Improvement in Energy Performance of Tubular Heat Exchangers Using Nanofluids: A Review

Author(s): Sumit Kr. Singh, Jahar Sarkar*

Journal Name: Current Nanoscience

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Both mono and hybrid nanofluids, the engineered colloidal mixture made of the base fluid and nanoparticles, have shown many interesting properties and become a high potential nextgeneration heat transfer fluids in various heat exchangers for engineering applications. The present review focuses on improving the performance of tubular heat exchangers by using nanofluids. For this, the present review briefly summarizes the preparation, characterization and thermophysical properties (thermal conductivity, viscosity, specific heat capacity and density) of mono and hybrid nanofluids. Research works on heat transfer and pressure drop characteristics of nanofluids in the double tube and shell-tube heat exchangers with both straight and coiled tubes, and various engineering applications (power generation, refrigeration and air-conditioning, renewable energy, domestic cooling or heating, etc.) are well-grouped and thoroughly discussed. Physical mechanisms for the heat transfer enhancement using nanofluids are explored as well. Most of the studies reveal that there are significant enhancements in the heat transfer process and in the effectiveness of both straight and coiled tube heat exchangers with a slight increase in pressure drop using nanofluids. Hence, there is an excellent opportunity to use nanofluids in tubular heat exchangers; however, high cost (high payback period) and stability are the main challenges for practical implementation. Finally, some useful recommendations are also provided.

Keywords: Nanofluids, double-tube heat exchanger, shell-tube heat exchanger, thermal performance, pressure drop, energy application.

[1]
Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED, 1995, 231, 99-103.
[2]
Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev., 2015, 43, 164-177.
[http://dx.doi.org/10.1016/j.rser.2014.11.023]
[3]
Ramadhan, A.I.; Azmi, W.H.; Mamat, R.; Hamid, K.A.; Norsakinah, S. Investigation on stability of tri-hybrid nanofluids in water ethylene glycol mixture. IOP Conf. Ser. Mater. Sci. Eng., 2019, p. 469, 012068.
[http://dx.doi.org/10.1088/1757-899X/469/1/012068]
[4]
Mousavi, S.M.; Esmaeilzadeh, F.; Wang, X.P. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid: Experimental investigation. J. Therm. Anal. Calorim., 2019, 137, 879-901.
[http://dx.doi.org/10.1007/s10973-019-08006-0]
[5]
Huminic, G.; Huminic, A. Application of nanofluids in heat exchangers: A review. Renew. Sustain. Energy Rev., 2012, 16, 5625-5638.
[http://dx.doi.org/10.1016/j.rser.2012.05.023]
[6]
Yu, W.; Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater., 2012, 2012, 435873
[http://dx.doi.org/10.1155/2012/435873]
[7]
Sidik, N.A.C.; Mohammed, H.A.; Alawi, O.A.; Samion, S. A review on preparation methods and challenges of nanofluids. Int. Commun. Heat Mass Transf., 2014, 54, 115-125.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.03.002]
[8]
Haddad, Z.; Abid, C.; Oztop, H.F.; Mataoui, A. A review on how the researchers prepare their nanofluids. Int. J. Therm. Sci., 2014, 76, 168-189.
[http://dx.doi.org/10.1016/j.ijthermalsci.2013.08.010]
[9]
Ilyas, S.U.; Pendyala, R.; Marneni, N. Preparation, sedimentation, and agglomeration of nanofluids. Chem. Eng. Technol., 2014, 37, 2011-2021.
[http://dx.doi.org/10.1002/ceat.201400268]
[10]
Kumar, D.; Amirtham, V.A. A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev., 2016, 60, 21-40.
[http://dx.doi.org/10.1016/j.rser.2016.01.055]
[11]
Sidik, C.N.A.; Jamil, M.; Japar, W.M.A.; Adamu, I.M. A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev., 2017, 80, 1112-1122.
[http://dx.doi.org/10.1016/j.rser.2017.05.221]
[12]
Suganthi, K.S.; Rajan, K.S. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew. Sustain. Energy Rev., 2017, 76, 226-255.
[http://dx.doi.org/10.1016/j.rser.2017.03.043]
[13]
Babita.; Sharma, S.K.; Gupta, S.M. Preparation and evaluation of stable nanofluids for heat transfer application: A review. Exp. Therm. Fluid Sci., 2016, 79, 202-204.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.06.029]
[14]
Akilu, S.; Sharma, K.V.; Baheta, A.T.; Mamat, R. A review of thermophysical properties of water based composite nanofluids. Renew. Sustain. Energy Rev., 2016, 66, 654-678.
[http://dx.doi.org/10.1016/j.rser.2016.08.036]
[15]
Raja, M.; Vijayan, R.; Dineshkumar, P.; Venkatesan, M. Review on nanofluids characterization, heat transfer characteristics and applications. Renew. Sustain. Energy Rev., 2016, 64, 163-173.
[http://dx.doi.org/10.1016/j.rser.2016.05.079]
[16]
Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids - A review. Renew. Sustain. Energy Rev., 2016, 53, 1046-1058.
