Overview of Nanocellulose in Food Packaging

Author(s): Erika Souza, Leda Gottschalk, Otniel Freitas-Silva*

Journal Name: Recent Patents on Food, Nutrition & Agriculture
Continued as Recent Advances in Food, Nutrition & Agriculture

Volume 11 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The rising concern with environmental preservation has led to increasing interest in biodegradable polymer composites from renewable sources, such as cellulose and its derivatives. The use of nanocellulose is an innovative food packaging trend.

Discussion: This paper presents an overview and discusses the state of the art of different nanocellulose materials used in food and food packaging, and identifies important patents related to them. It is important to consider that before marketing, new products must be proven safe for consumers and the environment.

Conclusion: Several packaging materials using nanocellulose have been developed and shown to be promising for use as active and intelligent materials for food packaging. Other nanocellulose products are under investigation for packaging and may enter the market in the near future. Many countries have been adjusting their regulatory frameworks to deal with nanotechnologies, including nanocellulose packaging.

Keywords: Cellulose nanofibrils, bacterial cellulose, biopolymers, active packaging, nanomaterials, nanotechnology regulation.

[1]
Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008; 26(1): 1-21.
[http://dx.doi.org/10.1016/j.biotechadv.2007.07.009] [PMID: 17884325]
[2]
Abdul Khalil HPS, Bhat AH, Ireana Yusra AF. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 2012; 87: 963-79.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.078]
[3]
George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 2015; 8: 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[4]
Gómes CH, Serpa A, Velásquez-Cock J, et al. Vegetable nanocellulose in food science: a review. Food Hydrocoll 2016; 57: 178-86.
[http://dx.doi.org/10.1016/j.foodhyd.2016.01.023]
[5]
Wiedenhoeft AC, Miller RB. Structure and function of wood. In:Rowell RM, Ed. . Handbook of Wood Chemistry and Wood Composites. New York: CRC Press 2005; pp. 9-33.
[6]
Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 2012; 19: 1631-43.
[http://dx.doi.org/10.1007/s10570-012-9745-x]
[7]
Stelte W, Sanadi AR. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Fundam 2009; 48: 11211-9.
[http://dx.doi.org/10.1021/ie9011672]
[8]
Chinga-Carrasco G. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 2011; 6(1): 417.
[http://dx.doi.org/10.1186/1556-276X-6-417] [PMID: 21711944]
[9]
Wertz JL, Bédué O, Mercier JP. Cellulose Science and Technology. New York: EPFL Press 2010.
[http://dx.doi.org/10.1201/b16496]
[10]
Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 2011; 50(24): 5438-66.
[http://dx.doi.org/10.1002/anie.201001273] [PMID: 21598362]
[11]
Azeredo HM, Rosa MF, Mattoso LHC. Nanocellulose in bio-based food packaging applications. Ind Crops Prod 2017; 97: 664-71.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.013]
[12]
Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 1983; 37: 815-27.
[13]
Czaja WK, Young DJ, Kawecki M, Brown RM Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007; 8(1): 1-12.
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[14]
Shi Z, Zhang Y, Phillips GO, Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll 2014; 35: 539-45.
[http://dx.doi.org/10.1016/j.foodhyd.2013.07.012]
[15]
Charreau H, Forestí ML, Vazquez A. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 2013; 7(1): 56-80.
[http://dx.doi.org/10.2174/187221013804484854] [PMID: 22747719]
[16]
Ranby BG. Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 1949; 3: 649-50.
[http://dx.doi.org/10.3891/acta.chem.scand.03-0649]
[17]
Lu P, Hsieh YL. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 1949; 82: 329-36.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.073]
[18]
Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005; 6(2): 1048-54.
[http://dx.doi.org/10.1021/bm049300p] [PMID: 15762677]
[19]
Zhao Y, Zhang Y, Lindström ME, Li J. Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 2015; 117: 286-96.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.020] [PMID: 25498637]
[20]
Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polym 2010; 2: 728-65.
[http://dx.doi.org/10.3390/polym2040728]
[21]
Turbak AF, Snyder FW, Sandberg KR. Suspensions containing microfibrillated cellulose. US 4378381 1983.
[22]
Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. Microfibrillated cellulose: morphology, and accessibility. Proceedings of the Ninth Cellulose Conference. Appl Polym Symp 1983; 37: 797-813.
[23]
Karande VS, Bharimalla AK, Hadge GB, Mhaske ST, Vigneshwaran N. Nanofibrillation of cotton fibers by disc refiner and its characterization. Fibers Polym 2011; 12: 399-404.
