Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Insect Allergens on the Dining Table

Author(s): Kyoung Yong Jeong* and Jung-Won Park*

Volume 21, Issue 2, 2020

Page: [159 - 169] Pages: 11

DOI: 10.2174/1389203720666190715091951

Price: $65

Abstract

Edible insects are important sources of nutrition, particularly in Africa, Asia, and Latin America. Recently, edible insects have gained considerable interest as a possible solution to global exhaustion of the food supply with population growth. However, little attention has been given to the adverse reactions caused by insect consumption. Here, we provide an overview of the food allergens in edible insects and offer insights for further studies. Most of the edible insect allergens identified to date are highly cross-reactive invertebrate pan-allergens such as tropomyosin and arginine kinase. Allergic reactions to these allergens may be cross-reactions resulting from sensitization to shellfish and/or house dust mites. No unique insect allergen specifically eliciting a food allergy has been described. Many of the edible insect allergens described thus far have counterpart allergens in cockroaches, which are an important cause of respiratory allergies, but it is questionable whether inhalant allergens can cause food allergies. Greater effort is needed to characterize the allergens that are unique to edible insects so that safe edible insects can be developed. The changes in insect proteins upon food processing or cooking should also be examined to enhance our understanding of edible insect food allergies.

Keywords: Food allergen, cross-reactivity, edible insects, component-resolved diagnosis, chitin, CCDs, CDR.

Graphical Abstract
[1]
van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol., 2013, 58, 563-583.
[http://dx.doi.org/10.1146/annurev-ento-120811-153704] [PMID: 23020616]
[2]
Burchi, F.; De Muro, P. From Food availability to nutritional capabilities: Advancing food security analysis. Food Policy, 2016, 60, 10-19.
[http://dx.doi.org/10.1016/j.foodpol.2015.03.008]
[3]
Han, R.; Shin, J.T.; Kim, J.; Choi, Y.S.; Kim, Y.W. An overview of the South Korean edible insect food industry: challenges and future pricing/promotion strategies. Entomol. Res., 2017, 47, 141-151.
[http://dx.doi.org/10.1111/1748-5967.12230]
[4]
Van der Poel, L.; Chen, J.; Penagos, M. Food allergy epidemic - is it only a Western phenomenon? Curr. Allergy Clin. Immunol., 2009, 22, 121-126.
[5]
Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; Kulling, S.; Knorr, D.; Steinberg, P.; Engel, K.H. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res., 2017, 61(6)
[http://dx.doi.org/10.1002/mnfr.201600520] [PMID: 27623740]
[6]
Pemberton, R.W. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol., 1999, 65(3), 207-216.
[http://dx.doi.org/10.1016/S0378-8741(98)00209-8] [PMID: 10404418]
[7]
Mlcek, J.; Borkovcova, M.; Bednarova, M. Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine - a review. J. Cent. Eur. Agric., 2014, 15, 225-237.
[http://dx.doi.org/10.5513/JCEA01/15.4.1533]
[8]
Feng, Y.; Zhao, M.; He, Z.; Chen, Z.; Sun, L. Research and utilization of medicinal insects in China. Entomol. Res., 2009, 39, 313-316.
[http://dx.doi.org/10.1111/j.1748-5967.2009.00236.x]
[9]
Jeong, K.Y.; Hongb, C.S.; Yong, T.S. Recombinant allergens for diagnosis and immunotherapy of allergic disorders, with emphasis on cockroach allergy. Curr. Protein Pept. Sci., 2006, 7(1), 57-71.
[http://dx.doi.org/10.2174/138920306775474112] [PMID: 16472169]
[10]
Glesner, J.; Filep, S.; Vailes, L.D.; Wünschmann, S.; Chapman, M.D.; Birrueta, G.; Frazier, A.; Jeong, K.Y.; Schal, C.; Bacharier, L.; Beigelman, A.; Busse, P.; Schulten, V.; Sette, A.; Pomés, A. Allergen content in German cockroach extracts and sensitization profiles to a new expanded set of cockroach allergens determine in vitro extract potency for IgE reactivity. J. Allergy Clin. Immunol., 2019, 143(4), 1474-1481.e8.
[http://dx.doi.org/10.1016/j.jaci.2018.07.036] [PMID: 30170124]
[11]
Rosen, T. Caterpillar dermatitis. Dermatol. Clin., 1990, 8(2), 245-252.
[http://dx.doi.org/10.1016/S0733-8635(18)30496-0] [PMID: 2191798]
[12]
Hinkle, N.C. Ekbom syndrome: the challenge of “invisible bug” infestations. Annu. Rev. Entomol., 2010, 55, 77-94.
