Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Plant Phenolics and Lectins as Vaccine Adjuvants

Author(s): Hernández-Ramos Reyna-Margarita, Castillo-Maldonado Irais*, Rivera-Guillén Mario-Alberto, Ramírez-Moreno Agustina, Serrano-Gallardo Luis-Benjamín and Pedroza-Escobar David*

Volume 20, Issue 15, 2019

Page: [1236 - 1243] Pages: 8

DOI: 10.2174/1389201020666190716110705

open access plus

Abstract

Background: The immune system is responsible for providing protection to the body against foreign substances. The immune system divides into two types of immune responses to study its mechanisms of protection: 1) Innate and 2) Adaptive. The innate immune response represents the first protective barrier of the organism that also works as a regulator of the adaptive immune response, if evaded the mechanisms of the innate immune response by the foreign substance the adaptive immune response takes action with the consequent antigen neutralization or elimination. The adaptive immune response objective is developing a specific humoral response that consists in the production of soluble proteins known as antibodies capable of specifically recognizing the foreign agent; such protective mechanism is induced artificially through an immunization or vaccination. Unfortunately, the immunogenicity of the antigens is an intrinsic characteristic of the same antigen dependent on several factors.

Conclusion: Vaccine adjuvants are chemical substances of very varied structure that seek to improve the immunogenicity of antigens. The main four types of adjuvants under investigation are the following: 1) Oil emulsions with an antigen in solution, 2) Pattern recognition receptors activating molecules, 3) Inflammatory stimulatory molecules or activators of the inflammasome complex, and 4) Cytokines. However, this paper addresses the biological plausibility of two phytochemical compounds as vaccine adjuvants: 5) Lectins, and 6) Plant phenolics whose characteristics, mechanisms of action and disadvantages are addressed. Finally, the immunological usefulness of these molecules is discussed through immunological data to estimate effects of plant phenolics and lectins as vaccine adjuvants, and current studies that have implanted these molecules as vaccine adjuvants, demonstrating the results of this immunization.

Keywords: Plant phenolics, lectins, vaccine adjuvants, immune system, innate immune response, adaptive immune response.

