bis(5-methylfuran-2-yl) methane.

Methods: In this work, 5-methylfurfural, derivable from sugars, could be reduced to the expensive 5- methylfurfuryl alcohol over Cs2CO3 using an eco-friendly hydride polymethylhydrosiloxane. In the subsequent carbon-increasing process, a solid acidic nanocatalyst 3-chlorpyridine phosphotungstic acid (3-ClPYPW) was developed to be efficient for the conversion of 5-methylfurfuryl alcohol to bis(5-methylfuran-2-yl) methane under mild reaction conditions.

Results: A good bis(5-methylfuran-2-yl) methane yield of 51.6% was obtained using dichloromethane as a solvent at a low temperature of 70°C in 11 h. The solid nanocatalyst was able to be reused for at least four cycles without a remarkable loss of catalytic activity. The kinetic study proved that the reaction is a first-order reaction with apparent activation energy (Ea) of 41.10 kJ mol-1, while the thermodynamic study certified that the reaction is non-spontaneous and endothermic.

Conclusion: A novel catalytic pathway for the synthesis of BMFM (C11 oxygenate) by the one-pot process was successfully developed over solid acidic nanocatalysts 3-ClPYPW.

Keywords: Nanocatalyst, inorganic-organic hybrid, heterogeneous catalysis, biofuel, biomass-derived furanic compounds, fuel precursors.

[1]
Demirbas, A. Progress and recent trends in biofuels. Pror. Energy Combust. Sci., 2007, 33, 1-18.
[http://dx.doi.org/10.1016/j.pecs.2006.06.001]
[2]
Czernik, S.; Bridgwater, A.V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels, 2004, 18, 590-598.
[http://dx.doi.org/10.1021/ef034067u]
[3]
Corma, A.; Sauvanaud, L.; Mathieu, Y.; Al-Bogami, S.; Bourane, A.; Al-Ghrami, M. Direct crude oil cracking for producing chemicals: Thermal cracking modeling. Fuel, 2018, 211, 726-736.
[http://dx.doi.org/10.1016/j.fuel.2017.09.099]
[4]
Kumari, S.; Regar, R.K.; Manickam, N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour. Technol., 2018, 254, 174-179.
[http://dx.doi.org/10.1016/j.biortech.2018.01.075] [PMID: 29413920]
[5]
Guo, K.; Hansen, V.F.; Li, H.; Yu, Z. Monodispersed nickel and cobalt nanoparticles in desulfurization of thiophene for in-situ upgrading of heavy crude oil. Fuel, 2018, 211, 697-703.
[http://dx.doi.org/10.1016/j.fuel.2017.09.097]
[6]
Corma, A.; Corresa, E.; Mathieu, Y.; Sauvanaud, L.; Al-Bogami, S.; Al-Ghrami, M.S.; Bourane, A. Crude oil to chemicals: Light olefins from crude oil. Catal. Sci. Technol., 2017, 7, 12-46.
[http://dx.doi.org/10.1039/C6CY01886F]
[7]
Ren, Y.; Liu, X.; Liu, L.; Shi, L. Measuring the resource productivity of crude oil: A chemical network and its application. J. Ind. Ecol., 2018, 22, 1331-1338.
[http://dx.doi.org/10.1111/jiec.12729]
[8]
Ojinnaka, C.M.; Ajienka, J.A.; Abayeh, O.J.; Osuji, L.C.; Duru, R.U. Formulation of best-fit hydrophile/lipophile balance-dielectric permittivity demulsifiers for treatment of crude oil emulsions. Egypt. J. Pet., 2016, 25, 565-574.
[9]
Wang, Z.; Xu, Y.; Liu, Y.; Shao, L. A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 12171-12178.
[http://dx.doi.org/10.1039/C5TA01767J]
[10]
Tao, K.; Liu, X.; Chen, X.; Hu, X.; Cao, L.; Yuan, X. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour. Technol., 2017, 224, 327-332.
[http://dx.doi.org/10.1016/j.biortech.2016.10.073] [PMID: 27815043]
[11]
Patowary, K.; Patowary, R.; Kalita, M.C.; Deka, S. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front. Microbiol., 2017, 8, 279.
[http://dx.doi.org/10.3389/fmicb.2017.00279] [PMID: 28275373]
[12]
Olah, G.A. Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. Engl., 2005, 44(18), 2636-2639.