[http://dx.doi.org/10.1016/j.rser.2015.09.081]
[17]
Bashirnezhad, K.; Bazri, S.; Safaei, M.R.; Goodarzi, M.; Dahari, M.; Mahian, O.; Dalkilica, A.S.; Wongwises, S. Viscosity of nanofluids: A review of recent experimental studies. Int. Commun. Heat Mass Transf., 2016, 73, 114-123.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.005]
[18]
Choi, T.J.; Subedi, B.; Ham, H.J.; Park, M.S.; Jang, S.P. A review of the internal forced convective heat transfer characteristics of nanofluids: Experimental features, mechanisms and thermal performance criteria. J. Mech. Sci. Technol., 2018, 32, 3491-3505.
[http://dx.doi.org/10.1007/s12206-018-0701-z]
[19]
Huminic, G.; Huminic, A. Hybrid nanofluids for heat transfer applications - A state-of-the-art review. Int. J. Heat Mass Transf., 2018, 125, 82-103.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.059]
[20]
Sajid, M.U.; Ali, H.M. Thermal conductivity of hybrid nanofluids: A critical review. Int. J. Heat Mass Transf., 2018, 126, 211-234.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.05.021]
[21]
Narrein, K.; Mohammed, H.A. Heat transfer and fluid flow characteristics in helically coiled tube heat exchanger (HCTHE) using nanofluids: A review. J. Comput. Theor. Nanosci., 2014, 11, 911-927.
[http://dx.doi.org/10.1166/jctn.2014.3445]
[22]
Omidi, M.; Farhadi, M.; Jafari, M. A comprehensive review on double pipe heat exchangers. Appl. Therm. Eng., 2017, 110, 1075-1090.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.09.027]
[23]
Salehi, J.M.; Heyhat, M.M.; Rajabpour, A. Enhancement of thermal conductivity of silver nanofluid synthesized by a one-step method with the effect of polyvinylpyrrolidone on thermal behavior. Appl. Phys. Lett., 2013, 102, 231907
[http://dx.doi.org/10.1063/1.4809998]
[24]
Hu, P.; Fei, W.S.; Chen, Z. Thermal conductivity of AlN–ethanol nanofluids. Int. J. Thermophys., 2008, 29, 1968-1973.
[http://dx.doi.org/10.1007/s10765-008-0529-3]
[25]
Yu, W.; Xie, H.; Li, Y.; Chen, L. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology, 2011, 9, 187-191.
[http://dx.doi.org/10.1016/j.partic.2010.05.014]
[26]
Ho, M.X.; Pan, C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. Int. J. Heat Mass Transf., 2014, 70, 174-184.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.10.078]
[27]
Saeedinia, M.; Behabadi, M.A.A.; Razi, P. Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. Int. Commun. Heat Mass Transf., 2012, 39, 152-159.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.08.001]
[28]
Nieh, H.; Teng, T.; Yu, C. Enhanced heat dissipation of a radiator using oxide nano-coolant. Int. J. Therm. Sci., 2014, 77, 252-261.
[http://dx.doi.org/10.1016/j.ijthermalsci.2013.11.008]
[29]
Vinodhan, V.L.; Suganthi, K.S.; Rajan, K.S. Convective heat transfer performance of CuO - water nanofluids in U-shaped minitube: Potential for improved energy recovery. Energy Convers. Manage., 2016, 118, 415-425.
[http://dx.doi.org/10.1016/j.enconman.2016.04.017]
[30]
Zarringhalam, M.; Karimipour, A.; Toghraie, D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO - Water nanofluid. Exp. Therm. Fluid Sci., 2016, 76, 342-351.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.03.026]
[31]
Hamid, K.A.; Azmi, W.H.; Mamat, R.; Sharma, K.V. Experimental investigation on heat transfer performance of TiO2 nanofluids in water-ethylene glycol mixture. Int. Commun. Heat Mass Transf., 2016, 73, 16-24.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.009]
[32]
Fazeli, S.A.; Hashemi, S.M.H.; Zirakzadeh, H.; Ashjaee, M. Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct., 2012, 51, 247-264.
[http://dx.doi.org/10.1016/j.spmi.2011.11.017]
[33]
Mostafizur, R.M.; Aziz, A.R.A.; Saidur, R.; Bhuiyan, M.U.H. Investigation on stability and viscosity of SiO2–CH3OH (methanol) nanofluids. Int. Commun. Heat Mass Transf., 2016, 72, 16-22.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.01.001]
[34]
Zhu, H.T.; Zhang, C.Y.; Tang, Y.M.; Wang, J.X. Novel synthesis and thermal conductivity of CuO nanofluid. J. Phys. Chem. C, 2007, 111, 1646-1650.
[http://dx.doi.org/10.1021/jp065926t]
[35]
Chen, Y.; Wang, X. Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature. Mater. Lett., 2008, 62, 2215-2218.
[http://dx.doi.org/10.1016/j.matlet.2007.11.050]
[36]
Yarmand, H.; Gharehkhani, S.; Ahmadi, G.; Shirazi, S.F.S.; Baradaran, S.; Montazer, E.; Zubir, M.N.M.; Alehashem, M.S.; Kazi, S.N.; Dahari, M. Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energy Convers. Manage., 2015, 100, 419-428.
[http://dx.doi.org/10.1016/j.enconman.2015.05.023]
[37]
Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim., 2016, 125, 527-535.