[http://dx.doi.org/10.1007/s12221-011-0399-3]
[24]
Taniguchi T, Okamura K. New films produced from microfibrillated natural fibres. Polym Int 1998; 47: 291-4.
[http://dx.doi.org/10.1002/(SICI)1097-0126(199811)47:3<291:AID-PI11>3.0.CO;2-1]
[25]
Dufresne A, Cavaillé JY, Vignon MR. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 1997; 64: 1185-94.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1185:AID-APP19>3.0.CO;2-V]
[26]
Ho T, Abe K, Zimmermann T, Yano H. Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 2015; 22: 421-33.
[http://dx.doi.org/10.1007/s10570-014-0518-6]
[27]
Uetani K, Yano H. Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 2011; 12(2): 348-53.
[http://dx.doi.org/10.1021/bm101103p] [PMID: 21190378]
[28]
Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 2011; 18: 1097-111.
[http://dx.doi.org/10.1007/s10570-011-9533-z]
[29]
Henriksson M, Berglund LA. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 2007; 106: 2817-24.
[http://dx.doi.org/10.1002/app.26946]
[30]
Davis NJ, Flitsch SL. Selective oxidation of monosaccharide derivatives touronic acids. Tetrahedron Lett 1993; 34: 1181-4.
[http://dx.doi.org/10.1016/S0040-4039(00)77522-8]
[31]
Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki J. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 2013; 20: 741-9.
[http://dx.doi.org/10.1007/s10570-013-9865-y]
[32]
Brown AJ. On an acetic ferment which forms cellulose. J Chem Soc 1886; 49: 172-86.
[http://dx.doi.org/10.1039/CT8864900172]
[33]
Shoda M, Sugano Y. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng; 2005; 10: 1-8.
[http://dx.doi.org/10.1007/BF02931175]
[34]
Gatenholm P, Klemm D. Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 2010; 35: 208-13.
[http://dx.doi.org/10.1557/mrs2010.653]
[35]
Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 2009; 47: 107-24.
[36]
Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 2013; 98(2): 1585-98.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.018] [PMID: 24053844]
[37]
Tsouko E, Kourmentza C, Ladakis D, et al. Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 2015; 16(7): 14832-49.
[http://dx.doi.org/10.3390/ijms160714832] [PMID: 26140376]
[38]
Turbak AF, Snyder FW, Sandberg KR. Food products containing microfibrillated cellulose US4341807, 1982.
[39]
Turbak AF, Snyder FW, Sandberg KR. Suspensions containing microfibrillated cellulose US4487634 1984.
[40]
Mizuguchi K, Fujioka I, Kobayashi H. Bean jam or food composition prepared by using the same JP58190352, 1983.
[41]
Mizuguchi K, Fujioka I, Kobayashi H. Liquid or pasty seasoning composition JP58190369, 1983.
[42]
Cantiani R, Knipper M, Vaslin S. Use of cellulose microfibrils in dry form in food formulations US6485767 2002.
[43]
Yano H, Abe K, Nakatani T, Kase Y, Kikkawa S, Onishi Y. Frozen dessert and frozen dessert material US 20140342075 A1 2014.
[44]
Lin KW, Lin HY. Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). J Food Sci 2004; 69: Q107-11.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x]
[45]
Marchetti L, Muzzio B, Cerrutti P, Andrés SC, Califano AN. Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Struct 2017; 14: 52-9.
[http://dx.doi.org/10.1016/j.foostr.2017.06.004]
[46]
Hubálek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology 2003; 46(3): 205-29.
[http://dx.doi.org/10.1016/S0011-2240(03)00046-4] [PMID: 12818211]
[47]
Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 2004; 15: 67-78.
[http://dx.doi.org/10.1016/j.tifs.2003.09.004]
[48]
Khorasani AC, Shojaosadati SA. Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition. Int J Biol Macromol 2016; 83: 9-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.041] [PMID: 26627598]
[49]
The definition of dietary fiber. Cereal Foods World 2001; 46: 112-29.
[50]
Andrade DRM, Mendonça MH, Helm CV, Magalhães WL, de Muniz GIB, Kestur SG. Assessment of nano cellulose from peach palm residue as potential food additive: part II: preliminary studies. J Food Sci Technol 2015; 52(9): 5641-50.