[http://dx.doi.org/10.1146/annurev.ento.54.110807.090514] [PMID: 19961324]
[13]
Taylor, S.L.; Baumert, J.L. Worldwide food allergy labeling and detection of allergens in processed foods. Chem. Immunol. Allergy, 2015, 101, 227-234.
[http://dx.doi.org/10.1159/000373910] [PMID: 26022883]
[14]
Greenhawt, M.; McMorris, M.; Baldwin, J. Carmine hypersensitivity masquerading as azithromycin hypersensitivity. Allergy Asthma Proc., 2009, 30(1), 95-101.
[http://dx.doi.org/10.2500/aap.2009.30.3199] [PMID: 19331724]
[15]
Sánchez-Borges, M.; Fernandez-Caldas, E. Hidden allergens and oral mite anaphylaxis: the pancake syndrome revisited. Curr. Opin. Allergy Clin. Immunol., 2015, 15(4), 337-343.
[http://dx.doi.org/10.1097/ACI.0000000000000175] [PMID: 26110684]
[16]
Fernandes, J.; Reshef, A.; Patton, L.; Ayuso, R.; Reese, G.; Lehrer, S.B. Immunoglobulin E antibody reactivity to the major shrimp allergen, tropomyosin, in unexposed Orthodox Jews. Clin. Exp. Allergy, 2003, 33(7), 956-961.
[http://dx.doi.org/10.1046/j.1365-2222.2003.01722.x] [PMID: 12859453]
[17]
Ramos-Elorduy, J. Anthropo-entomophagy: Cultures, evolution and sustainability. Entomol. Res., 2009, 39, 271-288.
[http://dx.doi.org/10.1111/j.1748-5967.2009.00238.x]
[18]
Sun, B.; Zheng, P.; Wei, N.; Huang, H.; Zeng, G. Co-sensitization to silkworm moth (Bombyx mori) and 9 inhalant allergens among allergic patients in Guangzhou, Southern China. PLoS One, 2014, 9(5)e94776
[http://dx.doi.org/10.1371/journal.pone.0094776] [PMID: 24787549]
[19]
Araujo, L.M.; Rosário Filho, N.A.; Riedi, C.A. Respiratory allergy to moth: the importance of sensitization to Bombyx mori in children with asthma and rhinitis. J. Pediatr. (Rio J.), 2014, 90(2), 176-181.
[http://dx.doi.org/10.1016/j.jped.2013.08.009] [PMID: 24361294]
[20]
Ji, K.M.; Zhan, Z.K.; Chen, J.J.; Liu, Z.G. Anaphylactic shock caused by silkworm pupa consumption in China. Allergy, 2008, 63(10), 1407-1408.
[http://dx.doi.org/10.1111/j.1398-9995.2008.01838.x] [PMID: 18782121]
[21]
Gautreau, M.; Restuccia, M.; Senser, K.; Weisberg, S.N. Familial anaphylaxis after silkworm ingestion. Prehosp. Emerg. Care, 2017, 21(1), 83-85.
[http://dx.doi.org/10.1080/10903127.2016.1204035] [PMID: 27436170]
[22]
Kim, S.R.; Park, H.J.; Park, K.H.; Lee, J.H.; Park, J.W. IgE sensitization pattern to commonly consumed foods determined by skin prick test in Korean adults. J. Korean Med. Sci., 2016, 31(8), 1197-1201.
[http://dx.doi.org/10.3346/jkms.2016.31.8.1197] [PMID: 27478328]
[23]
Binder, M.; Mahler, V.; Hayek, B.; Sperr, W.R.; Schöller, M.; Prozell, S.; Wiedermann, G.; Valent, P.; Valenta, R.; Duchêne, M. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J. Immunol., 2001, 167(9), 5470-5477.
[http://dx.doi.org/10.4049/jimmunol.167.9.5470] [PMID: 11673567]
[24]
Hoflehner, E.; Binder, M.; Hemmer, W.; Mahler, V.; Panzani, R.C.; Jarisch, R.; Wiedermann, U.; Duchêne, M. Thioredoxin from the Indianmeal moth Plodia interpunctella: cloning and test of the allergenic potential in mice. PLoS One, 2012, 7(7)e42026
[http://dx.doi.org/10.1371/journal.pone.0042026] [PMID: 22844539]
[25]
Liu, Z.; Xia, L.; Wu, Y.; Xia, Q.; Chen, J.; Roux, K.H. Identification and characterization of an arginine kinase as a major allergen from silkworm (Bombyx mori) larvae. Int. Arch. Allergy Immunol., 2009, 150(1), 8-14.