[http://dx.doi.org/10.1007/s10973-016-5436-4]
[38]
Nabil, M.F.; Azmia, W.H.; Hamida, K.A.; Mamata, R.; Hagosa, F.Y. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. Int. Commun. Heat Mass Transf., 2017, 86, 181-189.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.05.024]
[39]
Fule, P.J.; Bhanvase, B.A.; Sonawane, S.H. Experimental investigation of heat transfer enhancement in helical coil heat exchangers using water based CuO nanofluid. Adv. Powder Technol., 2017, 28, 2288-2294.
[http://dx.doi.org/10.1016/j.apt.2017.06.010]
[40]
Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf., 1998, 11, 151-170.
[http://dx.doi.org/10.1080/08916159808946559]
[41]
Sundar, L.S.; Hortiguela, M.J.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study. Int. Commun. Heat Mass Transf., 2016, 76, 245-255.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.025]
[42]
Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.S.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf., 2008, 51, 2651-2656.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.026]
[43]
Abdollahi, A.; Darvanjooghi, M.H.K.; Karimipour, A.; Safaei, M.R. Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica, 2018, 53, 3739-3757.
[http://dx.doi.org/10.1007/s11012-018-0916-1]
[44]
Esfe, M.H.; Raki, H.R.; Emami, M.R.S.; Afrand, M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol., 2019, 342, 808-816.
[http://dx.doi.org/10.1016/j.powtec.2018.10.032]
[45]
Goodarzi, M.; Toghraie, D.; Reiszadeh, M.; Afrand, M. Experimental evaluation of dynamic viscosity of ZnO-MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J. Therm. Anal. Calorim., 2019, 136, 513-525.
[http://dx.doi.org/10.1007/s10973-018-7707-8]
[46]
Soltani, O.; Akbari, M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Physica E, 2016, 84, 564-570.
[http://dx.doi.org/10.1016/j.physe.2016.06.015]
[47]
Dardan, E.; Afrand, M.; Isfahani, A.H.M. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl. Therm. Eng., 2016, 109, 524-534.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.08.103]
[48]
Asadi, M.; Asadi, A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations. Int. Commun. Heat Mass Transf., 2016, 76, 41-45.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.019]
[49]
Akilu, S.; Baheta, A.T.; Sharma, K.V. Experimental measurements of thermal conductivity and viscosity ofethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. J. Mol. Liq., 2017, 246, 396-405.
[http://dx.doi.org/10.1016/j.molliq.2017.09.017]
[50]
Esfe, M.H.; Arani, A.A.A.; Esfandeh, S. Experimental study on rheological behavior of monograde heavy-duty engine oil containing CNTs and oxide nanoparticles with focus on viscosity analysis. J. Mol. Liq., 2018, 272, 319-329.
[http://dx.doi.org/10.1016/j.molliq.2018.09.004]
[51]
Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf., 2002, 45, 855-863.
[http://dx.doi.org/10.1016/S0017-9310(01)00175-2]
[52]
Koo, J.; Kleinstreuer, C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int. Commun. Heat Mass Transf., 2005, 32, 1111-1118.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2005.05.014]
[53]
Lee, D.; Kim, J.W.; Kim, B.G. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J. Phys. Chem. B, 2006, 110(9), 4323-4328.
[http://dx.doi.org/10.1021/jp057225m] [PMID: 16509730]
[54]
Chitra, S.R.; Sendhilnathan, S. Investigation on thermal studies of nanofluids related to their applications. Heat Tran. Asian Res., 2015, 44, 420-449.
[55]
Esfe, M.H.; Karimipour, A.; Yan, W.; Akbari, M.; Safaei, M.R.; Dahari, M. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int. J. Heat Mass Transf., 2015, 88, 728-734.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.010]
[56]
Pang, C.; Jung, J.Y.; Lee, J.W.; Kang, Y.T. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. Int. J. Heat Mass Transf., 2012, 55, 5597-5602.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.048]
[57]
Harandi, S.S.; Karimipour, A.; Afrand, M.; Akbari, M.; D’Orazio, A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration. Int. Commun. Heat Mass Transf., 2016, 76, 171-177.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.029]
[58]
Shahsavar, A.; Bahiraei, M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol., 2017, 318, 441-450.
[http://dx.doi.org/10.1016/j.powtec.2017.06.023]
[59]
Esfe, M.H.; Alirezaie, A.; Rejvani, M. An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl. Therm. Eng., 2017, 111, 1202-1210.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.09.091]
[60]
Yarmand, H.; Gharehkhani, S.; Shirazi, S.F.S.; Goodarzi, M.; Amiri, A.; Sarsam, W.S.; Alehashem, M.S.; Dahari, M.; Kazi, S.N. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int. Commun. Heat Mass Transf., 2016, 77, 15-21.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.07.010]
[61]
Afrand, M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng., 2017, 110, 1111-1119.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.09.024]
[62]
Esfe, M.H.; Wongwises, S.; Naderi, A.; Asadi, A.; Safaei, M.R.; Rostamian, H.; Dahari, M.; Karimipour, A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf., 2015, 66, 100-104.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.05.014]
[63]
Esfe, M.H.; Yan, W.M.; Akbari, M.; Karimipour, A.; Hassani, M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Transf., 2015, 68, 248-251.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.09.001]
[64]
Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf., 2015, 66, 189-195.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.06.003]
[65]
Esfe, M.H.; Esfandeh, S.; Saedodin, S.; Rostamian, H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng., 2017, 125, 673-685.
