Protein Tyrosine Phosphatase 1B Inhibitors: A Novel Therapeutic Strategy for the Management of type 2 Diabetes Mellitus

Author(s): Pranav K. Prabhakar, Ponnurengam M. Sivakumar*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 23 , 2019

Become EABM
Become Reviewer

Abstract:

Diabetes is one of the most common endocrine non-communicable metabolic disorders which is mainly caused either due to insufficient insulin or inefficient insulin or both together and is characterized by hyperglycemia. Diabetes emerged as a serious health issue in the industrialized and developing country especially in the Asian pacific region. Out of the two major categories of diabetes mellitus, type 2 diabetes is more prevalent, almost 90 to 95% cases, and the main cause of this is insulin resistance. The main cause of the progression of type 2 diabetes mellitus has been found to be insulin resistance. The type 2 diabetes mellitus may be managed by the change in lifestyle, physical activities, dietary modifications and medications. The major currently available management strategies are sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors, dipeptidyl peptidase-IV inhibitors, and glucagon-like peptide-1 (GLP-1) agonist. Binding of insulin on the extracellular unit of insulin receptor sparks tyrosine kinase of the insulin receptor which induces autophosphorylation. The phosphorylation of the tyrosine is regulated by insulin and leptin molecules. Protein tyrosine phosphatase-1B (PTP1B) works as a negative governor for the insulin signalling pathways, as it dephosphorylates the tyrosine of the insulin receptor and suppresses the insulin signalling cascade. The compounds or molecules which inhibit the negative regulation of PTP1B can have an inductive effect on the insulin pathway and finally help in the management of diabetes mellitus. PTP1B could be an emerging therapeutic strategy for diabetes management. There are a number of clinical and basic research results which suggest that induced expression of PTP1B reduces insulin resistance. In this review, we briefly elaborate and explain the place of PTP1B and its significance in diabetes as well as a recent development in the PTP1B inhibitors as an antidiabetic therapy.

Keywords: Diabetes, PTP1B, inhibitors, insulin signalling, obesity, leptin.

[1]
Prabhakar PK, Doble M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 2008; 4(4): 291-308.
[http://dx.doi.org/10.2174/157339908786241124] [PMID: 18991598]
[2]
Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J Intern Med 2000; 247(3): 301-10.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00625.x] [PMID: 10762445]
[3]
Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106(4): 473-81.
[http://dx.doi.org/10.1172/JCI10842] [PMID: 10953022]
[4]
Newsholme EA, Dimitriadis G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp Clin Endocrinol Diabetes 2001; 109(Suppl. 2): S122-34.
[http://dx.doi.org/10.1055/s-2001-18575] [PMID: 11460564]
[5]
Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes Cell 2001; 23 2001; 104(4): 517-29.
[http://dx.doi.org/10.1016/S0092-8674(01)00239-2]
[6]
IDF Diabetes Atlas. Eighth Edition 2017. International Diabetes Federation 2017.
[7]
Bagust A, Hopkinson PK, Maier W, Currie CJ. An economic model of the long-term health care burden of Type II diabetes. Diabetologia 2001; 44(12): 2140-55.
[http://dx.doi.org/10.1007/s001250100023] [PMID: 11793015]
[8]
Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care 1998; 21(4): 518-24.
[http://dx.doi.org/10.2337/diacare.21.4.518] [PMID: 9571335]
[9]
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365(9467): 1333-46.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[10]
Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 2002; 1(9): 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[11]
Sato K, Iwasaki T, Tamaki I, Aoto M, Tokmakov AA, Fukami Y. Involvement of protein-tyrosine phosphorylation and dephosphorylation in sperm-induced Xenopus egg activation. FEBS Lett 1998; 424(1-2): 113-8.
[http://dx.doi.org/10.1016/S0014-5793(98)00123-9] [PMID: 9537526]
[12]
Majeti R, Weiss A. Regulatory mechanisms for receptor protein tyrosine phosphatases. Chem Rev 2001; 101(8): 2441-8.
[http://dx.doi.org/10.1021/cr000085m] [PMID: 11749382]
[13]
Qin Z, Pandey NR, Zhou X, et al. Functional properties of Claramine: a novel PTP1B inhibitor and insulin-mimetic compound. Biochem Biophys Res Commun 2015; 458(1): 21-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.040] [PMID: 25623533]
[14]
Zhang ZY. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 2002; 42: 209-34.
[http://dx.doi.org/10.1146/annurev.pharmtox.42.083001.144616] [PMID: 11807171]
[15]
Guo S. Decoding insulin resistance and metabolic syndrome for promising therapeutic intervention. J Endocrinol 2014; 220(2): E1-3.
[http://dx.doi.org/10.1530/JOE-13-0584] [PMID: 24431466]
[16]
Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 2000; 275(6): 4283-9.
[http://dx.doi.org/10.1074/jbc.275.6.4283] [PMID: 10660596]
[17]
Bakke J, Haj FG. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol 2015; 37: 58-65.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.020] [PMID: 25263014]
[18]
Wallace MJ, Fladd C, Batt J, Rotin D. The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol Cell Biol 1998; 18(5): 2608-16.