[http://dx.doi.org/10.1159/000210375] [PMID: 19339797]
[26]
Jeong, K.Y.; Son, M.; Lee, J.Y.; Park, K.H.; Lee, J.H.; Park, J.W. Allergenic characterization of 27-kDa glycoprotein, a novel heat stable allergen, from the pupa of silkworm, Bombyx mori. J. Korean Med. Sci., 2016, 31(1), 18-24.
[http://dx.doi.org/10.3346/jkms.2016.31.1.18] [PMID: 26770033]
[27]
Antico, A.; Vegro, M.; Rasio, G.; Pasini, G.; Curioni, A. Bee moth (Galleria mellonella) allergy: New insight from a case of monosensitization. Ann. Allergy Asthma Immunol., 2017, 119(6), 566-568.
[http://dx.doi.org/10.1016/j.anai.2017.09.057] [PMID: 29107466]
[28]
Madero, M.F.; Enríquez-Matas, A.; Fernández-Nieto, M.; Sastre, B.; Del Pozo, V.; Pastor, C.; Quirce, S.; Sastre, J. Characterization of allergens from the fish bait Galleria mellonella. J. Allergy Clin. Immunol., 2007, 119(4), 1021-1022.
[http://dx.doi.org/10.1016/j.jaci.2006.12.644] [PMID: 17337298]
[29]
Jeong, K.Y.; Hong, C.S.; Yong, T.S. Allergenic tropomyosins and their cross-reactivities. Protein Pept. Lett., 2006, 13(8), 835-845.
[http://dx.doi.org/10.2174/092986606777841244] [PMID: 17073731]
[30]
Jeong, K.Y.; Han, I.S.; Lee, J.Y.; Park, K.H.; Lee, J.H.; Park, J.W. Role of tropomyosin in silkworm allergy. Mol. Med. Rep., 2017, 15(5), 3264-3270.
[http://dx.doi.org/10.3892/mmr.2017.6373] [PMID: 28339033]
[31]
Zhao, X.; Li, L.; Kuang, Z.; Luo, G.; Li, B. Proteomic and immunological identification of two new allergens from silkworm (Bombyx mori L.) pupae. Cent. Eur. J. Immunol., 2015, 40(1), 30-34.
[http://dx.doi.org/10.5114/ceji.2015.50830] [PMID: 26155181]
[32]
Schroeckenstein, D.C.; Meier-Davis, S.; Graziano, F.M.; Falomo, A.; Bush, R.K. Occupational sensitivity to Alphitobius diaperinus (Panzer) (lesser mealworm). J. Allergy Clin. Immunol., 1988, 82(6), 1081-1088.
[http://dx.doi.org/10.1016/0091-6749(88)90147-9] [PMID: 2462582]
[33]
Freye, H.B.; Esch, R.E.; Litwin, C.M.; Sorkin, L. Anaphylaxis to the ingestion and inhalation of Tenebrio molitor (mealworm) and Zophobas morio (superworm). Allergy Asthma Proc., 1996, 17(4), 215-219.
[http://dx.doi.org/10.2500/108854196778996903] [PMID: 8871741]
[34]
Verhoeckx, K.C.; van Broekhoven, S.; den Hartog-Jager, C.F.; Gaspari, M.; de Jong, G.A.; Wichers, H.J.; van Hoffen, E.; Houben, G.F.; Knulst, A.C. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem. Toxicol., 2014, 65, 364-373.
[http://dx.doi.org/10.1016/j.fct.2013.12.049] [PMID: 24412559]
[35]
van Broekhoven, S.; Bastiaan-Net, S.; de Jong, N.W.; Wichers, H.J. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem., 2016, 196, 1075-1083.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.033] [PMID: 26593591]
[36]
Broekman, H.C.H.P.; Knulst, A.C.; de Jong, G.; Gaspari, M.; den Hartog Jager, C.F.; Houben, G.F.; Verhoeckx, K.C.M. Is mealworm or shrimp allergy indicative for food allergy to insects? Mol. Nutr. Food Res., 2017, 61(9)
[http://dx.doi.org/10.1002/mnfr.201601061] [PMID: 28500661]
[37]
Bagenstose, A.H., III; Mathews, K.P.; Homburger, H.A.; Saaveard-Delgado, A.P. Inhalant allergy due to crickets. J. Allergy Clin. Immunol., 1980, 65(1), 71-74.