[http://dx.doi.org/10.1016/j.applthermaleng.2017.06.077]
[66]
Rostamian, S.H.; Biglari, M.; Saedodin, S.; Esfe, M.H. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Mol. Liq., 2017, 231, 364-369.
[http://dx.doi.org/10.1016/j.molliq.2017.02.015]
[67]
Vafaei, M.; Afrand, M.; Sina, N.; Kalbasi, R.; Sourani, F.F.; Teimouri, H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E, 2017, 85, 90-96.
[http://dx.doi.org/10.1016/j.physe.2016.08.020]
[68]
Esfahani, N.N.; Toghraie, D.; Afrand, M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%-50%)/water hybrid nanofluid: An experimental study. Powder Technol., 2018, 323, 367-373.
[http://dx.doi.org/10.1016/j.powtec.2017.10.025]
[69]
Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V. Experimental investigation of thermal conductivity and dynamicviscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass Transf., 2018, 116, 1143-1152.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.09.087]
[70]
Moldoveanu, G.M.; Huminic, G.; Minea, A.A.; Huminic, A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf., 2018, 127, 450-457.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.024]
[71]
Safaei, M.R.; Ranjbarzadeh, R.; Hajizadeh, A.; Bahiraei, M.; Afrand, M. karimipour, A. Simultaneous effects of cobalt ferrite and silica nanoparticles on the thermal conductivity of antifreeze: New hybrid nanofluid for refrigeration condensers. Int. J. Refrig., 2019, 102, 86-95.
[http://dx.doi.org/10.1016/j.ijrefrig.2018.12.007]
[72]
Esfe, M.H.; Arani, A.A.A.; Amani, J.; Wongwises, S. Estimation of heat transfer coefficient and thermal performance factor of TiO2-water nanofluid using different thermal conductivity models. Curr. Nanosci., 2017, 13, 548-562.
[http://dx.doi.org/10.2174/1573413713666170317144722]
[73]
Esfahani, J.A.; Safaei, M.R.; Goharimanesh, M.; Oliveira, L.R.; Goodarzi, M.; Shamshirband, S.; Filho, E.P.B. Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol., 2017, 317, 458-470.
[http://dx.doi.org/10.1016/j.powtec.2017.04.034]
[74]
Hosseini, S.M.; Safaei, M.R.; Goodarzi, M.; Alrashed, A.A.A.A.; Nguyen, T.K. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int. J. Heat Mass Transf., 2017, 114, 207-210.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.06.061]
[75]
Karimipour, A.; Bagherzadeh, S.A.; Goodarzi, M.; Alnaqi, A.A.; Bahiraei, M.; Safaei, M.R.; Shadloo, M.S. Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN. Int. J. Heat Mass Transf., 2018, 127, 1169-1179.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.08.112]
[76]
Alrashed, A.A.A.A.; Gharibdousti, M.S.; Goodarzi, M.; Oliveira, L.R.; Safaei, M.R.; Filho, E.P.B. Effects on thermophysical properties of carbon based nanofluids: Experimental data, modelling using regression, ANFIS and ANN. Int. J. Heat Mass Transf., 2018, 125, 920-932.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.142]
[77]
Alrashed, A.A.A.A.; Karimipour, A.; Bagherzadeh, S.A.; Safaei, M.R.; Afrand, M. Electro- and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting. Int. J. Heat Mass Transf., 2018, 127, 925-935.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.123]
[78]
Karimipour, A.; Bagherzadeh, S.A.; Taghipour, A.; Abdollahi, A.; Safaei, M.R. A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Physica A, 2019, 521, 89-97.
[http://dx.doi.org/10.1016/j.physa.2019.01.055]
[79]
Bagherzadeh, S.A.; D’Orazio, A.; Karimipour, A.; Goodarzi, M.; Bach, Q.V. A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs. Physica A, 2019, 521, 406-415.
[http://dx.doi.org/10.1016/j.physa.2019.01.048]
[80]
Ghasemi, A.; Hassani, M.; Goodarzi, M.; Afrand, M.; Manafi, S. Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network. Physica A, 2019, 514, 36-45.
[http://dx.doi.org/10.1016/j.physa.2018.09.004]
[81]
Shahsavar, A.; Khanmohammadi, S.; Karimipour, A.; Goodarzi, M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. Int. J. Heat Mass Transf., 2019, 131, 432-441.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.11.069]
[82]
Safaei, M.R. Hajizadeh, A.; Afrand, M.; Qi, C.; Yarmand, H.; Zulkifli, N.W.B.M. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Physica A, 2019, 519, 209-216.
[http://dx.doi.org/10.1016/j.physa.2018.12.010]
[83]
Moradikazerouni, A.; Hajizadeh, A.; Safaei, M.R.; Afrand, M.; Yarmand, H.; Zulkifli, N.W.B.M. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting. Physica A, 2019, 521, 138-145.
[http://dx.doi.org/10.1016/j.physa.2019.01.051]
[84]
Bahrami, M.; Akbari, M.; Bagherzadeh, S.A.; Karimipour, A.; Afrand, M.; Goodarzi, M. Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid. Physica A, 2019, 519, 159-168.
[http://dx.doi.org/10.1016/j.physa.2018.12.031]
[85]
Chun, B.H.; Kang, H.U.; Kim, S.H. Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J. Chem. Eng., 2008, 25, 966-971.