[http://dx.doi.org/10.1128/MCB.18.5.2608] [PMID: 9566880]
[19]
Kenner KA, Anyanwu E, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 1996; 271(33): 19810-6.
[http://dx.doi.org/10.1074/jbc.271.33.19810] [PMID: 8702689]
[20]
Seely BL, Staubs PA, Reichart DR, et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 1996; 45(10): 1379-85.
[http://dx.doi.org/10.2337/diab.45.10.1379] [PMID: 8826975]
[21]
Calera MR, Vallega G, Pilch PF. Dynamics of protein-tyrosine phosphatases in rat adipocytes. J Biol Chem 2000; 275(9): 6308-12.
[http://dx.doi.org/10.1074/jbc.275.9.6308] [PMID: 10692429]
[22]
Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997; 100(2): 449-58.
[http://dx.doi.org/10.1172/JCI119552] [PMID: 9218523]
[23]
Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283(5407): 1544-8.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[24]
Klaman LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20(15): 5479-89.
[http://dx.doi.org/10.1128/MCB.20.15.5479-5489.2000] [PMID: 10891488]
[25]
Wiesmann C, Barr KJ, Kung J, et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 2004; 11(8): 730-7.
[http://dx.doi.org/10.1038/nsmb803] [PMID: 15258570]
[26]
Tonks NK, Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 1988; 263(14): 6722-30.
[PMID: 2834386]
[27]
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 2016; 327-328: 70-83.
[http://dx.doi.org/10.1016/j.ccr.2016.07.002] [PMID: 27890939]
[28]
Chernoff J, Schievella AR, Jost CA, Erikson RL, Neel BG. Cloning of a cDNA for a major human protein-tyrosine-phosphatase. Proc Natl Acad Sci USA 1990; 87(7): 2735-9.
[http://dx.doi.org/10.1073/pnas.87.7.2735] [PMID: 2157211]
[29]
Shah MR. Ishtiaq , Hizbullah SM, et al. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana. J Enzyme Inhib Med Chem 2016; 31(4): 563-7.
[http://dx.doi.org/10.3109/14756366.2015.1047358] [PMID: 26118418]
[30]
Zhang ZY, Lee SY. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin Investig Drugs 2003; 12(2): 223-33.
[http://dx.doi.org/10.1517/13543784.12.2.223] [PMID: 12556216]
[31]
Venable CL, Frevert EU, Kim YB, et al. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation. J Biol Chem 2000; 275(24): 18318-26.
[http://dx.doi.org/10.1074/jbc.M908392199] [PMID: 10751417]
[32]
Prabhakar PK, Doble M. Mechanism of action of medicinal plants towards diabetes mellitus – a review. Recent Progress in Medicinal Plants. USA. Studium Press, LLC 2008; Vol 22: 187-210.
[33]
De Smet PA. Herbal remedies. N Engl J Med 2002; 347(25): 2046-56.
[http://dx.doi.org/10.1056/NEJMra020398] [PMID: 12490687]
[34]
Inamdar N, Edalat S, Kotwal V, Pawar S. Care with nature’s cure: Herbal drugs. Pharmacogn Rev 2007; 1: 361-8.
[35]
Gupta RK, Kesari AN, Murthy PS, Chandra R, Tandon V, Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol 2005; 99(1): 75-81.
[http://dx.doi.org/10.1016/j.jep.2005.01.048] [PMID: 15848023]
[36]
Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4(3): 206-20.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[37]
Bustanji Y, Taha MO, Yousef AM, Al-Bakri AG. Berberine potently inhibits protein tyrosine phosphatase 1B: investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 2006; 21(2): 163-71.
[http://dx.doi.org/10.1080/14756360500533026] [PMID: 16789430]
[38]
Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action. Biochem Biophys Res Commun 2010; 397(3): 543-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.153] [PMID: 20515652]
[39]
Li ZH, Guo H, Xu WB, et al. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS. J Chromatogr Sci 2016; 54(5): 805-10.
[http://dx.doi.org/10.1093/chromsci/bmw016] [PMID: 26896347]
[40]
Zhao D, Islam MN, Ahn BR, Jung HA, Kim BW, Choi JS. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. Arch Pharm Res 2012; 35(1): 179-92.
[http://dx.doi.org/10.1007/s12272-012-0120-0] [PMID: 22297757]
[41]
Lee MH, Kim MM, Kook JK, et al. Ethanol Extracts of Angelica decursiva induces apoptosis in human oral cancer cells. Int J Oral Biol 2010; 35(4): 215-20.
[42]
Lee SW, Kim CS, Cho SH, Chun HS, Kim JK, Kim DK. The effects of Angelica decursiva extract in the inhibition of cell proliferation and in the induction of apoptosis in osteogenic sarcoma cells. J Med Plants Res 2009; 3(4): 241-5.
[43]
Yousof Ali M, Jung HA, Choi JS. Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch Pharm Res 2015; 38(12): 2216-27.
[http://dx.doi.org/10.1007/s12272-015-0629-0] [PMID: 26152875]
[44]
Lim HJ, Lee JH, Choi JS, Lee SK, Kim YS, Kim HP. Inhibition of airway inflammation by the roots of Angelica decursiva and its constituent, columbianadin. J Ethnopharmacol 2014; 155(2): 1353-61.