[http://dx.doi.org/10.1016/0091-6749(80)90180-3] [PMID: 6153085]
[38]
Burge, P.S.; Edge, G.; O’Brien, I.M.; Harries, M.G.; Hawkins, R.; Pepys, J. Occupational asthma in a research centre breeding locusts. Clin. Allergy, 1980, 10(4), 355-363.
[http://dx.doi.org/10.1111/j.1365-2222.1980.tb02119.x] [PMID: 7449072]
[39]
Tee, R.D.; Gordon, D.J.; Hawkins, E.R.; Nunn, A.J.; Lacey, J.; Venables, K.M.; Cooter, R.J.; McCaffery, A.R.; Newman Taylor, A.J. Occupational allergy to locusts: an investigation of the sources of the allergen. J. Allergy Clin. Immunol., 1988, 81(3), 517-525.
[http://dx.doi.org/10.1016/0091-6749(88)90188-1] [PMID: 3346482]
[40]
Lopata, A.L.; Fenemore, B.; Jeebhay, M.F.; Gäde, G.; Potter, P.C. Occupational allergy in laboratory workers caused by the African migratory grasshopper Locusta migratoria. Allergy, 2005, 60(2), 200-205.
[http://dx.doi.org/10.1111/j.1398-9995.2005.00661.x] [PMID: 15647041]
[41]
Jensen-Jarolim, E.; Pali-Schöll, I.; Jensen, S.A.; Robibaro, B.; Kinaciyan, T. Caution: Reptile pets shuttle grasshopper allergy and asthma into homes. World Allergy Organ. J., 2015, 8(1), 24.
[http://dx.doi.org/10.1186/s40413-015-0072-1] [PMID: 26322151]
[42]
Linares, T.; Hernandez, D.; Bartolome, B. Occupational rhinitis and asthma due to crickets. Ann. Allergy Asthma Immunol., 2008, 100(6), 566-569.
[http://dx.doi.org/10.1016/S1081-1206(10)60050-6] [PMID: 18592820]
[43]
Park, M.; Boys, E.L.; Yan, M.; Bryant, K.; Cameron, B.; Desai, A.; Thomas, P.S.; Tedla, N.T. Hypersensitivity pneumonitis caused by house cricket, Acheta domesticus. J. Clin. Cell. Immunol., 2014, 5, 4.
[http://dx.doi.org/10.4172/2155-9899.1000248]
[44]
Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P.; Phiriyangkul, P. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem., 2015, 184, 160-166.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.094] [PMID: 25872439]
[45]
Hall, F.; Johnson, P.E.; Liceaga, A. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem., 2018, 262, 39-47.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.058] [PMID: 29751919]
[46]
Lierl, M.B.; Riordan, M.M.; Fischer, T.J. Prevalence of insect allergen-specific IgE in allergic asthmatic children in Cincinnati, Ohio. Ann. Allergy, 1994, 72(1), 45-50.
[PMID: 8291749]
[47]
Arlian, L.G. Arthropod allergens and human health. Annu. Rev. Entomol., 2002, 47, 395-433.
[http://dx.doi.org/10.1146/annurev.ento.47.091201.145224] [PMID: 11729080]
[48]
Smith, T.S.; Hogan, M.B.; Welch, J.E.; Corder, W.T.; Wilson, N.W. Modern prevalence of insect sensitization in rural asthma and allergic rhinitis patients. Allergy Asthma Proc., 2005, 26(5), 356-360.
[PMID: 16450569]
[49]
Jeong, K.Y.; Hong, C.S.; Yong, T.S. Domestic arthropods and their allergens. Protein Pept. Lett., 2007, 14(10), 934-942.
[http://dx.doi.org/10.2174/092986607782541114] [PMID: 18220990]
[50]
Goetz, D.W. Seasonal inhalant insect allergy: Harmonia axyridis ladybug. Curr. Opin. Allergy Clin. Immunol., 2009, 9(4), 329-333.
[http://dx.doi.org/10.1097/ACI.0b013e32832d5173] [PMID: 19506471]
[51]
de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol., 2018, 100, 82-106.
[http://dx.doi.org/10.1016/j.molimm.2018.03.015] [PMID: 29731166]
[52]
Phiriyangkul, P.; Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P. Effect of food thermal processing on allergenicity proteins in Bombay locust (Patanga succincta). Int. J. Food Eng., 2015, 1, 23-28.
[53]
Chuang, J.G.; Su, S.N.; Chiang, B.L.; Lee, H.J.; Chow, L.P. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics, 2010, 10(21), 3854-3867.