[http://dx.doi.org/10.1007/s11814-008-0156-5]
[86]
Huminic, G.; Huminic, A. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. Int. J. Heat Mass Transf., 2011, 54, 4280-4287.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.05.017]
[87]
Huminic, G.; Huminic, A. Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers. Int. Commun. Heat Mass Transf., 2016, 71, 118-125.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.12.031]
[88]
Zamzamian, A.; Oskouie, S.N.; Doosthoseini, A.; Joneidi, A.; Pazouki, M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp. Therm. Fluid Sci., 2011, 35, 495-502.
[http://dx.doi.org/10.1016/j.expthermflusci.2010.11.013]
[89]
Kumaresan, V.; Velraj, R.; Das, S.K. Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int. J. Refrig., 2012, 35, 2287-2296.
[http://dx.doi.org/10.1016/j.ijrefrig.2012.08.009]
[90]
Wu, Z.; Wang, L.; Sundén, B. Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl. Therm. Eng., 2013, 60, 266-274.
[http://dx.doi.org/10.1016/j.applthermaleng.2013.06.051]
[91]
Darzi, A.A.R.; Farhadi, M.; Sedighi, K. Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int. Commun. Heat Mass Transf., 2013, 47, 105-112.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.06.003]
[92]
Mohammed, H.A.; Hasan, H.A.; Wahid, M.A. Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip insert. Int. Commun. Heat Mass Transf., 2013, 40, 36-46.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.10.023]
[93]
Kumaresan, V.; Khader, S.M.A.; Karthikeyan, S.; Velraj, R. Convective heat transfer characteristics of CNT nanofluids in a tubular heat exchanger of various lengths for energy efficient cooling/heating system. Int. J. Heat Mass Transf., 2013, 60, 413-421.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.01.021]
[94]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. Int. Commun. Heat Mass Transf., 2013, 49, 60-68.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.001]
[95]
Maddah, H.; Alizadeh, M.; Ghasemi, N.; Alwi, S.R.W. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int. J. Heat Mass Transf., 2014, 78, 1042-1054.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.07.059]
[96]
Rao, V.V.; Reddy, M.C. Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int. Commun. Heat Mass Transf., 2014, 50, 68-76.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.11.002]
[97]
Kumar, P.C.M.; Kumar, J.; Tamilarasan, R.; Nathan, S.S.; Suresh, S. Heat transfer enhancement and pressure drop analysis in a helically coiled tube using Al2O3/water nanofluid. J. Mech. Sci. Technol., 2014, 28, 1841-1847.
[http://dx.doi.org/10.1007/s12206-014-0331-z]
[98]
Prasad, P.V.D.; Gupta, A.V.S.S.K.S.; Deepak, K. Investigation of trapezoidal-cut twisted tape insert in a double pipe U-tube heat exchanger using Al2O3/water nanofluid. Procedia Mater. Sci., 2015, 10, 50-63.
[http://dx.doi.org/10.1016/j.mspro.2015.06.025]
[99]
Sarafraz, M.M.; Hormozi, F. Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp. Therm. Fluid Sci., 2015, 66, 279-289.
[http://dx.doi.org/10.1016/j.expthermflusci.2015.03.028]
[100]
Goodarzi, M.; Kherbeet, A.S.; Afrand, M.; Sadeghinezhad, E.; Mehrali, M.; Zahedi, P.; Wongwises, S.; Dahari, M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int. Commun. Heat Mass Transf., 2016, 76, 16-23.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.018]
[101]
Sarafraz, M.M.; Hormozi, F.; Nikkhah, V. Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Exp. Therm. Fluid Sci., 2016, 78, 41-49.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.05.014]
[102]
Jafarimoghaddam, A.; Aberoumand, S.; Aberoumand, H.; Javaherdeh, K. Experimental study on Cu/Oil nanofluids through concentric annular tube: A correlation. Heat Tran. Asian Res., 2017, 46, 251-260.
[http://dx.doi.org/10.1002/htj.21210]
[103]
El-Maghlany, W.M.; Hanafy, A.A.; Hassan, A.A.; El-Magid, M.A. Experimental study of Cu–water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger. Exp. Therm. Fluid Sci., 2016, 78, 100-111.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.05.015]
[104]
Sozen, A.; Variyenli, H.I.; Ozdemir, M.B.; Gürü, M.; Aytaç, I. Heat transfer enhancement using alumina and fly ash nanofluids in parallel and cross-flow concentric tube heat exchangers. J. Eng. Inst., 2016, 89, 414-424.
[http://dx.doi.org/10.1016/j.joei.2015.02.012]
[105]
Sozen, A.; Variyenli, H.I.; Ozdemir, M.B.; Gürü, M. Improving the thermal performance of parallel and cross-flow concentric tube heat exchangers using fly-ash nanofluid. Heat Transf. Eng., 2016, 37, 805-813.
[http://dx.doi.org/10.1080/01457632.2015.1080574]
[106]
Wu, Z.; Wang, L.; Sunden, B.; Wadso, L. Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Appl. Therm. Eng., 2016, 96, 364-371.
[http://dx.doi.org/10.1016/j.applthermaleng.2014.10.096]
[107]
Kumar, N.T.R.; Bhramara, P.; Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Heat transfer, friction factor and effectiveness of Fe3O4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Exp. Therm. Fluid Sci., 2017, 85, 331-343.
[http://dx.doi.org/10.1016/j.expthermflusci.2017.03.019]
[108]
Bahiraei, M.; Jamshidmofid, M.; Heshmatian, S. Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution. Adv. Powder Technol., 2017, 28, 2380-2392.
[http://dx.doi.org/10.1016/j.apt.2017.06.021]
[109]
Hussein, A.M. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp. Therm. Fluid Sci., 2017, 88, 37-45.
[http://dx.doi.org/10.1016/j.expthermflusci.2017.05.015]
[110]
Shirvan, K.M.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technol., 2017, 313, 99-111.
[http://dx.doi.org/10.1016/j.powtec.2017.02.065]
[111]
Bahmani, M.H.; Sheikhzadeh, G.; Zarringhalam, M.; Akbari, O.A.; Alrashed, A.A.A.A.; Shabani, G.A.S.; Goodarzi, M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv. Powder Technol., 2018, 29, 273-282.
[http://dx.doi.org/10.1016/j.apt.2017.11.013]
[112]
Hosseinian, A.; Isfahani, A.H.M.; Shiran, E. Experimental investigation of surface vibration effects on increasing the stability and heat transfer coefficient of MWCNTs-water nanofluid in a flexible double pipe heat exchanger. Exp. Therm. Fluid Sci., 2018, 90, 275-285.
[http://dx.doi.org/10.1016/j.expthermflusci.2017.09.018]
[113]
Akyurek, E.F.; Gelis, K.; Sahin, B.; Manay, E. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results Phys., 2018, 9, 376-389.
[http://dx.doi.org/10.1016/j.rinp.2018.02.067]
[114]
Khoshvaght-Aliabadi, M.; Davoudi, S.; Dibaei, M.H. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem. Eng. Res. Des., 2018, 133, 26-39.
[http://dx.doi.org/10.1016/j.cherd.2018.02.030]
[115]
Raei, B.; Shahraki, F.; Jamialahmadi, M.; Peyghambarzadeh, S.M. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J. Therm. Anal. Calorim., 2017, 127, 2561-2575.
[http://dx.doi.org/10.1007/s10973-016-5868-x]
[116]
Baba, M.S. SitaRama Raju, A.V.; Rao, M.B. Heat transfer enhancement and pressure drop of Fe3O4–water nanofluid in a double tube counter flow heat exchanger with internal longitudinal fins. Case Stud. Therm. Eng., 2018, 12, 600-607.
[http://dx.doi.org/10.1016/j.csite.2018.08.001]
[117]
Kumar, N.T.R.; Bhramara, P.; Addis, B.M.; Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int. Commun. Heat Mass Transf., 2017, 81, 155-163.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.12.019]
[118]
Dalkılıç, A.S.; Acikgoz, O.; Gümüs, M.A.; Wongwises, S. Determination of optimum velocity for various nanofluids flowing in a double-pipe heat exchanger. Heat Transf. Eng., 2017, 38, 11-25.
[http://dx.doi.org/10.1080/01457632.2016.1151302]
[119]
Farajollahi, B.; Etemad, S.G.; Hojjat, M. Heat transfer of nanofluids in a shell and tube heat exchanger. Int. J. Heat Mass Transf., 2010, 53, 12-17.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.019]
[120]
Lotfi, R.; Rashidi, A.M.; Amrollahi, A. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger. Int. Commun. Heat Mass Transf., 2012, 39, 108-111.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.10.002]
[121]
Leong, K.Y.; Saidur, R.; Mahlia, T.M.I.; Yau, Y.H. Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants. Int. J. Heat Mass Transf., 2012, 55, 808-816.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.027]
[122]
Raja, M.; Arunachalam, R.M.; Suresh, S. Experimental studies on heat transfer of alumina/water nanofluid in a shell and tube heat exchanger with wire coil insert. Int. J. Mech. Mater. Eng., 2012, 7, 16-23.
[123]
Akhtari, M.; Haghshenasfard, M.; Talaie, M.R. Numerical and experimental investigation of heat transfer of γ-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. J. Numer. Heat Transf. A, 2013, 63, 941-958.
[http://dx.doi.org/10.1080/10407782.2013.772855]
[124]
Albadr, J.; Tayal, S.; Alasadi, M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud. Therm. Eng., 2013, 1, 38-44.
[http://dx.doi.org/10.1016/j.csite.2013.08.004]
[125]
Elias, M.M.; Miqdad, M.; Mahbubul, I.M.; Saidur, R.; Kamalisarvestani, M.; Sohel, M.R.; Hepbasli, A.; Rahim, N.A.; Amalina, M.A. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int. Commun. Heat Mass Transf., 2013, 44, 93-99.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.03.014]
[126]
Anoop, K.; Cox, J.; Sadr, R. Thermal evaluation of nanofluids in heat exchangers. Int. Commun. Heat Mass Transf., 2013, 49, 5-9.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.002]
[127]
Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Khaleduzzaman, S.S.; Sabri, M.F.M.; Rahman, M.M. Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. Numer. Heat Transf., 2014, 65, 699-713.
[http://dx.doi.org/10.1080/10407782.2013.846196]
[128]
Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Khaleduzzaman, S.S.; Sabri, M.F.M. Performanceevaluation of a shell and tube heat exchanger operated with oxide based nanofluids. Heat Mass Transf., 2016, 52, 1425-1433.
[http://dx.doi.org/10.1007/s00231-015-1664-6]
[129]
Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Sabri, M.F.M. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int. J. Heat Mass Transf., 2016, 97, 547-558.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.02.016]
[130]
Ghozatloo, A.; Rashidi, A.; Niassar, M.S. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp. Therm. Fluid Sci., 2014, 53, 136-141.
[http://dx.doi.org/10.1016/j.expthermflusci.2013.11.018]
[131]
Godson, L.; Deepak, K.; Enoch, C.; Jefferson, B.; Raja, B. Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch. Civ. Mech. Eng., 2014, 14, 489-496.
[http://dx.doi.org/10.1016/j.acme.2013.08.002]
[132]
Salem, M.R.; Ali, R.K.; Sakr, R.Y.; Elshazly, K.M. Effect of γ-Al2O3/water nanofluid on heat transfer and pressure drop characteristics of shell and coil heat exchanger with different coil curvatures. J. Therm. Sci. Eng. Appl., 2015, 7, 1-9.
[http://dx.doi.org/10.1115/1.4030635]
[133]
Dharmalingam, R.; Sivagnanaprabhu, K.K.; Yogaraja, J.; Gunasekaran, S.; Mohan, R. Experimental investigation of heat transfer characteristics of nanofluid using parallel flow, counter flow and shell and tube heat exchanger. Arch. Mech. Eng., 2015, LXII, 509-522.
[http://dx.doi.org/10.1515/meceng-2015-0028]
[134]
Aghabozorg, M.H.; Rashidi, A.; Mohammadi, S. Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp. Therm. Fluid Sci., 2016, 72, 182-189.
[http://dx.doi.org/10.1016/j.expthermflusci.2015.11.011]
[135]
Srinivas, T.; Vinod, A.V. Heat transfer intensification in a shell and helical coil heat exchanger using water-based nanofluids. Chem. Eng. Process., 2016, 102, 1-8.
[http://dx.doi.org/10.1016/j.cep.2016.01.005]
[136]
Kumar, N.; Sonawane, S.S. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int. Commun. Heat Mass Transf., 2016, 78, 277-284.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.009]
[137]
Hosseini, S.M.; Vafajoo, L.; Salman, B.H. Performance of CNT-water nanofluid as coolant fluid in shell and tube intercooler of a LPG absorber tower. Int. J. Heat Mass Transf., 2016, 102, 45-53.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.071]
[138]
Barzegarian, R.; Aloueyan, A.; Yousefi, T. Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. Int. Commun. Heat Mass Transf., 2017, 86, 52-59.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.05.021]
[139]
Tan, Y.; He, Z.; Xu, T.; Fang, X.; Gao, X.; Zhang, Z. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes. Heat Mass Transf., 2017, 53, 2813-2827.
[http://dx.doi.org/10.1007/s00231-017-2015-6]
[140]
Nallusamy, S.; Prabu, N.M. Heat transfer enhancement analysis of Al2O3-water nanofluid through parallel and counter flow in shell and tube heat exchangers. Int. J. Nanosci., 2017, 16, 1750020
[http://dx.doi.org/10.1142/S0219581X1750020X]
[141]
Ling, Z.; He, Z.; Xu, T.; Fang, X.; Gao, X.; Zhang, Z. Experimental and numerical investigation on non-Newtonian nanofluids flowing in shell side of helical baffled heat exchanger combined with elliptic tubes. Appl. Sci. (Basel), 2017, 7, 48.
[http://dx.doi.org/10.3390/app7010048]
[142]
Haque, A.K.M.M.; Kim, S.; Kim, J.; Noh, J.; Huh, S.; Choi, B.; Chung, H.; Jeong, H. Forced convective heat transfer of aqueous Al2O3 nanofluid through shell and tube heat exchanger. J. Nanosci. Nanotechnol., 2018, 18(3), 1730-1740.
[http://dx.doi.org/10.1166/jnn.2018.14216] [PMID: 29448652]
[143]
Naik, B.A.K.; Vinod, A.V. Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp. Therm. Fluid Sci., 2018, 90, 132-142.
[http://dx.doi.org/10.1016/j.expthermflusci.2017.09.013]
[144]
Kumar, N.; Sonawane, S.S.; Sonawane, S.H. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int. Commun. Heat Mass Transf., 2018, 90, 1-10.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.10.001]
[145]
Said, Z.; Rahman, S.M.A.; Assad, M.E.H.; Alami, A.H. Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid. Sustain. Energy Technol. Assessm., 2019, 31, 306-317.
[http://dx.doi.org/10.1016/j.seta.2018.12.020]
[146]
Safaei, M.R.; Togun, H.; Vafai, K.; Kazi, S.N.; Badarudin, A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer. Heat Transf. A, 2014, 66, 1321-1340.
[http://dx.doi.org/10.1080/10407782.2014.916101]
[147]
Elshazly, K.M.; Sakr, R.Y.; Ali, R.K.; Salem, M.R. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions. Heat Mass Transf., 2017, 53, 1893-1903.
[http://dx.doi.org/10.1007/s00231-016-1949-4]
[148]
Esfahani, M.R.; Languri, E.M. Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Exp. Therm. Fluid Sci., 2017, 83, 100-106.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.12.004]
[149]
Singh, S.K.; Sarkar, J. Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant. Int. Commun. Heat Mass Transf., 2018, 98, 41-48.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.08.005]
[150]
Maddhah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Chamkha, A.J. Factorial experimental design for the thermal performance of a double pipeheat exchanger using Al2O3-TiO2 hybrid nanofluid. Int. Commun. Heat Mass Transf., 2018, 97, 92-102.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.002]
[151]
Bahiraei, M.; Ahmadi, A.A. Thermohydraulic performance analysis of a spiral heat exchanger operated with water–alumina nanofluid: Effects of geometry and adding nanoparticles. Energy Convers. Manage., 2018, 170, 62-72.
[http://dx.doi.org/10.1016/j.enconman.2018.05.061]
[152]
Bahiraei, M.; Mazaheri, N.; Rizehvandi, A. Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl. Therm. Eng., 2019, 149, 588-601.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.12.072]
[153]
Bahiraei, M.; Salmia, H.K.; Safaei, M.R. Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Convers. Manage., 2019, 180, 72-82.
[http://dx.doi.org/10.1016/j.enconman.2018.10.098]
[154]
Tiwari, A.K.; Ghosh, P.; Sarkar, J. Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int. J. Heat Mass Transf., 2015, 89, 1110-1118.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.118]
[155]
Tora, E.A.H. Nanofluids as a cooling agent for Rankine power cycle. 2nd International Conference on Energy Systems & Technologies, Cairo, Egypt, 2013, 18-21 February 2013.
[156]
Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H. A novel approach for energy and water conservation in wet cooling towers by using MWNTs andnanoporous graphene nanofluids. Energy Convers. Manage., 2016, 109, 10-18.
[http://dx.doi.org/10.1016/j.enconman.2015.11.053]
[157]
Sarkar, J. Performance of nanofluid-cooled shell and tube gas cooler in transcritical CO2 refrigeration systems. Appl. Therm. Eng., 2011, 31, 2541-2548.
[http://dx.doi.org/10.1016/j.applthermaleng.2011.04.019]
[158]
Sarkar, J. Performance evaluation of using water-based nanofluids as coolants in the gas cooler of a transcritical CO2 refrigerant system. J. Enhanc. Heat Transf., 2013, 20, 389-397.
[http://dx.doi.org/10.1615/JEnhHeatTransf.2014008420]
[159]
Sarkar, J. Performance improvement of double-tube gas cooler in CO2 refrigeration system using nanofluids. Therm. Sci., 2015, 19, 109-118.
[http://dx.doi.org/10.2298/TSCI120702121S]
[160]
Balaji, N.; Kumar, P.S.M.; Velraj, R.; Kulasekharan, N. Experimental investigations on the improvement of an air conditioning system with a nanofluid-based intercooler. Arab. J. Sci. Eng., 2015, 40, 1681-1693.
[http://dx.doi.org/10.1007/s13369-015-1644-7]
[161]
Vasconcelos, A.A.; Gómez, A.O.C.; Filho, E.P.B.; Parise, J.A.R. Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Appl. Therm. Eng., 2017, 111, 1487-1492.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.06.126]
[162]
Hamdeh, N.H.; Almitani, K.H. Solar liquid desiccant regeneration and nanofluids in evaporative cooling for greenhouse food production in Saudi Arabia. Sol. Energy, 2016, 134, 202-210.
[http://dx.doi.org/10.1016/j.solener.2016.04.048]
[163]
Lu, L.; Liu, Z.H.; Xiao, S.H. Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors Part 1: Indoor experiment. Sol. Energy, 2011, 85, 379-387.
[http://dx.doi.org/10.1016/j.solener.2010.11.008]
[164]
Boyaghchi, F.A.; Chavoshi, M.; Sabeti, V. Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid. Energy, 2015, 91, 685-699.
[http://dx.doi.org/10.1016/j.energy.2015.08.082]
[165]
Sui, D.; Langåker, V.H.; Yu, Z. Investigation of thermophysical properties of nanofluids forapplication in geothermal energy. Energy Procedia, 2017, 105, 5055-5060.
[http://dx.doi.org/10.1016/j.egypro.2017.03.1021]
[166]
Beydokhti, A.K.; Heris, S.Z. Thermal optimization of combined heat and power (CHP) systems using nanofluids. Energy, 2012, 44, 241-247.
[http://dx.doi.org/10.1016/j.energy.2012.06.033]
[167]
Bozorgan, N. Performance of helical coil heat recovery exchanger using nanofluid as coolant. Analele Universitatii 'Eftimie Murgu', 2015, 22, 127-137. http://oaji.net/articles/2019/1910-1549384576.pdf
[168]
Huang, H.; Zhu, J.; Yan, B. Comparison of the performance of two different dual-looporganic Rankine cycles (DORC) with nanofluid for engine waste heat recovery. Energy Convers. Manage., 2016, 126, 99-109.
[http://dx.doi.org/10.1016/j.enconman.2016.07.081]
[169]
Jafari, S.M.; Saramnejad, F.; Dehnad, D. Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng., 2018, 41, e12658
[http://dx.doi.org/10.1111/jfpe.12658]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [136 - 156]
Pages: 21
DOI: 10.2174/1573413715666190715101044
Price: $65

Article Metrics

PDF: 11
HTML: 3
EPUB: 1
PRC: 1