[http://dx.doi.org/10.1016/j.jep.2014.07.033] [PMID: 25068578]
[45]
Ali MY, Jannat S, Jung HA, Jeong HO, Chung HY, Choi JS. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Chem Biol Interact 2016; 252: 93-101.
[http://dx.doi.org/10.1016/j.cbi.2016.04.020] [PMID: 27085377]
[46]
Obolskiy D, Pischel I, Feistel B, Glotov N, Heinrich M. Artemisia dracunculus L. (tarragon): a critical review of its traditional use, chemical composition, pharmacology, and safety. J Agric Food Chem 2011; 59(21): 11367-84.
[http://dx.doi.org/10.1021/jf202277w] [PMID: 21942448]
[47]
Aglarova AM, Zilfikarov IN, Severtseva OV. Biological characteristics and useful properties of tarragon (Artemisia dracunculus L.). Pharm Chem J 2008; 42: 81-6.
[http://dx.doi.org/10.1007/s11094-008-0064-3]
[48]
Uhl SR, Strauss S. (2000) Handbook of spices, seasonings and flavorings, Technomic Publishing: Lancaster, PA, pp 170-171.
[49]
Mamedov N, Gardner Z, Craker LE. Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants 2004; 11: 191-222.
[http://dx.doi.org/10.1300/J044v11n01_07]
[50]
Benli M, Kaya I, Yigit N. Screening antimicrobial activity of various extracts of Artemisia dracunculus L. Cell Biochem Funct 2007; 25(6): 681-6.
[http://dx.doi.org/10.1002/cbf.1373] [PMID: 16986171]
[51]
Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem 2005; 53(24): 9452-8.
[http://dx.doi.org/10.1021/jf0516538] [PMID: 16302761]
[52]
Shahriyary L, Yazdanparast R. Inhibition of blood platelet adhesion, aggregation and secretion by Artemisia dracunculus leaves extracts. J Ethnopharmacol 2007; 114(2): 194-8.
[http://dx.doi.org/10.1016/j.jep.2007.07.029] [PMID: 17855029]
[53]
Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Evaluation of traditional plant treatments for diabetes: studies in streptozotocin diabetic mice. Acta Diabetol Lat 1989; 26(1): 51-5.
[http://dx.doi.org/10.1007/BF02581196] [PMID: 2750445]
[54]
Ribnicky DM, Poulev A, Watford M, Cefalu WT, Raskin I. Antihyperglycemic activity of Tarralin, an ethanolic extract of Artemisia dracunculus L. Phytomedicine 2006; 13(8): 550-7.
[http://dx.doi.org/10.1016/j.phymed.2005.09.007] [PMID: 16920509]
[55]
Eisenman SW, Poulev A, Struwe L, Raskin I, Ribnicky DM. Qualitative variation of anti-diabetic compounds in different tarragon (Artemisia dracunculus L.) cytotypes. Fitoterapia 2011; 82(7): 1062-74.
[http://dx.doi.org/10.1016/j.fitote.2011.07.003] [PMID: 21798321]
[56]
Logendra S, Ribnicky DM, Yang H, et al. Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry 2006; 67(14): 1539-46.
[http://dx.doi.org/10.1016/j.phytochem.2006.05.015] [PMID: 16806328]
[57]
Chen RM, Hu LH, An TY, Li J, Shen Q. Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg Med Chem Lett 2002; 12(23): 3387-90.
[http://dx.doi.org/10.1016/S0960-894X(02)00757-6] [PMID: 12419367]
[58]
Lin GM, Chen YH, Yen PL, Chang ST. Antihyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. J Tradit Complement Med 2015; 6(3): 281-8.
[http://dx.doi.org/10.1016/j.jtcme.2015.08.005] [PMID: 27419094]
[59]
Tsutsui I, Miyoshi T, Sukchai H, et al. Ecological and morphological profile of floating spherical cladophora socialis aggregations in central thailand. PLoS One 2015; 10(4)e0124997
[http://dx.doi.org/10.1371/journal.pone.0124997]
[60]
Feng Y, Carroll AR, Addepalli R, Fechner GA, Avery VM, Quinn RJ. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors. J Nat Prod 2007; 70(11): 1790-2.
[http://dx.doi.org/10.1021/np070225o] [PMID: 17949055]
[61]
Zhang J, Shen Q, Lu JC, et al. Phenolic compounds from the leaves of Cyclocarya paliurus (Batal.) Ijinskaja and their inhibitory activity against PTP1B. Food Chem 2010; 119: 1491-6.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.031]
[62]
Passreiter CM, Suckow-Schnitker AK, Kulawik A, Addae-Kyereme J, Wright CW, Wätjen W. Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry 2015; 117: 237-44.
[http://dx.doi.org/10.1016/j.phytochem.2015.04.002] [PMID: 26101145]
[63]
Nguyen PH, Le TV, Thuong PT, et al. Cytotoxic and PTP1B inhibitory activities from Erythrina abyssinica. Bioorg Med Chem Lett 2009; 19(23): 6745-9.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.108] [PMID: 19836230]
[64]
Nguyen PH, Sharma G, Dao TT, et al. New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorg Med Chem 2012; 20(21): 6459-64.