[http://dx.doi.org/10.1002/pmic.201000348] [PMID: 20960453]
[54]
Sookrung, N.; Chaicumpa, W.; Tungtrongchitr, A.; Vichyanond, P.; Bunnag, C.; Ramasoota, P.; Tongtawe, P.; Sakolvaree, Y.; Tapchaisri, P. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ. Health Perspect., 2006, 114(6), 875-880.
[http://dx.doi.org/10.1289/ehp.8650] [PMID: 16759988]
[55]
Sookrung, N. Wong-din-Dam, S.; Tungtrongchitr, A.; Reamtong, O.; Indrawattana, N.; Sakolvaree, Y.; Visitsunthorn, N.; Manuyakorn, W.; Chaicumpa, W. Proteome and Allergome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components. J. Proteome Res., 2014, 13, 1336-1344.
[http://dx.doi.org/10.1021/pr4009139] [PMID: 24437991]
[56]
dos Santos, L.D.; Santos, K.S.; Pinto, J.R.; Dias, N.B.; de Souza, B.M.; dos Santos, M.F.; Perales, J.; Domont, G.B.; Castro, F.M.; Kalil, J.E.; Palma, M.S. Profiling the proteome of the venom from the social wasp Polybia paulista: a clue to understand the envenoming mechanism. J. Proteome Res., 2010, 9(8), 3867-3877.
[http://dx.doi.org/10.1021/pr1000829] [PMID: 20540563]
[57]
Cantillo, J.F.; Fernández-Caldas, E.; Puerta, L. Immunological aspects of the immune response induced by mosquito allergens. Int. Arch. Allergy Immunol., 2014, 165(4), 271-282.
[http://dx.doi.org/10.1159/000371349] [PMID: 25661054]
[58]
Jeong, K.Y.; Lee, J.; Lee, I.Y.; Ree, H.I.; Hong, C.S.; Yong, T.S. Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy, 2003, 58(10), 1059-1063.
[http://dx.doi.org/10.1034/j.1398-9995.2003.00167.x] [PMID: 14510726]
[59]
Asturias, J.A.; Gómez-Bayón, N.; Arilla, M.C.; Martínez, A.; Palacios, R.; Sánchez-Gascón, F.; Martínez, J. Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J. Immunol., 1999, 162(7), 4342-4348.
[PMID: 10201967]
[60]
Jeong, K.Y.; Yum, H.Y.; Lee, I.Y.; Ree, H.I.; Hong, C.S.; Kim, D.S.; Yong, T.S. Molecular cloning and characterization of tropomyosin, a major allergen of Chironomus kiiensis, a dominant species of nonbiting midges in Korea. Clin. Diagn. Lab. Immunol., 2004, 11(2), 320-324.
[PMID: 15013982]
[61]
Mattison, C.P.; Khurana, T.; Tarver, M.R.; Florane, C.B.; Grimm, C.C.; Pakala, S.B.; Cottone, C.B.; Riegel, C.; Bren-Mattison, Y.; Slater, J.E. Cross-reaction between formosan termite (Coptotermes formosanus) proteins and cockroach allergens. PLoS One, 2017, 12(8)e0182260
[http://dx.doi.org/10.1371/journal.pone.0182260] [PMID: 28767688]
[62]
Barletta, B.; Butteroni, C.; Puggioni, E.M.; Iacovacci, P.; Afferni, C.; Tinghino, R.; Ariano, R.; Panzani, R.C.; Pini, C.; Di Felice, G. Immunological characterization of a recombinant tropomyosin from a new indoor source, Lepisma saccharina. Clin. Exp. Allergy, 2005, 35(4), 483-489.
[http://dx.doi.org/10.1111/j.1365-2222.2005.02214.x] [PMID: 15836758]
[63]
Martínez, A.; Martínez, J.; Palacios, R.; Panzani, R. Importance of tropomyosin in the allergy to household arthropods. Cross-reactivity with other invertebrate extracts. Allergol. Immunopathol. (Madr.), 1997, 25(3), 118-126.
[PMID: 9208048]
[64]
Jeong, K.Y.; Hwang, H.; Lee, J.; Lee, I.Y.; Kim, D.S.; Hong, C.S.; Ree, H.I.; Yong, T.S. Allergenic characterization of tropomyosin from the dusky brown cockroach, Periplaneta fuliginosa. Clin. Diagn. Lab. Immunol., 2004, 11(4), 680-685.
[PMID: 15242941]
[65]
Jeong, K.Y.; Kim, C.R.; Park, J.; Han, I.S.; Park, J.W.; Yong, T.S. Identification of novel allergenic components from German cockroach fecal extract by a proteomic approach. Int. Arch. Allergy Immunol., 2013, 161(4), 315-324.