[http://dx.doi.org/10.1002/anie.200462121] [PMID: 15800867]
[13]
Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage., 2010, 51, 1412-1421.
[http://dx.doi.org/10.1016/j.enconman.2010.01.015]
[14]
Liu, B.; Zhang, Z. Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal., 2015, 6, 326-338.
[http://dx.doi.org/10.1021/acscatal.5b02094]
[15]
Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; Mielenz, J.R.; Murphy, R.; Templer, R.; Tschaplinski, T. The path forward for biofuels and biomaterials. Science, 2006, 311(5760), 484-489.
[http://dx.doi.org/10.1126/science.1114736] [PMID: 16439654]
[16]
Li, H.; Fang, Z.; Smith, R.L., Jr; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[http://dx.doi.org/10.1016/j.pecs.2016.04.004]
[17]
Li, H.; Fang, Z.; Luo, J.; Yang, S. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl. Catal. B, 2017, 200, 182-191.
[http://dx.doi.org/10.1016/j.apcatb.2016.07.007]
[18]
Fang, C.; Li, Y.; Yu, Z.; Li, H.; Yang, S. Efficient catalytic upgrade of Fructose to alkyl levulinates with phenylpyridine-phosphotungstate solid hybrids. Curr. Green Chem., 2019, 6, 44-52.
[http://dx.doi.org/10.2174/2213346105666181112112330]
[19]
Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R.S.; Yang, S.; Luque, R. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal., 2018, 8, 148-187.
[http://dx.doi.org/10.1021/acscatal.7b02577]
[20]
Anbarasan, P.; Baer, Z.C.; Sreekumar, S.; Gross, E.; Binder, J.B.; Blanch, H.W.; Clark, D.S.; Toste, F.D. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature, 2012, 491(7423), 235-239.
[http://dx.doi.org/10.1038/nature11594] [PMID: 23135469]
[21]
Yang, Z.; Qian, K.; Zhang, X.; Lei, H.; Xin, C.; Zhang, Y.; Qian, M.; Villota, E. Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes. Energy, 2018, 154, 289-297.
[http://dx.doi.org/10.1016/j.energy.2018.04.126]
[22]
Sun, Z.; Bottari, G.; Afanasenko, A.; Stuart, M.C.; Deuss, P.J.; Fridrich, B.; Barta, K. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal., 2018, 1, 82-92.
[http://dx.doi.org/10.1038/s41929-017-0007-z]
[23]
Tang, H.; Chen, F.; Li, G.; Yang, X.; Hu, Y.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T.; Li, N. Synthesis of jet fuel additive with cyclopentanone. J. Energy Chem., 2019, 29, 23-30.
[http://dx.doi.org/10.1016/j.jechem.2018.01.017]
[24]
Xie, S.; Fu, C.; Song, W.; Zhang, Y.; Yi, C. Highly efficient synthesis and separation of fuel precursors from the concentrated ABE fermentation broth in a biphasic catalytic process. Fuel, 2019, 242, 41-49.
[http://dx.doi.org/10.1016/j.fuel.2019.01.015]
[25]
Xu, J.; Li, L.; Li, G.; Wang, A.; Cong, Y.; Wang, X.; Li, N. Synthesis of renewable C8-C10 alkanes with angelica lactone and furfural from carbohydrates. ACS Sustain. Chem.& Eng., 2018, 6, 6126-6134.
[http://dx.doi.org/10.1021/acssuschemeng.7b04797]
[26]
Li, G.; Li, N.; Yang, J.; Li, L.; Wang, A.; Wang, X.; Cong, Y.; Zhang, T. Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions. Green Chem., 2014, 16, 594-599.
[http://dx.doi.org/10.1039/C3GC41356J]
[27]
Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Production of high-quality diesel from biomass waste products. Angew. Chem. Int. Ed. Engl., 2011, 50(10), 2375-2378.
[http://dx.doi.org/10.1002/anie.201007508] [PMID: 21351358]
[28]
Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.; Zeng, X.; Sun, Y.; Hu, L.; Liu, S.; Lei, T.; Lin, L. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem, 2017, 10(13), 2696-2706.
[http://dx.doi.org/10.1002/cssc.201700457] [PMID: 28425225]
[29]
Xie, J.; Zhang, X.; Liu, Y.; Li, Z.; Xiu-tian-feng, E.; Xie, J.; Zhang, Y.C.; Pun, L.; Zou, J.J. Synthesis of high-density liquid fuel via diels-alder reaction of dicyclopentadiene and lignocellulose-derived 2-methylfuran. Catal. Today, 2019, 319, 139-144.
[http://dx.doi.org/10.1016/j.cattod.2018.04.053]
[30]
Jing, Y.; Xia, Q.; Xie, J.; Liu, X.; Guo, Y.; Zou, J.J.; Wang, Y. Robinson annulation-directed synthesis of jet-fuel-ranged alkylcyclohexanes from biomass-derived chemicals. ACS Catal., 2018, 8, 3280-3285.
[http://dx.doi.org/10.1021/acscatal.8b00071]
[31]
Kwon, J.S.; Choo, H.; Choi, J.W.; Jae, J.; Suh, D.J.; Lee, K.Y.; Ha, J.M. Condensation of pentose-derived furan compounds to C15 fuel precursors using supported phosphotungstic acid catalysts: Strategy for designing heterogeneous acid catalysts based on the acid strength and pore structures. Appl. Catal. A Gen., 2019, 570, 238-244.
[http://dx.doi.org/10.1016/j.apcata.2018.10.025]
[32]
Wang, J.; Zhang, Z.; Jin, S.; Shen, X. Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sufonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192, 102-107.
[http://dx.doi.org/10.1016/j.fuel.2016.12.027]
[33]
Luo, Y.J.; Zhou, Y.H.; Huang, Y.B. A new lewis acidic Zr catalyst for the synthesis of furanic diesel precursor from biomass derived furfural and 2-methylfuran. Catal. Lett., 2019, 149, 292-302.
[http://dx.doi.org/10.1007/s10562-018-2599-6]
[34]
Gebresillase, M.N.; Shavi, R.; Seo, J.G. A comprehensive investigation of the condensation of furanic platform molecules to C14-C15 fuel precursors over sulfonic acid functionalized silica supports. Green Chem., 2018, 20, 5133-5146.
[http://dx.doi.org/10.1039/C8GC01953C]
[35]
Sacia, E.R.; Balakrishnan, M.; Deaner, M.H.; Goulas, K.A.; Toste, F.D.; Bell, A.T. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel. ChemSusChem, 2015, 8(10), 1726-1736.
[http://dx.doi.org/10.1002/cssc.201500002] [PMID: 25891778]
[36]
Lam, P.T.; Law, A.O. Crowdfunding for renewable and sustainable energy projects: An exploratory case study approach. Renew. Sustain. Energy Rev., 2016, 60, 11-20.
[http://dx.doi.org/10.1016/j.rser.2016.01.046]
[37]
He, Y.; Xu, Y.; Pang, Y.; Tian, H.; Wu, R. A regulatory policy to promote renewable energy consumption in china: review and future evolutionary path. Renew. Energy, 2016, 89, 695-705.
[http://dx.doi.org/10.1016/j.renene.2015.12.047]
[38]
Tabar, V.S.; Jirdehi, M.A.; Hemmati, R. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy, 2017, 118, 827-839.
[http://dx.doi.org/10.1016/j.energy.2016.10.113]
[39]
Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental kuznets curve hypothesis in vietnam. Energy Policy, 2015, 76, 123-131.
[http://dx.doi.org/10.1016/j.enpol.2014.11.019]
[40]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. Engl., 2007, 46(38), 7164-7183.
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[41]
Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage., 2001, 42, 1357-1378.
[http://dx.doi.org/10.1016/S0196-8904(00)00137-0]
[42]
Li, C.; Cai, H.; Zhang, B.; Li, W.; Pei, G.; Dai, T.; Zhang, T. Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system. Chin. J. Catal., 2015, 36, 1638-1646.
[http://dx.doi.org/10.1016/S1872-2067(15)60927-5]
[43]
Li, H.; Zhang, Q.; Bhadury, P.S.; Yang, S. Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem., 2014, 18, 547-559.
[http://dx.doi.org/10.2174/13852728113176660138]
[44]
McKendry, P. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol., 2002, 83(1), 37-46.
[http://dx.doi.org/10.1016/S0960-8524(01)00118-3] [PMID: 12058829]
[45]
Shrotri, A.; Kobayashi, H.; Fukuoka, A. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res., 2018, 51(3), 761-768.
[http://dx.doi.org/10.1021/acs.accounts.7b00614] [PMID: 29443505]
[46]
Liao, Y.T.; Matsagar, B.M.; Wu, K.C.W. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem.& Eng., 2018, 6, 13628-13643.
[http://dx.doi.org/10.1021/acssuschemeng.8b03683]
[47]
Mäki-Arvela, P.; Holmbom, B.; Salmi, T.; Murzin, D.Y. Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal. Rev., 2007, 49, 197-340.
[http://dx.doi.org/10.1080/01614940701313127]
[48]
Xia, Q.; Chen, Z.; Shao, Y.; Gong, X.; Wang, H.; Liu, X.; Parker, S.F.; Han, X.; Yang, S.; Wang, Y. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat. Commun., 2016, 7, 11162.
[http://dx.doi.org/10.1038/ncomms11162] [PMID: 27025898]
[49]
Caravaca, A.; Jones, W.; Hardacre, C.; Bowker, M.H. 2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proc. Math. Phys. Eng. Sci., 2016, 472(2191), 20160054
[http://dx.doi.org/10.1098/rspa.2016.0054] [PMID: 27493561]
[50]
Mutsengerere, S.; Chihobo, C.H.; Musademba, D.; Nhapi, I. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renew. Sustain. Energy Rev., 2019, 104, 328-336.
[http://dx.doi.org/10.1016/j.rser.2019.01.030]
[51]
Han, X.; Guo, Y.; Liu, X.; Xia, Q.; Wang, Y. Catalytic conversion of lignocellulosic biomass into hydrocarbons: A mini review. Catal. Today, 2019, 319, 2-13.
[http://dx.doi.org/10.1016/j.cattod.2018.05.013]
[52]
Li, X.; Xu, R.; Yang, J.; Nie, S.; Liu, D.; Liu, Y.; Si, C. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod., 2019, 130, 184-197.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.082]
[53]
West, R.M.; Liu, Z.Y.; Peter, M.; Dumesic, J.A. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem, 2008, 1(5), 417-424.
[http://dx.doi.org/10.1002/cssc.200800001] [PMID: 18702136]
[54]
Li, H.; Saravanamurugan, S.; Yang, S.; Riisager, A. Catalytic alkylation of 2-methylfuran with formalin using supported acidic ionic liquids. ACS Sustain. Chem.& Eng., 2015, 3, 3274-3280.
[http://dx.doi.org/10.1021/acssuschemeng.5b00850]
[55]
Wettstein, S.G.; Alonso, D.M.; Chong, Y.; Dumesic, J.A. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ. Sci., 2012, 5, 8199-8203.
[http://dx.doi.org/10.1039/c2ee22111j]
[56]
Kunkes, E.L.; Simonetti, D.A.; West, R.M.; Serrano-Ruiz, J.C.; Gärtner, C.A.; Dumesic, J.A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900), 417-421.
[http://dx.doi.org/10.1126/science.1159210] [PMID: 18801970]
[57]
Resasco, D.E.; Crossley, S.P. Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel. Catal. Today, 2015, 257, 185-199.
[http://dx.doi.org/10.1016/j.cattod.2014.06.037]
[58]
Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem., 2014, 16, 516-547.
[http://dx.doi.org/10.1039/c3gc41492b]
[59]
Addepally, U.; Thulluri, C. Recent progress in production of fuel range liquid hydrocarbons from biomass-derived furanics via strategic catalytic routes. Fuel, 2015, 159, 935-942.
[http://dx.doi.org/10.1016/j.fuel.2015.07.036]
[60]
Bohre, A.; Dutta, S.; Saha, B.; Abu-Omar, M.M. Upgrading furfurals to drop-in biofuels: An overview. ACS Sustain. Chem.& Eng., 2015, 3, 1263-1277.
[http://dx.doi.org/10.1021/acssuschemeng.5b00271]
[61]
Román-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 2007, 447(7147), 982-985.
[http://dx.doi.org/10.1038/nature05923] [PMID: 17581580]
[62]
Choura, M.; Belgacem, N.M.; Gandini, A. Acid-catalyzed polycondensation of furfuryl alcohol: Mechanisms of chromophore formation and cross-linking. Macromolecules, 1996, 29, 3839-3850.
[http://dx.doi.org/10.1021/ma951522f]
[63]
Sacia, E.R.; Balakrishnan, M.; Bell, A.T. Biomass conversion to diesel via the etherification of furanyl alcohols catalyzed by Amberlyst-15. J. Catal., 2014, 313, 70-79.
[http://dx.doi.org/10.1016/j.jcat.2014.02.012]
[64]
Atadashi, I.M.; Aroua, M.K.; Aziz, A.A.; Sulaiman, N.M.N. The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem., 2013, 19, 14-26.
[http://dx.doi.org/10.1016/j.jiec.2012.07.009]
[65]
Helwani, Z.; Othman, M.R.; Aziz, N.; Fernando, W.J.N.; Kim, J. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol., 2009, 90, 1502-1514.
[http://dx.doi.org/10.1016/j.fuproc.2009.07.016]
[66]
Akia, M.; Yazdani, F.; Motaee, E.; Han, D.; Arandiyan, H. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res. J., 2014, 1, 16-25.
[http://dx.doi.org/10.18331/BRJ2015.1.1.5]
[67]
Fang, C.; Li, Y.; Zhao, W.; Wu, W.; Li, H.; He, C.; Yang, S. Phosphotungstic acid heterogenized by assembly with pyridines for efficient catalytic conversion of fructose to methyl levulinate. RSC Advances, 2018, 8, 16585-16592.
[http://dx.doi.org/10.1039/C8RA02278J]
[68]
Kim, H.J.; Jeon, Y.; Park, J.I.; Shul, Y.G. Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide. J. Mol. Catal. Chem., 2013, 378, 232-237.
[http://dx.doi.org/10.1016/j.molcata.2013.06.014]
[69]
Li, H.; Gui, Z.; Yang, S.; Qi, Z.; Saravanamurugan, S.; Riisager, A. Catalytic tandem reaction for the production of jet and diesel fuel range alkanes. Energy Technol. (Weinheim), 2018, 6, 1060-1066.
[http://dx.doi.org/10.1002/ente.201700637]
[70]
Tong, T.; Xia, Q.; Liu, X.; Wang, Y. Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability. Catal. Commun., 2017, 101, 129-133.
[http://dx.doi.org/10.1016/j.catcom.2017.08.005]
[71]
Li, S.; Chen, F.; Li, N.; Wang, W.; Sheng, X.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T. Synthesis of renewable triketones, diketones, and jet-fuel range cycloalkanes with 5-hydroxymethylfurfural and ketones. ChemSusChem, 2017, 10(4), 711-719.
[http://dx.doi.org/10.1002/cssc.201601727] [PMID: 28052535]
[72]
Kim, T.; Assary, R.S.; Pauls, R.E.; Marshall, C.L.; Curtiss, L.A.; Stair, P.C. Thermodynamics and reaction pathways of furfuryl alcohol oligomer formation. Catal. Commun., 2014, 46, 66-70.
[http://dx.doi.org/10.1016/j.catcom.2013.11.030]
[73]
Wang, Z.; Li, H.; Zhao, W.; Yang, S. Low-temperature and solvent-free production of biomass-derived diesel-range C17 precursor via one-pot cascade acylation–alkylation over Sn4+-montmorillonite. J. Ind. Eng. Chem., 2018, 66, 325-332.
[http://dx.doi.org/10.1016/j.jiec.2018.05.047]
[74]
Shinde, S.H.; Rode, C.V. A two-phase system for the clean and high yield synthesis of furylmethane derivatives over-SO3H functionalized ionic liquids. Green Chem., 2017, 19, 4804-4810.
[http://dx.doi.org/10.1039/C7GC01654A]
[75]
de Carvalho, D.C.; Oliveira, A.C.; Ferreira, O.P.; Josué Filho, M.; Tehuacanero-Cuapa, S.; Oliveira, A.C. Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance. Chem. Eng. J., 2017, 313, 1454-1467.
[http://dx.doi.org/10.1016/j.cej.2016.11.047]
[76]
Conley, R.T.; Metil, I. An investigation of the structure of furfuryl alcohol polycondensates with infrared spectroscopy. J. Appl. Polym. Sci., 1963, 7, 37-52.
[http://dx.doi.org/10.1002/app.1963.070070104]
[77]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Jin, D.; Yang, S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energy Convers. Manage., 2018, 166, 534-544.
[http://dx.doi.org/10.1016/j.enconman.2018.04.061]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [235 - 245]
Pages: 11
DOI: 10.2174/1573413715666190716123250
Price: $65

Article Metrics

PDF: 15
HTML: 5
EPUB: 1
PRC: 1