Graphical Abstract
[1]
Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and molecular immunology. In: Elsevier Science, 9th ed; Madrid, 2018.
[2]
Murray, R.K.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Rodwell, V.W.; Weill, A. Harper bioquímica ilustrada. In: Mc Graw Hill, 29th ed; China, 2012.
[3]
Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M.; Enquist, L.W. Principles of Virology Molecular biology, pathogenesis and control. In: ASM PRESS, 4th ed; Washington, DC, 2015.
[4]
Batista-Duharte, A.; Lastre, M.; Pérez, O. Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enferm. Infecc. Microbiol. Clin., 2014, 32(2), 106-114.
[http://dx.doi.org/10.1016/j.eimc.2012.11.012] [PMID: 23332294]
[5]
Blanco, A.; Cambronero, R. Adyuvantes vacunales. Manual de vacunas en Pediatría, 4th ed; Asociación Española de Pediatría: Madrid, 2008, pp. 65-73.
[6]
Blanco-Quirós, A. Update on vaccines and new perspectives. An. Real Acad. Med. Cir. Vall., 2014, 51(1), 141-157.
[7]
Sierra-González, G.; Tamargo-Santos, B. Adyuvantes inmunológicos para vacunas humanas: Estado actual, tendencias mundiales y en Cuba. An. de la Acad., 2011, 1(2), 1-32.
[8]
Gupta, R.K. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev., 1998, 32(3), 155-172.
[http://dx.doi.org/10.1016/S0169-409X(98)00008-8] [PMID: 10837642]
[9]
Lindblad, E.B.; Schonberg, A. Aluminium adjuvants: Preparation, application, dosage, and formulation with antigen. Vaccine adjuvants, methods in molecular biology; Humana Press: Washington, DC, 2010, p. 314.
[http://dx.doi.org/10.1007/978-1-60761-585-9_4]
[10]
Harte, C.; Gorman, A.L.; McCluskey, S.; Carty, M.; Bowie, A.G.; Scott, C.J.; Meade, K.G.; Lavelle, E.C. Alum activates the bovine NLRP3 Inflammasome. Front. Immunol., 2017, 8, 1494.
[http://dx.doi.org/10.3389/fimmu.2017.01494] [PMID: 29209310]
[11]
Abbas, A.K.; Lichtman, A.H.; Pillai, S. Métodos de estudio de la activación de linfocitos T. Cellular and Molecular Immunology; Elsevier Science: Madrid, 2018, pp. 166-167.
[12]
Ekam, V.S.; Johnson, J.T.; Dasofunjo, K.; Odey, M.O.; Anyahara, S.E. Total protein, albumin and globulin levels following the administration of activity directed fractions of Vernonia amygdalina during acetaminophen induced hepatotoxicity in wistar rats. Ann. Biol. Res., 2012, 3(12), 5590-5594.
[13]
García-Hernández, M.; Guerrero-Ramírez, G.; Castro-Corona, M.; Medina-de-la-Garza, C.E. Inmunomoduladores como terapia adyuvante en la enfermedad infecciosa. Medicina Universitaria, 2009, 11(45), 247-259.
[14]
Cambi, A.; Figdor, C. Necrosis: C-type lectins sense cell death. Curr. Biol., 2009, 19(9), R375-R378.
[http://dx.doi.org/10.1016/j.cub.2009.03.032] [PMID: 19439262]
[15]
Clement, F.; Venkatesh, Y.P. Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic. Int. Immunopharmacol., 2010, 10(10), 1161-1169.
[http://dx.doi.org/10.1016/j.intimp.2010.06.022] [PMID: 20615490]
[16]
Cooper, D.N.; Barondes, S.H. God must love galectins; he made so many of them. Glycobiology, 1999, 9(10), 979-984.
[http://dx.doi.org/10.1093/glycob/9.10.979] [PMID: 10521533]
[17]
Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta, 2006, 1760(4), 616-635.
[http://dx.doi.org/10.1016/j.bbagen.2005.12.020] [PMID: 16478649]
[18]
Kumar, V.P.; Venkatesh, Y.P. Alleviation of cyclophosphamide-induced immunosuppression in Wistar rats by onion lectin (Allium cepa agglutinin). J. Ethnopharmacol., 2016, 186, 280-288.
[http://dx.doi.org/10.1016/j.jep.2016.04.006] [PMID: 27063982]
[19]
Bhutia, S.K.; Panda, P.K.; Sinha, N.; Praharaj, P.P.; Bhol, C.S.; Panigrahi, D.P.; Mahapatra, K.K.; Saha, S.; Patra, S.; Mishra, S.R.; Behera, B.P.; Patil, S.; Maiti, T.K. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res., 2019, 144(144), 8-18.
[http://dx.doi.org/10.1016/j.phrs.2019.04.001] [PMID: 30951812]
[20]
Xu, X.; Wei, H.; Dong, Z.; Chen, Y.; Tian, Z. The differential effects of low dose and high dose concanavalin A on cytokine profile and their importance in liver injury. Inflamm. Res., 2006, 55(4), 144-152.
[21]
Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrialby-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99, 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042]
[22]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol., 2000, 32(4), S81-S118.
[23]
Gertsch, J.; Viveros-Paredes, J.M.; Taylor, P. Plant immunostimulants--scientific paradigm or myth? J. Ethnopharmacol., 2011, 136(3), 385-391.
[http://dx.doi.org/10.1016/j.jep.2010.06.044] [PMID: 20620205]
[24]
Lattanzio, V. Phenolic Compounds: Introduction. Natural Products; Springer: Berlin, 2016.
[25]
Li, Q.; Niu, Y.; Xing, P.; Wang, C. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chin. Med., 2018, 13(7), 7.
[http://dx.doi.org/10.1186/s13020-018-0166-0] [PMID: 29445417]
[26]
Licciardi, P.V.; Underwood, J.R. Plant-derived medicines: a novel class of immunological adjuvants. Int. Immunopharmacol., 2011, 11(3), 390-398.
[http://dx.doi.org/10.1016/j.intimp.2010.10.014] [PMID: 21056709]
[27]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; & Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10) E1374
[http://dx.doi.org/10.3390/molecules21101374]
[28]
Liu, S.; Chen, R.; Hagedorn, C.H. Reference tannic acid inhibits hepatitis C virus entry into Huh 7.5 cells. PLoS One, 2015, 10(7) e0131358
[29]
Muir, R.M.; Ibáñez, A.M.; Uratsu, S.L.; Ingham, E.S.; Leslie, C.A.; McGranahan, G.H.; Batra, N.; Goyal, S.; Joseph, J.; Jemmis, E.D.; Dandekar, A.M. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Mol. Biol., 2011, 75(6), 555-565.
[http://dx.doi.org/10.1007/s11103-011-9739-3] [PMID: 21279669]
[30]
Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in human health. Int. J. Chem. Eng. Appl., 2014, 5(5), 393-396.
[http://dx.doi.org/10.7763/IJCEA.2014.V5.416]
[31]
Patwardhan, B.; Gautam, M. Botanical immunodrugs: Scope and opportunities. Drug Discov. Today, 2005, 10(7), 495-502.
[http://dx.doi.org/10.1016/S1359-6446(04)03357-4] [PMID: 15809195]
[32]
Patwardhan, B.; Vaidya, A.D.B.; Chorghade, M. Ayurveda and natural products drug discovery. Curr. Sci., 2004, 86(6), 789-799.
[33]
Pedroza-Escobar, D.; Serrano-Gallardo, L.B.; Escobar-Ávila, E.A.D.; Sevilla-González, M.D.L.L. Using of medicinal plants among people living with HIV. J. Plant Dev. Sci., 2016, 8(7), 311-314.
[34]
Pedroza-Escobar, D.; Serrano-Gallardo, L.B.; Escobar-Ávila, E.A.D.; Nava-Hernández, M.P.; Vega-Menchaca, M.C. HIV-1 infection inhibition by neem (Azadirachta indica A. Juss.) leaf extracts and Azadirachtin. Indian J. Tradit. Knowl., 2017, 16(3), 437-441.
[35]
Pedroza-Escobar, D.; Serrano-Gallardo, L.B.; Sevilla-González, M.D.L.L. López-García, S.; Escobar-Ávila, E.A.D.; Luna-Herrera, J.; Vega-Menchaca, M.C. Effect of neem (Azadirachta indicia A. Juss.) leaf extracts in human T lymphocytes. Indian J. Tradit. Knowl., 2016, 15(2), 219-222.
[36]
Singh, D.; Tanwar, H.; Jayashankar, B.; Sharma, J.; Murthy, S.; Chanda, S.; Singh, S.B.; Ganju, L. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed. Pharmacother., 2017, 90, 354-360.
[http://dx.doi.org/10.1016/j.biopha.2017.03.067] [PMID: 28380410]
[37]
Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book, 2011, 9 e0152
[http://dx.doi.org/10.1199/tab.0152] [PMID: 22303276]
[38]
Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 2017, 37, 27-48.
[http://dx.doi.org/10.1016/j.phymed.2017.10.018] [PMID: 29174958]
[39]
Ajit Varki, R.D.; Cummings, J.; Esko, P.S.; Gerald, W.H.; Markus, A.; Alan, G. Essentials of Glycobiology,, (3rd ed.. ), Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press: NY, 2015-2017.
[40]
Chandrashekar, P.M.; Venkatesh, Y.P. Identification of the protein components displaying immunomodulatory activity in aged garlic extract. J. Ethnopharmacol., 2009, 124(3), 384-390.
[http://dx.doi.org/10.1016/j.jep.2009.05.030] [PMID: 19505565]
[41]
Venkatalakshmi, P.; Vadivel, V.; Brindha, P. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm., 2016, 10(1), 1-18.
[42]
Unitt, J.; Hornigold, D. Plant lectins are novel Toll-like receptor agonists. Biochem. Pharmacol., 2011, 81(11), 1324-1328.
[http://dx.doi.org/10.1016/j.bcp.2011.03.010] [PMID: 21420389]
[43]
Reyes, A.W.B.; Hop, H.T.; Arayan, L.T.; Huy, T.X.N.; Min, W.; Lee, H.J.; Chang, H.H.; Kim, S. Tannic acid-mediated immune activation attenuates Brucella abortus infection in mice. J. Vet. Sci., 2018, 19(1), 51-57.
[http://dx.doi.org/10.4142/jvs.2018.19.1.51] [PMID: 28693306]
[44]
Cardoso, M.R.; Mota, C.M.; Ribeiro, D.P.; Noleto, P.G.; Andrade, W.B.; Souza, M.A.; Silva, N.M.; Mineo, T.W.; Mineo, J.R.; Silva, D.A. Adjuvant and immunostimulatory effects of a D-galactose-binding lectin from Synadenium carinatum latex (ScLL) in the mouse model of vaccination against neosporosis. Vet. Res. (Faisalabad), 2012, 43(76), 76.
[http://dx.doi.org/10.1186/1297-9716-43-76] [PMID: 23107170]
[45]
Cardoso, M.R.; Mota, C.M.; Ribeiro, D.P.; Santiago, F.M.; Carvalho, J.V.; Araujo, E.C.; Silva, N.M.; Mineo, T.W.; Roque-Barreira, M.C.; Mineo, J.R.; Silva, D.A. ArtinM, a D-mannose-binding lectin from Artocarpus integrifolia, plays a potent adjuvant and immunostimulatory role in immunization against Neospora caninum. Vaccine, 2011, 29(49), 9183-9193.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.136] [PMID: 22001880]
[46]
Albuquerque, D.A.; Martins, G.A.; Campos-Neto, A.; Silva, J.S. The adjuvant effect of jacalin on the mouse humoral immune response to trinitrophenyl and Trypanosoma cruzi. Immunol. Lett., 1999, 68(2-3), 375-381.
[http://dx.doi.org/10.1016/S0165-2478(99)00079-6] [PMID: 10424446]
[47]
Teixeira, C.R.; Cavassani, K.A.; Gomes, R.B.; Teixeira, M.J.; Roque-Barreira, M.C.; Cavada, B.S.; da Silva, J.S.; Barral, A.; Barral-Netto, M. Potential of KM+ lectin in immunization against Leishmania amazonensis infection. Vaccine, 2006, 24(15), 3001-3008.
[http://dx.doi.org/10.1016/j.vaccine.2005.11.067] [PMID: 16455170]
[48]
Panunto-Castelo, A.; Souza, M.A.; Roque-Barreira, M.C.; Silva, J.S.K.M.K.M. (+), a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology, 2001, 11(12), 1035-1042.
[http://dx.doi.org/10.1093/glycob/11.12.1035] [PMID: 11805076]
[49]
Coltri, K.C.; Oliveira, L.L.; Pinzan, C.F.; Vendruscolo, P.E.; Martinez, R.; Goldman, M.H.; Panunto-Castelo, A.; Roque-Barreira, M.C. Therapeutic administration of KM+ lectin protects mice against Paracoccidioides brasiliensis infection via interleukin-12 production in a toll-like receptor 2-dependent mechanism. Am. J. Pathol., 2008, 173(2), 423-432.
[http://dx.doi.org/10.2353/ajpath.2008.080126] [PMID: 18599609]

© 2024 Bentham Science Publishers | Privacy Policy