[http://dx.doi.org/10.1159/000347034] [PMID: 23689614]
[66]
Fang, Y.; Long, C.; Bai, X.; Liu, W.; Rong, M.; Lai, R.; An, S. Two new types of allergens from the cockroach, Periplaneta americana. Allergy, 2015, 70(12), 1674-1678.
[http://dx.doi.org/10.1111/all.12766] [PMID: 26361742]
[67]
Khurana, T.; Collison, M.; Chew, F.T.; Slater, J.E. Bla g 3: a novel allergen of German cockroach identified using cockroach-specific avian single-chain variable fragment antibody. Ann. Allergy Asthma Immunol., 2014, 112(2), 140-145.e1.
[http://dx.doi.org/10.1016/j.anai.2013.11.007] [PMID: 24468254]
[68]
Wu, C.H.; Lee, M.F.; Wang, N.M.; Luo, S.F. Sequencing and immunochemical characterization of the American cockroach Per a 3 (Cr-PI) isoallergenic variants. Mol. Immunol., 1997, 34(1), 1-8.
[http://dx.doi.org/10.1016/S0161-5890(97)00009-6] [PMID: 9182871]
[69]
Ock, M.S.; Kim, B.J.; Kim, S.M.; Byun, K.H. Cloning and expression of trypsin-encoding cDNA from Blattella germanica and its possibility as an allergen. Korean J. Parasitol., 2005, 43(3), 101-110.
[http://dx.doi.org/10.3347/kjp.2005.43.3.101] [PMID: 16192751]
[70]
Sudha, V.T.; Arora, N.; Gaur, S.N.; Pasha, S.; Singh, B.P. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy, 2008, 63(6), 768-776.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01602.x] [PMID: 18445191]
[71]
Blank, S.; Bilò, M.B.; Ollert, M. Component-resolved diagnostics to direct in venom immunotherapy: Important steps towards precision medicine. Clin. Exp. Allergy, 2018, 48(4), 354-364.
[http://dx.doi.org/10.1111/cea.13090] [PMID: 29331065]
[72]
Ji, K.; Chen, J.; Li, M.; Liu, Z.; Wang, C.; Zhan, Z.; Wu, X.; Xia, Q. Anaphylactic shock and lethal anaphylaxis caused by food consumption in China. Trends Food Sci. Technol., 2009, 20, 227-231.
[http://dx.doi.org/10.1016/j.tifs.2009.02.004]
[73]
Piatt, J.D. Case report: Urticaria following intentional ingestion of cicadas. Am. Fam. Physician, 2005, 71(11), 2048-2050, 2050.
[PMID: 15952432]
[74]
Kung, S.J.; Fenemore, B.; Potter, P.C. Anaphylaxis to Mopane worms (Imbrasia belina). Ann. Allergy Asthma Immunol., 2011, 106(6), 538-540.
[http://dx.doi.org/10.1016/j.anai.2011.02.003] [PMID: 21624756]
[75]
Inal, A.; Altintaş, D.U.; Güvenmez, H.K.; Yilmaz, M.; Kendirli, S.G. Life-threatening facial edema due to pine caterpillar mimicking an allergic event. Allergol. Immunopathol. (Madr.), 2006, 34(4), 171-173.
[http://dx.doi.org/10.1157/13091043] [PMID: 16854350]
[76]
Yew, K.L.; Kok, V.S. Exotic food anaphylaxis and the broken heart: sago worm and takotsubo cardiomyopathy. Med. J. Malaysia, 2012, 67(5), 540-541.
[PMID: 23770880]
[77]
De Pasquale, T.; Buonomo, A.; Illuminati, I.; D’Alò, S.; Pucci, S. Recurrent anaphylaxis: a case of IgE-mediated allergy to carmine red (E120). J. Investig. Allergol. Clin. Immunol., 2015, 25(6), 440-441.
[PMID: 26817142]
[78]
Patel, S.; Meher, B.R. A review on emerging frontiers of house dust mite and cockroach allergy research. Allergol. Immunopathol. (Madr.), 2016, 44(6), 580-593.
[http://dx.doi.org/10.1016/j.aller.2015.11.001] [PMID: 26994963]
[79]
Pomés, A.; Mueller, G.A.; Randall, T.A.; Chapman, M.D.; Arruda, L.K. New insights into cockroach allergens. Curr. Allergy Asthma Rep., 2017, 17(4), 25.
[http://dx.doi.org/10.1007/s11882-017-0694-1] [PMID: 28421512]
[80]
Bannon, G.A. What makes a food protein an allergen? Curr. Allergy Asthma Rep., 2004, 4(1), 43-46.