[http://dx.doi.org/10.1016/j.bmc.2012.08.024] [PMID: 23022281]
[65]
Hassane AEI. Antioxidant activity of mildbone and mildbenone secondary metabolites of Erythrina mildbraedii Harms: A theoretical approach. Comput Theor Chem 2016; 1077: 106-12.
[http://dx.doi.org/10.1016/j.comptc.2015.11.003]
[66]
Na M, Jang J, Njamen D, et al. Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. J Nat Prod 2006; 69(11): 1572-6.
[http://dx.doi.org/10.1021/np0601861] [PMID: 17125223]
[67]
Qin FM, Dun D, Xiu FS, Ming HR, Shuai T, Xiang QS. Chemical Constituents from Roots of Flemingia philippinensis. Chin Herb Med 2012; 4(1): 8-11.
[68]
Ahn EM, Nakamura N, Akao T, Komatsu K, Qui MH, Hattori M. Prenylated flavonoids from Moghania philippinensis. Phytochemistry 2003; 64(8): 1389-94.
[http://dx.doi.org/10.1016/j.phytochem.2003.09.003] [PMID: 14630004]
[69]
Ahn EM, Nakamura N, Akao T, Nishihara T, Hattori M. Estrogenic and antiestrogenic activities of the roots of Moghania philippinensis and their constituents. Biol Pharm Bull 2004; 27(4): 548-53.
[http://dx.doi.org/10.1248/bpb.27.548] [PMID: 15056864]
[70]
Wang Y, Curtis-Long MJ, Lee BW, et al. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg Med Chem 2014; 22(3): 1115-20.
[http://dx.doi.org/10.1016/j.bmc.2013.12.047] [PMID: 24412339]
[71]
Teng BS, Wang CD, Yang HJ, et al. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J Agric Food Chem 2011; 59(12): 6492-500.
[http://dx.doi.org/10.1021/jf200527y] [PMID: 21585203]
[72]
Jong SC, Birmingham JM. Medicinal benefits of the mushroom Ganoderma. Adv Appl Microbiol 1992; 37: 101-34.
[http://dx.doi.org/10.1016/S0065-2164(08)70253-3] [PMID: 1642155]
[73]
Mohammed A, Adelaiye AB, Abubakar MS, Abdurahman EM. Effects of aqueous extract of Ganoderma lucidum on blood glucose levels of normoglycemic and alloxan-induced diabetic wistar rats. J Med Plants Res 2007; 1(2): 34-7.
[74]
Zhang HN, Lin ZB. Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmacol Sin 2004; 25(2): 191-5.
[PMID: 14769208]
[75]
Yoon G, Lee W, Kim SN, Cheon SH. Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 2009; 19(17): 5155-7.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.054] [PMID: 19632832]
[76]
Dong Y, Zhao M, Zhao T, et al. Bioactive profiles, antioxidant activities, nitrite scavenging capacities and protective effects on H2O2-injured PC12 cells of Glycyrrhiza glabra L. leaf and root extracts. Molecules 2014; 19(7): 9101-13.
[http://dx.doi.org/10.3390/molecules19079101] [PMID: 24983860]
[77]
Li S, Li W, Wang Y, Asada Y, Koike K. Prenylflavonoids from Glycyrrhiza uralensis and their protein tyrosine phosphatase-1B inhibitory activities. Bioorg Med Chem Lett 2010; 20(18): 5398-401.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.110] [PMID: 20724155]
[78]
Wang MY, West BJ, Jensen CJ, et al. Morinda citrifolia (Noni): a literature review and recent advances in Noni research. Acta Pharmacol Sin 2002; 23(12): 1127-41.
[PMID: 12466051]
[79]
Singh DR. Morinda citrifolia L. (Noni): A review of the scientific validation for its nutritional and therapeutic properties. J Diabetes Endocrinol 2012; 3(6): 77-91.
[http://dx.doi.org/10.5897/JDE10.006]
[80]
Akihisa T, Matsumoto K, Tokuda H, et al. Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J Nat Prod 2007; 70(5): 754-7.
[http://dx.doi.org/10.1021/np068065o] [PMID: 17480098]
[81]
Nguyen PH, Yang JL, Uddin MN, et al. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. J Nat Prod 2013; 76(11): 2080-7.
[http://dx.doi.org/10.1021/np400533h] [PMID: 24224843]
[82]
Hoang DM, Ngoc TM, Dat NT, et al. Protein tyrosine phosphatase 1B inhibitors isolated from Morus bombycis. Bioorg Med Chem Lett 2009; 19(23): 6759-61.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.102] [PMID: 19846295]
[83]
Sayed MD. Traditional medicine in health care. J Ethnopharmacol 1980; 2(1): 19-22.
[http://dx.doi.org/10.1016/0378-8741(80)90023-9] [PMID: 7464176]
[84]
Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000; 14(5): 323-8.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<323:AID-PTR621>3.0.CO;2-Q] [PMID: 10925395]
[85]
Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17(4): 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[86]
Chen QB, Xin XL, Yang Y, Lee SS, Aisa HA. Highly conjugated norditerpenoid and pyrroloquinoline alkaloids with potent PTP1B inhibitory activity from Nigella glandulifera. J Nat Prod 2014; 77(4): 807-12.
[http://dx.doi.org/10.1021/np4009078] [PMID: 24593120]
[87]
He DY, Dai SM. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine. Front Pharmacol 2011; 2: 10.
[http://dx.doi.org/10.3389/fphar.2011.00010] [PMID: 21687505]
[88]
Baumgartner RR, Steinmann D, Heiss EH, et al. Bioactivity-guided isolation of 1,2,3,4,6-Penta-O-galloyl-D-glucopyranose from Paeonia lactiflora roots as a PTP1B inhibitor. J Nat Prod 2010; 73(9): 1578-81.
[http://dx.doi.org/10.1021/np100258e] [PMID: 20806783]
[89]
Kwan CY, Kwan TK. Effects of Panax notoginseng saponins on vascular endothelial cells in vitro. Acta Pharmacol Sin 2000; 21(12): 1101-5.
[PMID: 11603283]
[90]
Lei J, Li X, Gong XJ, Zheng YN. Isolation, synthesis and structures of cytotoxic ginsenoside derivatives. Molecules 2007; 12(9): 2140-50.
[http://dx.doi.org/10.3390/12092140] [PMID: 17962732]
[91]
Tung NH, Song GY, Minh CV, et al. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem Pharm Bull (Tokyo) 2010; 58(8): 1111-5.
[http://dx.doi.org/10.1248/cpb.58.1111] [PMID: 20686271]
[92]
Li D, Cao J, Bi X, Xia X, Li W, Zhao Y. New dammarane-type triterpenoids from the leaves of Panax notoginseng and their protein tyrosine phosphatase 1B inhibitory activity. J Ginseng Res 2014; 38(1): 28-33.
[http://dx.doi.org/10.1016/j.jgr.2013.11.013] [PMID: 24558307]
[93]
Tamrakar AK, Yadav PP, Tiwari P, Maurya R, Srivastava AK. Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits. J Ethnopharmacol 2008; 118(3): 435-9.
[http://dx.doi.org/10.1016/j.jep.2008.05.008] [PMID: 18572336]
[94]
Choi YH, Zhou W, Oh J, et al. Rhododendric acid A, a new ursane-type PTP1B inhibitor from the endangered plant Rhododendron brachycarpum G. Don. Bioorg Med Chem Lett 2012; 22(19): 6116-9.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.029] [PMID: 22940448]
[95]
Wiese J, Aldemir H, Schmaljohann R, Gulder TAM, Imhoff JF. Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Mar Drugs 2017; 15(6)E191
[http://dx.doi.org/10.3390/md15060191] [PMID: 28635658]
[96]
Hanckea JL, Burgosb URA, Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia 1999; 70(5): 451-71.
[http://dx.doi.org/10.1016/S0367-326X(99)00102-1]
[97]
Linlin F, Jiaqing C, Lili D, Yun T, Yuqing Z. Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase inhibitory activities of Schisandra chinensis (Turcz.) Baill. J Funct Foods 2014; 9: 264-70.
[http://dx.doi.org/10.1016/j.jff.2014.04.017]
[98]
Lee MS, Kim CH, Hoang DM, et al. Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol Pharm Bull 2009; 32(3): 504-8.
[http://dx.doi.org/10.1248/bpb.32.504] [PMID: 19252305]
[99]
Wang LJ, Jiang B, Wu N, Wang SY, Shi DY. Natural and semisynthetic protein tyrosine phosphatase 1B (PTP1B) inhibitors as anti-diabetic agents. RSC Advances 2015; 5: 48822-34.
[http://dx.doi.org/10.1039/C5RA01754H]
[100]
Na M, Thuong PT, Hwang IH, et al. Protein tyrosine phosphatase 1B inhibitory activity of 24-norursane triterpenes isolated from Weigela subsessilis. Phytother Res 2010; 24(11): 1716-9.
[http://dx.doi.org/10.1002/ptr.3203] [PMID: 20564495]
[101]
Na M, Hoang DM, Njamen D, et al. Inhibitory effect of 2-arylbenzofurans from Erythrina addisoniae on protein tyrosine phosphatase-1B. Bioorg Med Chem Lett 2007; 17(14): 3868-71.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.005] [PMID: 17517504]
[102]
Lakshmi BS, Sujatha S, Anand S, et al. Cinnamic acid, from the bark of Cinnamomum cassia, regulates glucose transport via activation of GLUT4 on L6 myotubes in a phosphatidylinositol 3-kinase-independent manner. J Diabetes 2009; 1(2): 99-106.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00022.x] [PMID: 20929506]
[103]
Na M, Oh WK, Kim YH, et al. Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorg Med Chem Lett 2006; 16(11): 3061-4.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.053] [PMID: 16545563]
[104]
Kim S, Na M, Oh H, et al. PTP1B inhibitory activity of kaurane diterpenes isolated from Siegesbeckia glabrescens. J Enzyme Inhib Med Chem 2006; 21(4): 379-83.
[http://dx.doi.org/10.1080/14756360600741560] [PMID: 17059169]
[105]
Wu WB, Zhang H, Dong SH, et al. New triterpenoids with protein tyrosine phosphatase 1B inhibition from Cedrela odorata. J Asian Nat Prod Res 2014; 16(7): 709-16.
[http://dx.doi.org/10.1080/10286020.2014.919281] [PMID: 24841003]
[106]
Liang LF, Gao LX, Li J, Taglialatela-Scafati O, Guo YW. Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorg Med Chem 2013; 21(17): 5076-80.
[http://dx.doi.org/10.1016/j.bmc.2013.06.043] [PMID: 23859780]
[107]
Liang LF, Kurtán T, Mándi A, et al. Unprecedented diterpenoids as a PTP1B inhibitor from the Hainan soft coral Sarcophyton trocheliophorum Marenzeller. Org Lett 2013; 15(2): 274-7.
[http://dx.doi.org/10.1021/ol303110d] [PMID: 23273218]
[108]
Yin J, Hu R, Chen M, et al. Effects of berberine on glucose metabolism in vitro. Metabolism 2002; 51(11): 1439-43.
[http://dx.doi.org/10.1053/meta.2002.34715] [PMID: 12404195]
[109]
Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol Pharm Bull 2005; 28(8): 1431-7.
[http://dx.doi.org/10.1248/bpb.28.1431] [PMID: 16079488]
[110]
Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action. Biochem Biophys Res Commun 2010; 397(3): 543-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.153] [PMID: 20515652]
[111]
Bustanji Y, Taha MO, Al-Masri IM, Mohammad MK. Docking simulations and in vitro assay unveil potent inhibitory action of papaverine against protein tyrosine phosphatase 1B. Biol Pharm Bull 2009; 32(4): 640-5.
[http://dx.doi.org/10.1248/bpb.32.640] [PMID: 19336898]
[112]
Henry SP, Johnson M, Zanardi TA, et al. Renal uptake and tolerability of a 2′-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey. Toxicology 2012; 301(1-3): 13-20.
[http://dx.doi.org/10.1016/j.tox.2012.06.005] [PMID: 22709826]
[113]
Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: The glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239-57.
[http://dx.doi.org/10.1146/annurev.med.52.1.239] [PMID: 11160777]
[114]
Koyama H, Boueres JK, Han W, et al. 5-Aryl thiazolidine-2,4-diones as selective PPARgamma agonists. Bioorg Med Chem Lett 2003; 13(10): 1801-4.
[http://dx.doi.org/10.1016/S0960-894X(03)00257-9] [PMID: 12729668]
[115]
Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128(3): 176-85.
[http://dx.doi.org/10.7326/0003-4819-128-3-199802010-00002] [PMID: 9454525]
[116]
Petersen KF, Krssak M, Inzucchi S, Cline GW, Dufour S, Shulman GI. Mechanism of troglitazone action in type 2 diabetes. Diabetes 2000; 49(5): 827-31.
[http://dx.doi.org/10.2337/diabetes.49.5.827] [PMID: 10905493]
[117]
Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002; 51(9): 2796-803.
[http://dx.doi.org/10.2337/diabetes.51.9.2796] [PMID: 12196473]
[118]
Parulkar AA, Pendergrass ML, Granda-Ayala R, Lee TR, Fonseca VA. Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001; 134(1): 61-71.
[http://dx.doi.org/10.7326/0003-4819-134-1-200101020-00014] [PMID: 11187421]
[119]
Chu NV, Kong AP, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002; 25(3): 542-9.
[http://dx.doi.org/10.2337/diacare.25.3.542] [PMID: 11874944]
[120]
Wu Y, Ouyang JP, Wu K, Wang SS, Wen CY, Xia ZY. Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphatase 1B in the skeletal muscle of fat-fed, streptozotocin-treated diabetic rats. Br J Pharmacol 2005; 146(2): 234-43.
[http://dx.doi.org/10.1038/sj.bjp.0706306] [PMID: 15997237]
[121]
Maccari R, Paoli P, Ottanà R, et al. 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem 2007; 15(15): 5137-49.
[http://dx.doi.org/10.1016/j.bmc.2007.05.027] [PMID: 17543532]
[122]
Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Self-organizing molecular field analysis of 2,4-thiazolidinediones: A 3D-QSAR model for the development of human PTP1B inhibitors. Eur J Med Chem 2010; 45(6): 2537-46.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.042] [PMID: 20236737]
[123]
Malamas MS, Sredy J, Moxham C, et al. Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J Med Chem 2000; 43(7): 1293-310.
[http://dx.doi.org/10.1021/jm990560c] [PMID: 10753467]
[124]
Murthy VS, Kulkarni VM. 3D-QSAR CoMFA and CoMSIA on protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 2002; 10(7): 2267-82.
[http://dx.doi.org/10.1016/S0968-0896(02)00056-1] [PMID: 11983524]
[125]
Bruijnincx PC, Sadler PJ. New trends for metal complexes with anticancer activity. Curr Opin Chem Biol 2008; 12(2): 197-206.
[http://dx.doi.org/10.1016/j.cbpa.2007.11.013] [PMID: 18155674]
[126]
Navarro M. Gold complexes as potential anti-parasitic agents. Coord Chem Rev 2009; 253(11-12): 1619-26.
[http://dx.doi.org/10.1016/j.ccr.2008.12.003]
[127]
Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 2004; 104(2): 849-902.
[http://dx.doi.org/10.1021/cr020607t] [PMID: 14871144]
[128]
Frezza M, Hindo S, Chen D, et al. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 2010; 16(16): 1813-25.
[http://dx.doi.org/10.2174/138161210791209009] [PMID: 20337575]
[129]
Brichard SM, Henquin JC. The role of vanadium in the management of diabetes. Trends Pharmacol Sci 1995; 16(8): 265-70.
[http://dx.doi.org/10.1016/S0165-6147(00)89043-4] [PMID: 7482987]
[130]
Fantus IG, Kadota S, Deragon G, Foster B, Posner BI. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 1989; 28(22): 8864-71.
[http://dx.doi.org/10.1021/bi00448a027] [PMID: 2690951]
[131]
Leighton B, Cooper GJ, DaCosta C, Foot EA. Peroxovanadates have full insulin-like effects on glycogen synthesis in normal and insulin-resistant skeletal muscle. Biochem J 1991; 276(Pt 2): 289-92.
[http://dx.doi.org/10.1042/bj2760289] [PMID: 2049062]
[132]
Posner BI, Faure R, Burgess JW, et al. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem 1994; 269(6): 4596-604.
[PMID: 8308031]
[133]
Bevan AP, Drake PG, Yale JF, Shaver A, Posner BI. Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis. Mol Cell Biochem 1995; 153(1-2): 49-58.
[http://dx.doi.org/10.1007/BF01075918] [PMID: 8927047]
[134]
Lu L, Zhu M. Protein tyrosine phosphatase inhibition by metals and metal complexes. Antioxid Redox Signal 2014; 20(14): 2210-24.
[http://dx.doi.org/10.1089/ars.2013.5720] [PMID: 24382261]
[135]
Navarro M. Gold complexes as potential anti-parasitic agents. Coord Chem Rev 2009; 253: 1619-26.
[http://dx.doi.org/10.1016/j.ccr.2008.12.003]
[136]
Shaw CF III. Gold-based therapeutic agents. Chem Rev 1999; 99(9): 2589-600.
[http://dx.doi.org/10.1021/cr980431o] [PMID: 11749494]
[137]
Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics 2012; 4(2): 127-38.
[http://dx.doi.org/10.1039/C2MT00174H] [PMID: 22187112]
[138]
Caragounis A, Du T, Filiz G, et al. Differential modulation of Alzheimer’s disease amyloid β-peptide accumulation by diverse classes of metal ligands. Biochem J 2007; 407(3): 435-50.
[http://dx.doi.org/10.1042/BJ20070579] [PMID: 17680773]
[139]
Lebon F, Boggetto N, Ledecq M, et al. Metal-organic compounds: a new approach for drug discovery. N1-(4-methyl-2-pyridyl)-2,3,6-trimethoxybenzamide copper(II) complex as an inhibitor of human immunodeficiency virus 1 protease. Biochem Pharmacol 2002; 63(10): 1863-73.
[http://dx.doi.org/10.1016/S0006-2952(02)00918-8] [PMID: 12034371]
[140]
Ruiz-Azuara L, Bravo-Gómez ME. Copper compounds in cancer chemotherapy. Curr Med Chem 2010; 17(31): 3606-15.
[http://dx.doi.org/10.2174/092986710793213751] [PMID: 20846116]
[141]
Hecker SJ, Erion MD. Prodrugs of phosphates and phosphonates. J Med Chem 2008; 51(8): 2328-45.
[http://dx.doi.org/10.1021/jm701260b] [PMID: 18237108]
[142]
Montalibet J, Skorey K, McKay D, Scapin G, Asante-Appiah E, Kennedy BP. Residues distant from the active site influence protein-tyrosine phosphatase 1B inhibitor binding. J Biol Chem 2006; 281(8): 5258-66.
[http://dx.doi.org/10.1074/jbc.M511546200] [PMID: 16332678]
[143]
Yao ZJ, Ye B, Wu XW, et al. Structure-based design and synthesis of small molecule protein-tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 1998; 6(10): 1799-810.
[http://dx.doi.org/10.1016/S0968-0896(98)00140-0] [PMID: 9839010]
[144]
Burke TR Jr, Kole HK, Roller PP. Potent inhibition of insulin receptor dephosphorylation by a hexamer peptide containing the phosphotyrosyl mimetic F2Pmp. Biochem Biophys Res Commun 1994; 204(1): 129-34.
[http://dx.doi.org/10.1006/bbrc.1994.2435] [PMID: 7524496]
[145]
Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci USA 1997; 94(25): 13420-5.
[http://dx.doi.org/10.1073/pnas.94.25.13420] [PMID: 9391040]
[146]
Zhi Y, Gao LX, Jin Y, et al. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem 2014; 22(14): 3670-83.
[http://dx.doi.org/10.1016/j.bmc.2014.05.028] [PMID: 24906513]
[147]
Tamrakar AK, Maurya CK, Rai AK. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011-2014). Expert Opin Ther Pat 2014; 24(10): 1101-15.
[http://dx.doi.org/10.1517/13543776.2014.947268] [PMID: 25120222]
[148]
Cho SY, Baek JY, Han SS, et al. PTP-1B inhibitors: cyclopenta[d][1,2]-oxazine derivatives. Bioorg Med Chem Lett 2006; 16(3): 499-502.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.062] [PMID: 16289879]
[149]
Shim YS, Kim KC, Chi DY, Lee KH, Cho H. Formylchromone derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 2003; 13(15): 2561-3.
[http://dx.doi.org/10.1016/S0960-894X(03)00479-7] [PMID: 12852966]
[150]
Shim YS, Kim KC, Lee KA, et al. Formylchromone derivatives as irreversible and selective inhibitors of human protein tyrosine phosphatase 1B. Kinetic and modeling studies. Bioorg Med Chem 2005; 13(4): 1325-32.
[http://dx.doi.org/10.1016/j.bmc.2004.11.006] [PMID: 15670940]
[151]
Combs AP, Yue EW, Bower M, et al. Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J Med Chem 2005; 48(21): 6544-8.
[http://dx.doi.org/10.1021/jm0504555] [PMID: 16220970]
[152]
Yue EW, Wayland B, Douty B, et al. Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure-activity relationships of a peptide scaffold. Bioorg Med Chem 2006; 14(17): 5833-49.
[http://dx.doi.org/10.1016/j.bmc.2006.05.032] [PMID: 16769216]
[153]
Douty B, Wayland B, Ala PJ, et al. Isothiazolidinone inhibitors of PTP1B containing imidazoles and imidazolines. Bioorg Med Chem Lett 2008; 18(1): 66-71.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.012] [PMID: 18037290]
[154]
Reddy MV, Ghadiyaram C, Panigrahi SK, Hosahalli S, Mangamoori LN. Diphenylether derivative as selective inhibitor of protein tyrosine phosphatase 1B (PTP1B) over t-cell protein tyrosine phosphatase (TCPTP) identified through virtual screening. Mini Rev Med Chem 2013; 13(11): 1602-6.
[http://dx.doi.org/10.2174/1389557511313110006] [PMID: 24000798]
[155]
Yin JP, Tang CL, Gao LX, et al. Design and synthesis of paracaseolide A analogues as selective protein tyrosine phosphatase 1B inhibitors. Org Biomol Chem 2014; 12(21): 3441-5.
[http://dx.doi.org/10.1039/c4ob00214h] [PMID: 24752625]
[156]
Tang YB, Liu JZ, Zhang SE, et al. 3-Phenylpropanoic acid-based phosphotyrosine (pTyr) mimetics: hit evolution to a novel orally active protein tyrosine phosphatase 1B (PTP1B) inhibitor. ChemMedChem 2014; 9(5): 918-21.
[http://dx.doi.org/10.1002/cmdc.201400007] [PMID: 24644278]
[157]
Low JL, Chai CL, Yao SQ. Bidentate inhibitors of protein tyrosine phosphatases. Antioxid Redox Signal 2014; 20(14): 2225-50.
[http://dx.doi.org/10.1089/ars.2013.5710] [PMID: 24206395]
[158]
Ma Y, Jin YY, Wang YL, et al. The discovery of a novel and selective inhibitor of PTP1B over TCPTP: 3D QSAR pharmacophore modeling, virtual screening, synthesis, and biological evaluation. Chem Biol Drug Des 2014; 83(6): 697-709.
[http://dx.doi.org/10.1111/cbdd.12283] [PMID: 24418013]
[159]
Tang YB, Lu D, Chen Z, et al. Design, synthesis and insulin-sensitising effects of novel PTP1B inhibitors. Bioorg Med Chem Lett 2013; 23(8): 2313-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.073] [PMID: 23499238]
[160]
Panzhinskiy E, Ren J, Nair S. Pharmacological inhibition of protein tyrosine phosphatase 1B: a promising strategy for the treatment of obesity and type 2 diabetes mellitus. Curr Med Chem 2013; 20(21): 2609-25.
[http://dx.doi.org/10.2174/0929867311320210001] [PMID: 23627940]
[161]
Luan F, Xu X, Liu HT, Cordeiro MN, Zhang XY. QSAR studies of PTP1B inhibitors: recent advances and perspectives. Curr Med Chem 2012; 19(25): 4208-17.
[http://dx.doi.org/10.2174/092986712802884196] [PMID: 22834811]
[162]
Iversen LF, Moller KB, Pedersen AK, et al. Structure determination of T cell protein-tyrosine phosphatase. J Biol Chem 2002; 277(22): 19982-90.
[http://dx.doi.org/10.1074/jbc.M200567200] [PMID: 11907034]
[163]
Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283(5407): 1544-8.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[164]
You-Ten KE, Muise ES, Itié A, et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med 1997; 186(5): 683-93.
[http://dx.doi.org/10.1084/jem.186.5.683] [PMID: 9271584]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 23
Year: 2019
Page: [2526 - 2539]
Pages: 14
DOI: 10.2174/1381612825666190716102901
Price: $65

Article Metrics

PDF: 36
HTML: 5