[http://dx.doi.org/10.1007/s13197-014-1684-0] [PMID: 26344977]
[51]
Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Prog Polym Sci 2013; 38: 1629-52.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008]
[52]
Nair SS, Zhu JY, Deng Y, Ragauskas AJ. High performance green barriers based on nanocellulose. Sustainable Chem Processes 2014; 2: 23.
[http://dx.doi.org/10.1186/s40508-014-0023-0]
[53]
Mirmehdi S, Hein PRG, de Luca Sarantópoulos CIG, Dias MV, Tonoli GHD. Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag Shelf Life 2017; 15: 87-94.
[http://dx.doi.org/10.1016/j.fpsl.2017.11.007]
[54]
Fortunati E, Armentano I, Zhou Q, et al. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 2012; 87: 1596-605.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.066]
[55]
Bendahou A, Kaddami H, Espuche E, Gouanvé F, Dufresne A. Synergism effect of montmorillonite and cellulose whiskers on the mechanical and barrier properties of natural rubber composites. Macromol Mater Eng 2011; 296: 760-9.
[http://dx.doi.org/10.1002/mame.201000444]
[56]
Hu S, Gu J, Jiang F, Hsieh YL. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustain Chem& Eng 2016; 4: 728-37.
[http://dx.doi.org/10.1021/acssuschemeng.5b00600]
[57]
Li K, Bian H, Liu C, Zhang D, Yang Y. Comparison of geothermal with solar and wind power generation systems. Renew Sustain Energy Rev 2015; 42: 1464-74.
[http://dx.doi.org/10.1016/j.rser.2014.10.049]
[58]
Saxena A, Elder TJ, Kenvin J, Ragauskas AJ. High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano-Micro Lett 2010; 2: 235-41.
[http://dx.doi.org/10.1007/BF03353849]
[59]
Syverud K, Stenius P. Strength and barrier properties of MFC films. Cellulose 2009; 16: 75-85.
[http://dx.doi.org/10.1007/s10570-008-9244-2]
[60]
Parry RT. Introduction.In Parry RT, Ed Principles and applications of modified atmosphere packaging of foods. 1993; pp. 1-18.
[61]
Belbekhouche S, Bras J, Siqueira G, et al. Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 2011; 83: 1740-8.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.036]
[62]
Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 2010; 17: 835-48.
[http://dx.doi.org/10.1007/s10570-010-9424-8]
[63]
Rodionova G, Lenes M, Eriksen O, Gregersen O. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 2011; 18: 127-34.
[http://dx.doi.org/10.1007/s10570-010-9474-y]
[64]
Steven MD, Hotchkiss JH. Comparison of flat film to total package water vapor transmission rates for several commercial food wraps. Packag Technol Sci 2002; 15: 17-27.
[http://dx.doi.org/10.1002/pts.562]
[65]
Sharma S, Zhang X, Nair SS, Ragauskas A, Zhu J, Deng Y. Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Advances 2014; 4: 45136-42.
[http://dx.doi.org/10.1039/C4RA07469F]
[66]
Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 2010; 22: 3441-50.
[http://dx.doi.org/10.1021/cm100477v]
[67]
Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 2002; 3: 113-26.
[http://dx.doi.org/10.1016/S1466-8564(02)00012-7]
[68]
Muzzarelli RAA. Nanochitins and nanochitosans, paving the way to eco-friendly and energy-saving exploitation of marine resources Polymer science: a comprehensive reference. The Netherlands: Elsevier Science 2012; pp. 153-64.
[69]
Vu KD, Hollingsworth RG, Leroux E, Salmieri S, Lacroix M. Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 2011; 44: 198-203.
[http://dx.doi.org/10.1016/j.foodres.2010.10.037]
[70]
Mayachiew P, Devahastin S, Mackey BM, Niranjan K. Effects of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res Int 2010; 43: 125-32.
[http://dx.doi.org/10.1016/j.foodres.2009.09.006]
[71]
Fernandes AN, Thomas LH, Altaner CM, et al. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 2011; 108(47): E1195-203.
[72]
Petersson L, Oksman K. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 2006; 66: 2187-96.
[http://dx.doi.org/10.1016/j.compscitech.2005.12.010]
[73]
de Mesquita JP, Donnici CL, Teixeira IF, Pereira FV. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 2012; 90(1): 210-7.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.025] [PMID: 24751032]
[74]
Khan A, Khan RA, Salmieri S, et al. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 2012; 90(4): 1601-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.037] [PMID: 22944422]
[75]
Fernandes SCM, Freire CSR, Silvestre AJD, et al. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 2010; 81: 394-401.
[http://dx.doi.org/10.1016/j.carbpol.2010.02.037]
[76]
Li Q, Zhou JP, Zhang LN. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polymer Sci 2009; 47: 1069-77.
[http://dx.doi.org/10.1002/polb.21711]
[77]
Wu T, Farnood R, O’Kelly K, Chen B. Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed Mater 2014; 32: 279-86.
[http://dx.doi.org/10.1016/j.jmbbm.2014.01.014] [PMID: 24508714]
[78]
Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari SM, Dadashi S. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 2014; 109: 148-54.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.063] [PMID: 24815411]
[79]
El-Samahy MA, Mohamed SAA, Abdel Rehim MH, Mohram ME. Synthesis of hybrid paper sheets with enhanced air barrier and antimicrobial properties for food packaging. Carbohydr Polym 2017; 168: 212-9.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.041] [PMID: 28457442]
[80]
Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 2014; 112: 668-76.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.048] [PMID: 25129796]
[81]
de Mesquita JP, Donnici CL, Pereira FV. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 2010; 11(2): 473-80.
[http://dx.doi.org/10.1021/bm9011985] [PMID: 20055503]
[82]
Naseri N, Mathew AP, Girandon L, Fröhlich M, Oksman K. Porous electrospun nanocomposite mats based on chitosan-cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 2014; 22: 521-34.
[http://dx.doi.org/10.1007/s10570-014-0493-y]
[83]
Mathew AP, Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 2002; 3(3): 609-17.
[http://dx.doi.org/10.1021/bm0101769] [PMID: 12005534]
[84]
Lendvai L, Karger‐Kocsis J, Kmetty Á, Drakopoulos SX. Production and characterization of microfibrillated cellulose‐reinforced thermoplastic starch composites. J Appl Polym Sci 2016; 133: 42397.
[http://dx.doi.org/10.1002/app.42397]
[85]
Slavutsky AM, Bertuzzi MA. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 2014; 110: 53-61.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.049] [PMID: 24906728]
[86]
Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 2017; 157: 1094-104.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.073] [PMID: 27987811]
[87]
González K, Retegi A, González A, Eceiza A, Gabilondo N. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 2015; 117: 83-90.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.055] [PMID: 25498612]
[88]
Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME. Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 2010; 345(18): 2583-95.
[http://dx.doi.org/10.1016/j.carres.2010.10.002] [PMID: 21047623]
[89]
Videcoq P, Garnier C, Robert P, Bonnin E. Influence of calcium on pectin methylesterase behaviour in the presence of medium methylated pectins. Carbohydr Polym 2011; 86: 1657-64.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.081]
[90]
Krochta JM, Baldwin EA, Nisperos-Carriedo MO. Edible coatings and films to improve food quality. USA: Technomic Publ. Co. 1994.
[91]
Espitia PJP, Du WX, de Jesús Avena-Bustillos R. Soares NDFF, McHugh T H. Edible films from pectin: physical-mechanical and antimicrobial properties-A review. Food Hydrocoll 2014; 35: 287-96.
[http://dx.doi.org/10.1016/j.foodhyd.2013.06.005]
[92]
Olivas GI, Barbosa-Canovas GV. Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. Lebensm Wiss Technol 2008; 41: 359-66.
[http://dx.doi.org/10.1016/j.lwt.2007.02.015]
[93]
Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. Lebensm Wiss Technol 2004; 37: 323-30.
[http://dx.doi.org/10.1016/j.lwt.2003.09.008]
[94]
Abdollahi M, Alboofetlleh M, Rezaei M, Behrooz R. Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll 2013; 32: 416-24.
[http://dx.doi.org/10.1016/j.foodhyd.2013.02.006]
[95]
Shankar S, Tanomrod N, Rawdkuen S, Rhim JW. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 2016; 92: 842-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.107] [PMID: 27492557]
[96]
Lorevice MV, Otoni CG, de Moura MR, Mattoso LHC. Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocoll 2016; 52: 732-40.
[http://dx.doi.org/10.1016/j.foodhyd.2015.08.003]
[97]
Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V. Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 2006; 64: 516-23.
[http://dx.doi.org/10.1016/j.carbpol.2005.11.003]
[98]
Chaichi M, Hashemi M, Badii F, Mohammadi A. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 2017; 157: 167-75.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.062] [PMID: 27987882]
[99]
Gutiérrez L, Escudero A, Batlle R, Nerín C. Effect of mixed antimicrobial agents and flavors in active packaging films. J Agric Food Chem 2009; 57(18): 8564-71.
[http://dx.doi.org/10.1021/jf901459e] [PMID: 19711918]
[100]
Johansson C, Clegg F. Hydrophobically modified poly (vinyl alcohol) and bentonite nanocomposites thereof: barrier, mechanical, and aesthetic properties. J Appl Polym Sci 2014; 132: 41737-50.
[101]
Realini CE, Marcos B. Active and intelligent packaging systems for a modern society. Meat Sci 2014; 98(3): 404-19.
[http://dx.doi.org/10.1016/j.meatsci.2014.06.031] [PMID: 25034453]
[102]
Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 2012; 82(2): 308-15.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.011] [PMID: 22750440]
[103]
Lavoine N, Desloges I, Bras J. Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 2014; 103: 528-37.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.035] [PMID: 24528763]
[104]
Holman BWB, Kerry JP, Hopkins DL. A review of patents for the smart packaging of meat and muscle-based food products. Recent Pat Food Nutr Agric 2018; 9(1): 3-13.
[http://dx.doi.org/10.2174/2212798409666171031114624] [PMID: 29086704]
[105]
Uz M, Altinkaya SA. Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. Lebensm Wiss Technol 2011; 44: 2302-9.
[http://dx.doi.org/10.1016/j.lwt.2011.05.003]
[106]
Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry. Meat Sci 2002; 62(3): 373-80.
[http://dx.doi.org/10.1016/S0309-1740(02)00121-3] [PMID: 22061613]
[107]
Nguyen Van Long N, Joly C, Dantigny P. Active packaging with antifungal activities. Int J Food Microbiol 2016; 220: 73-90.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.01.001] [PMID: 26803804]
[108]
Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 2001; 71(1): 1-20.
[http://dx.doi.org/10.1016/S0168-1605(01)00560-8] [PMID: 11764886]
[109]
Acuña L, Morero R, Bellomio A. Development of wide-spectrum hybrid bacteriocins for food biopreservation. Food Bioprocess Technol 2011; 4: 1029-49.
[http://dx.doi.org/10.1007/s11947-010-0465-7]
[110]
Nguyen VT, Gidley MJ, Dykes GA. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 2008; 25(3): 471-8.
[http://dx.doi.org/10.1016/j.fm.2008.01.004] [PMID: 18355672]
[111]
Salmieri S, Islam F, Khan RA, et al. Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications - part A: effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 2014; 21: 1837-50.
[http://dx.doi.org/10.1007/s10570-014-0230-6]
[112]
Emiroğlu ZK, Yemiş GP, Coşkun BK, Candoğan K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci 2010; 86(2): 283-8.
[http://dx.doi.org/10.1016/j.meatsci.2010.04.016] [PMID: 20580990]
[113]
Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 2001; 91(3): 453-62.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01428.x] [PMID: 11556910]
[114]
Salmieri S, Islam F, Khan RA, et al. Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA–CNC) in food applications - part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 2014; 21: 4271-85.
[http://dx.doi.org/10.1007/s10570-014-0406-0]
[115]
Madsen HL, Bertelsen G. Spices as antioxidants. Trends Food Sci Technol 1995; 6: 271-7.
[http://dx.doi.org/10.1016/S0924-2244(00)89112-8]
[116]
Guillen M, Goicoechea E. Formation of oxygenated alpha, beta-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles. Food Chem 2008; 111: 157-64.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.052]
[117]
Harris WS. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol Res 2007; 55(3): 217-23.
[http://dx.doi.org/10.1016/j.phrs.2007.01.013] [PMID: 17324586]
[118]
Mastromatteo M, Conte A, Del Nobile MA. Advances in controlled release devices for food packaging applications. Trends Food Sci Technol 2010; 21: 591-8.
[http://dx.doi.org/10.1016/j.tifs.2010.07.010]
[119]
Moradi M, Tajik H, Razavi Rohani S, Oromiehie A, Malekinejad H, Ghasemmahdi H. Development and evaluation of antioxidant chitosan film incorporated with grape seed extract. Faslnamah-i Giyahan-i Daruyi 2012; 2: 43-52.
[120]
Silva-Weiss A, Bifani V, Ihl M, Sobral PJA, Gómez-Guillén MC. Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll 2013; 31: 458-66.
[http://dx.doi.org/10.1016/j.foodhyd.2012.11.028]
[121]
Talón E, Trifkovic KT, Nedovic VA, et al. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 2017; 157: 1153-61.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.080] [PMID: 27987818]
[122]
Wang L, Dong Y, Men H, Tong J, Zhou J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll 2013; 32: 35-41.
[http://dx.doi.org/10.1016/j.foodhyd.2012.11.034]
[123]
Xie M, Hu B, Wang Y, Zeng X. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem 2014; 62(37): 9128-36.
[http://dx.doi.org/10.1021/jf503207s] [PMID: 25198516]
[124]
Chougulea MA, Pawar SG, Godse PR, Mulik RN, Sen S, Patil VB. Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 2011; 1: 6-10.
[http://dx.doi.org/10.4236/snl.2011.11002]
[125]
Bideau B, Bras J, Adoui N, Loranger E, Daneault C. Polypyrrole/nanocellulose composite for food preservation: barrier and antioxidant characterization. Food Packag Shelf Life 2017; 12: 1-8.
[http://dx.doi.org/10.1016/j.fpsl.2017.01.007]
[126]
Johansson C, Bras J, Mondragon I, et al. Renewable fibers and bio-based materials for packaging applications – a review of recent developments. BioResources 2012; 7: 2506-52.
[http://dx.doi.org/10.15376/biores.7.2.2506-2552]
[127]
Bao Y, Zhang H, Luan Q, Zheng M, Tang H, Huang F. Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydr Polym 2018; 184: 66-73.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.051] [PMID: 29352944]
[128]
Wang X, Xie Y, Ge H, et al. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose. Carbohydr Polym 2018; 179: 207-20.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.087] [PMID: 29111045]
[129]
Battista OA, Smith PA. Level-off DP cellulose products. US2978446A (1961).
[130]
Vaslin S, Fayos J, Cantini R. Use of essentially amorphous cellulose nanofibrils as emulsi-fying and/or stabilising agent. CN1438918A (2003).
[131]
Zhong CY, Zhong YG. Edible food packaging film. CN102145779A (2011).
[132]
Zhao Y, Simonsen J, Cavender G, Jung J, Fuchigami LH. Nano-cellulose coatings to prevent damage in foodstuffs. US20140272013 (2014).
[133]
Wen H, Jiang B. A kind of degradable food packaging film with antibacterial function. CN108276598A (2018).
[134]
Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev 2012; 41(6): 2323-43.
[http://dx.doi.org/10.1039/C1CS15188F] [PMID: 22170510]
[135]
Pereira MM, Raposo NR, Brayner R, et al. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology 2013; 24(7)075103
[http://dx.doi.org/10.1088/0957-4484/24/7/075103] [PMID: 23358497]
[136]
Park EJ, Khaliullin TO, Shurin MR, et al. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J Immunotoxicol 2018; 15(1): 12-23.
[http://dx.doi.org/10.1080/1547691X.2017.1414339] [PMID: 29237319]
[137]
Menas AL, Yanamala N, Farcas MT, et al. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation? Chemosphere 2017; 171: 671-80.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.105] [PMID: 28061425]
[138]
Ngarize S, Makuch KE, Pereira R. The case for regulating nanotechnologies: international, European and national perspectives. Rev Eur Comp Int Environ Law 2013; 22: 131-45.
[http://dx.doi.org/10.1111/reel.12029]
[139]
Amenta V, Aschberger K, Arena M, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 2015; 73(1): 463-76.
[http://dx.doi.org/10.1016/j.yrtph.2015.06.016] [PMID: 26169479]
[140]
Vajtai R. Springer handbook of nanomaterials. Netherlands: Springer Science & Business Media 2013.
[http://dx.doi.org/10.1007/978-3-642-20595-8]
[141]
Rauscher H, Rasmussen K, Sokull‐Klüttgen B. Regulatory aspects of nanomaterials in the EU. Chemieingenieurtechnik (Weinh) 2017; 89: 224-31.
[http://dx.doi.org/10.1002/cite.201600076]
[142]
Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011. On the provision of food information to consumers. Off J Eur Union L 2011; 304: 18-63.
[143]
Regulation (EU) No. 528/2012 of the European Parliament and of the Council of 22 May 2012. Concerning the making available on the market and use of biocidal products. Off J Eur Union L 2012; 167: 1-123.
[144]
Foladori G, Invernizzi N. Nanotechnologies in Latin America. Berlin: Dietz Berlin 2008.


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2020
Published on: 18 September, 2020
Page: [154 - 167]
Pages: 14
DOI: 10.2174/2212798410666190715153715

Article Metrics

PDF: 29