[http://dx.doi.org/10.1007/s11882-004-0042-0] [PMID: 14680621]
[81]
Scheurer, S.; Toda, M.; Vieths, S. What makes an allergen? Clin. Exp. Allergy, 2015, 45(7), 1150-1161.
[http://dx.doi.org/10.1111/cea.12571] [PMID: 25989479]
[82]
Woodfolk, J.A.; Commins, S.P.; Schuyler, A.J.; Erwin, E.A.; Platts-Mills, T.A. Allergens, sources, particles, and molecules: Why do we make IgE responses? Allergol. Int., 2015, 64(4), 295-303.
[http://dx.doi.org/10.1016/j.alit.2015.06.001] [PMID: 26433525]
[83]
Jeong, K.Y. Physical and biochemical characteristics of allergens. Allergy Asthma Respir. Dis., 2016, 4, 1-10.
[http://dx.doi.org/10.4168/aard.2016.4.3.157]
[84]
Valenta, R.; Lidholm, J.; Niederberger, V.; Hayek, B.; Kraft, D.; Grönlund, H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin. Exp. Allergy, 1999, 29(7), 896-904.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00653.x] [PMID: 10383589]
[85]
Tscheppe, A.; Breiteneder, H. Recombinant allergens in structural biology, diagnosis, and immunotherapy. Int. Arch. Allergy Immunol., 2017, 172(4), 187-202.
[http://dx.doi.org/10.1159/000464104] [PMID: 28467993]
[86]
Curin, M.; Khaitov, M.; Karaulov, A.; Namazova-Baranova, L.; Campana, R.; Garib, V.; Valenta, R. Next-generation of allergen-specific immunotherapies: molecular approaches. Curr. Allergy Asthma Rep., 2018, 18(7), 39.
[http://dx.doi.org/10.1007/s11882-018-0790-x] [PMID: 29886521]
[87]
San Miguel-Rodríguez, A.; Armentia, A.; Martín-Armentia, S.; Martín-Armentia, B.; Corell, A.; Lozano-Estevan, M.C.; Iglesias Peinado, I. Component-resolved diagnosis in allergic disease: Utility and limitations. Clin. Chim. Acta, 2019, 489, 219-224.
[http://dx.doi.org/10.1016/j.cca.2018.08.004] [PMID: 30096318]
[88]
Valenta, R.; Karaulov, A.; Niederberger, V.; Zhernov, Y.; Elisyutina, O.; Campana, R.; Focke-Tejkl, M.; Curin, M.; Namazova-Baranova, L.; Wang, J.Y.; Pawankar, R.; Khaitov, M. Allergen extracts for in vivo diagnosis and treatment of allergy: Is there a future? J. Allergy Clin. Immunol. Pract., 2018, 6(6), 1845-1855.e2.
[http://dx.doi.org/10.1016/j.jaip.2018.08.032] [PMID: 30297269]
[89]
Sato, S.; Yanagida, N.; Ebisawa, M. How to diagnose food allergy. Curr. Opin. Allergy Clin. Immunol., 2018, 18(3), 214-221.
[http://dx.doi.org/10.1097/ACI.0000000000000441] [PMID: 29601353]
[90]
Aalberse, R.C.; Akkerdaas, J.; van Ree, R. Cross-reactivity of IgE antibodies to allergens. Allergy, 2001, 56(6), 478-490.
[http://dx.doi.org/10.1034/j.1398-9995.2001.056006478.x] [PMID: 11421891]
[91]
Huang, C.H.; Liew, L.M.; Mah, K.W.; Kuo, I.C.; Lee, B.W.; Chua, K.Y. Characterization of glutathione S-transferase from dust mite, Der p 8 and its immunoglobulin E cross-reactivity with cockroach glutathione S-transferase. Clin. Exp. Allergy, 2006, 36(3), 369-376.
[http://dx.doi.org/10.1111/j.1365-2222.2006.02447.x] [PMID: 16499649]
[92]
Jeong, K.Y.; Jeong, K.J.; Yi, M.H.; Lee, H.; Hong, C.S.; Yong, T.S. Allergenicity of sigma and delta class glutathione S-transferases from the German cockroach. Int. Arch. Allergy Immunol., 2009, 148(1), 59-64.
[http://dx.doi.org/10.1159/000151506] [PMID: 18716404]
[93]
Acevedo, N.; Caraballo, L. IgE cross-reactivity between Ascaris lumbricoides and mite allergens: possible influences on allergic sensitization and asthma. Parasite Immunol., 2011, 33(6), 309-321.
[http://dx.doi.org/10.1111/j.1365-3024.2011.01288.x] [PMID: 21388422]
[94]
Verhoeckx, K.C.M.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N.; Wichers, H.; Kimber, I. Food processing and allergenicity. Food Chem. Toxicol., 2015, 80, 223-240.
[http://dx.doi.org/10.1016/j.fct.2015.03.005] [PMID: 25778347]
[95]
Pali-Schöll, I.; Untersmayr, E.; Klems, M.; Jensen-Jarolim, E. The effect of digestion and digestibility on allergenicity of food. Nutrients, 2018, 10(9)E1129
[http://dx.doi.org/10.3390/nu10091129] [PMID: 30134536]
[96]
Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol., 2013, 60, 10-37.
[http://dx.doi.org/10.1016/j.fct.2013.06.052] [PMID: 23867544]
[97]
Teodorowicz, M.; van Neerven, J.; Savelkoul, H. Food processing: the influence of the Mailard reaction on immunogenicity and allergenicity of food proteins. Nutrients, 2017, 9(8)E835
[http://dx.doi.org/10.3390/nu9080835] [PMID: 28777346]
[98]
Fang, L.; Li, G.; Gu, R.; Cai, M.; Lu, J. Influence of thermal treatment on the characteristics of major oyster allergen Cra g 1 (tropomyosin). J. Sci. Food Agric., 2018, 98(14), 5322-5328.
[http://dx.doi.org/10.1002/jsfa.9071] [PMID: 29656413]
[99]
Han, X.Y.; Yang, H.; Rao, S.T.; Liu, G.Y.; Hu, M.J.; Zeng, B.C.; Cao, M.J.; Liu, G.M. Zeng. B.C.; Cao, M.J.; Liu, GM. The Maillard reaction reduced the sensitization of tropomyosin and arginine kinase from Scylla paramamosain, simultaneously. J. Agric. Food Chem., 2018, 66(11), 2934-2943.
[http://dx.doi.org/10.1021/acs.jafc.7b05195] [PMID: 29499608]
[100]
Fu, L.; Wang, C.; Wang, J.; Ni, S.; Wang, Y. Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes. Food Chem., 2019, 274, 789-795.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.068] [PMID: 30373009]
[101]
van Ree, R. Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int. Arch. Allergy Immunol., 2002, 129(3), 189-197.
[http://dx.doi.org/10.1159/000066770] [PMID: 12444315]
[102]
Altmann, F. The role of protein glycosylation in allergy. Int. Arch. Allergy Immunol., 2007, 142(2), 99-115.
[http://dx.doi.org/10.1159/000096114] [PMID: 17033195]
[103]
Machado, Y.; Freier, R.; Scheiblhofer, S.; Thalhamer, T.; Mayr, M.; Briza, P.; Grutsch, S.; Ahammer, L.; Fuchs, J.E.; Wallnoefer, H.G.; Isakovic, A.; Kohlbauer, V.; Hinterholzer, A.; Steiner, M.; Danzer, M.; Horejs-Hoeck, J.; Ferreira, F.; Liedl, K.R.; Tollinger, M.; Lackner, P.; Johnson, C.M.; Brandstetter, H.; Thalhamer, J.; Weiss, R. Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen. J. Allergy Clin. Immunol., 2016, 137(5), 1525-1534.
[http://dx.doi.org/10.1016/j.jaci.2015.09.026] [PMID: 26559323]
[104]
Jappe, U.; Schwager, C.; Schromm, A.B.; González Roldán, N.; Stein, K.; Heine, H.; Duda, K.A. Lipophilic allergens, different modes of allergen-lipid interaction and their impact on asthma and allergy. Front. Immunol., 2019, 10, 122.
[http://dx.doi.org/10.3389/fimmu.2019.00122] [PMID: 30837983]
[105]
Brinchmann, B.C.; Bayat, M.; Brøgger, T.; Muttuvelu, D.V.; Tjønneland, A.; Sigsgaard, T. A possible role of chitin in the pathogenesis of asthma and allergy. Ann. Agric. Environ. Med., 2011, 18(1), 7-12.
[PMID: 21736263]
[106]
Patel, S.; Goyal, A. Chitin and chitinase: Role in pathogenicity, allergenicity and health. Int. J. Biol. Macromol., 2017, 97, 331-338.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.042] [PMID: 28093332]
[107]
Kim, S.A.; Kim, K.M.; Oh, B.J. Current status and perspective of the insect industry in Korea. Entomol. Res., 2008, 38, S79-S85.
[http://dx.doi.org/10.1111/j.1748-5967.2008.00178.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy