Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Carbon Nitride Nanosheet and Myoglobin Modified Electrode for Electrochemical Sensing Investigations

Author(s): Ying Deng, Zuorui Wen, Guiling Luo, Hui Xie, Juan Liu, Yaru Xi, Guangjiu Li and Wei Sun*

Volume 16, Issue 6, 2020

Page: [703 - 710] Pages: 8

DOI: 10.2174/1573411015666190710223818

Price: $65

Abstract

Background: Carbon-based nanomaterials, especially carbon nitride (C3N4) has attracted tremendous interest in biosensor applications. Meanwhile, the mechanism of redox protein sensing and related electrocatalytic reactions can provide a valid basis for understanding the process of biological redox reaction.

Objective: The aim of this paper is to construct a new electrochemical enzyme sensor to achieve direct electron transfer of myoglobin (Mb) on CILE surface and display electrocatalytic reduction activity to catalyze trichloroacetic acid (TCA) and H2O2.

Methods: The working electrode was fabricated based on ionic liquid modified Carbon Paste Electrode (CILE) and C3N4 nanosheets were modified on the CILE surface, then Mb solution was fixed on C3N4/CILE surface and immobilized by using Nafion film. The as-prepared biosensor displayed satisfactory electrocatalytic ability towards the reduction of TCA and H2O2 in an optimum pH 7.0 buffer solution.

Results: The results indicated that C3N4 modified electrode retained the activity of the enzyme and displayed quasi-reversible redox behavior in an optimum pH 7.0 buffer solution. The electrochemical parameters of the immobilized Mb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.27, the charge transfer coefficient (α) as 0.53 and the electrontransfer rate constant (ks) as 3.32 s-1, respectively. The Nafion/Mb/C3N4/CILE displayed outstanding electrocatalytic reduction activity to catalyze trichloroacetic acid and H2O2.

Conclusion: The Nafion/Mb/C3N4/CILE displayed outstanding electrocatalytic reduction, which demonstrated the promising applications of C3N4 nanosheet in the field electrochemical biosensing.

Keywords: C3N4 nanosheet, direct electrochemistry, electrocatalytic behavior, H2O2, myoglobin, trichloroacetic acid.

Graphical Abstract
[1]
Meyyappan, M. Nanobiosensors for neurochemical monitoring. Nano Converg., 2015, 2, 18.
[2]
Xu, H.; Yan, J.; Xu, Y.; Song, Y.H.; Li, H.M.; Xia, J.X.; Huang, C.J.; Wan, H.L. Novel visible-light-driven AgX/graphite-like C3N4, (X =Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B, 2013, 129, 182-193.
[http://dx.doi.org/10.1016/j.apcatb.2012.08.015]
[3]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1), 76-80.
[http://dx.doi.org/10.1038/nmat2317] [PMID: 18997776]
[4]
Liu, S.; Dong, Y.; Wang, Z.; Huang, H.W. Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 19657-19661.
[http://dx.doi.org/10.1039/C5TA05776K]
[5]
Chen, L.; Zeng, X.; Si, P.; Chen, Y.; Chi, Y.; Kim, D.H.; Chen, G.; Chi, Y.W.; Kim, D.H.; Chen, G.N. Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal. Chem., 2014, 86(9), 4188-4195.
[http://dx.doi.org/10.1021/ac403635f] [PMID: 24707951]
[6]
Xu, L.; Xia, J.; Xu, H.; Sheng, Y.; Wang, K.; Huang, L.Y.; Wang, L.G.; Li, H.M. Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance. J. Power Sources, 2014, 245, 866-874.
[http://dx.doi.org/10.1016/j.jpowsour.2013.07.014]
[7]
Ma, T.Y.; Tang, Y.; Dai, S.; Qiao, S.Z. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: An excellent metal-/label-free biosensing platform. Small, 2014, 10(12), 2382-2389.
[http://dx.doi.org/10.1002/smll.201303827] [PMID: 24596304]
[8]
Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano, 2016, 10(2), 2745-2751.
[http://dx.doi.org/10.1021/acsnano.5b07831] [PMID: 26766237]
[9]
Cheng, N.; Tian, J.; Liu, Q.; Ge, C.; Qusti, A.H.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces, 2013, 5(15), 6815-6819.
[http://dx.doi.org/10.1021/am401802r] [PMID: 23875941]
[10]
Zhang, X.L.; Zheng, C.; Guo, S.S. Juan, Li.; Yang, H.H.; Chen, G.N. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal. Chem., 2014, 86, 3426-3434.
[http://dx.doi.org/10.1021/ac500336f] [PMID: 24655132]
[11]
Xu, L.; Li, H.; Yan, P.; Xia, J.; Qiu, J.; Xu, Q.; Zhang, S.; Li, H.; Yuan, S. Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. J. Colloid Interface Sci., 2016, 483, 241-248.
[http://dx.doi.org/10.1016/j.jcis.2016.08.015] [PMID: 27552431]
[12]
Armstrong, F.A.; Hill, H.A.O.; Walton, N.J. Direct electrochemistry of redox proteins. Acc. Chem. Res., 1988, 21, 407-413.
[http://dx.doi.org/10.1021/ar00155a004]
[13]
Rusling, J.F. Enzyme bioelectrochemistry in cast biomembrane-like Films. Acc. Chem. Res., 1998, 31, 363-369.
[http://dx.doi.org/10.1021/ar970254y]
[14]
Heller, A. Electrical wiring of redox enzymes. Acc. Chem. Res., 1990, 23, 128-134.
[http://dx.doi.org/10.1021/ar00173a002]
[15]
Bianco, P. Protein modified- and membrane electrodes: Strategies for the development of biomolecular sensors. J. Biotechnol., 2002, 82(4), 393-409.
[PMID: 11996218]
[16]
Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir, 2010, 26(3), 1936-1939.
[http://dx.doi.org/10.1021/la902496u] [PMID: 19694425]
[17]
Yoon, J.; Lee, T.; Bapurao, G. B.; Jo, J.; Oh, B.K.; Choi, J.W. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens. Bioelectron., 2017, 93, 14-20.
[http://dx.doi.org/10.1016/j.bios.2016.11.064] [PMID: 27955988]
[18]
Chae, S.H.; Lee, Y.H. Carbon nanotubes and graphene towards soft electronics. Nano Converg., 2014, 1(1), 15.
[http://dx.doi.org/10.1186/s40580-014-0015-5] [PMID: 28936384]
[19]
Qiu, H.J.; Guan, Y.; Luo, P.; Wang, Y. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron., 2017, 89(Pt 1), 85-95.
[http://dx.doi.org/10.1016/j.bios.2015.12.029] [PMID: 26711357]
[20]
Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem., 2011, 656, 2-16.
[http://dx.doi.org/10.1016/j.jelechem.2011.01.008]
[21]
Li, G.N.; Li, T.T.; Deng, Y.; Shi, F.; Sun, W.; Sun, J. Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor. J. Solid State Electrochem., 2013, 17, 2333-2340.
[http://dx.doi.org/10.1007/s10008-013-2098-z]
[22]
Shi, F.; Xi, J.; Hou, F.; Han, L.; Li, G.; Gong, S.; Chen, C.; Sun, W. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin. Mater. Sci. Eng. C, 2016, 58, 450-457.
[http://dx.doi.org/10.1016/j.msec.2015.08.049] [PMID: 26478332]
[23]
Chen, W.; Weng, W.J.; Niu, X.L.; Li, X.Y.; Men, Y.L.; Sun, W. Boron-doped graphene quantum dots modified electrode for electrochemistry and electrocatalysis of hemoglobin. J. Electroanal. Chem., 2018, 823, 137-145.
[http://dx.doi.org/10.1016/j.jelechem.2018.06.001]
[24]
Li, X.Y.; Niu, X.L.; Zhao, W.S.; Chen, W.; Yin, C.X.; Men, Y.L.; Li, G.J.; Sun, W. Black phosphorene and PEDOT:PSS-modified electrode for electrochemistry of hemoglobin. Electrochem. Commun., 2018, 86, 68-71.
[http://dx.doi.org/10.1016/j.elecom.2017.11.017]
[25]
Chen, W.; Niu, X.; Li, X.; Li, X.; Li, G.; He, B.; Li, Q.; Sun, W. Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode. Mater. Sci. Eng. C, 2017, 80, 135-140.
[http://dx.doi.org/10.1016/j.msec.2017.05.129] [PMID: 28866148]
[26]
Pleskov, Y.V.; Sakharova, A.Y.; Krotova, M.D.; Bouilov, L.L.; Spitsyn, B.P. Voltammetry on fractals. J. Electroanal. Chem., 1987, 228,, 19-27..
[27]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980..
[28]
Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Electroanal. Chem., 1974, 52, 355-393.
[http://dx.doi.org/10.1016/S0022-0728(74)80448-1]
[29]
Li, X.Q.; Zhao, R.J.; Wang, Y.; Sun, X.Y.; Sun, W.; Zhao, C.Z.; Jiao, K. An electrochemical biosensor based on Nafion-ionic liquid and a myoglobin-modified carbon paste electrode. Electrochim. Acta, 2010, 55, 2173-2178.
[http://dx.doi.org/10.1016/j.electacta.2009.11.052]
[30]
Liu, C.Y.; Hu, J.M. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens. Bioelectron., 2009, 24(7), 2149-2154.
[http://dx.doi.org/10.1016/j.bios.2008.11.007] [PMID: 19109005]
[31]
Zhao, X.J.; Mai, Z.B.; Kang, X.H.; Dai, Z.; Zou, X.Y. Clay-chitosan-gold nanoparticle nanohybrid: preparation and application for assembly and direct electrochemistry of myoglobin. Electrochim. Acta, 2008, 53, 4732-4739.
[http://dx.doi.org/10.1016/j.electacta.2008.02.007]
[32]
Ke, Y. Zeng, Yan.; Pu, X.L.; Wu, X.; Li, L.F.; Zhu, Z.H.; and Yu, Y.; Electrochemistry and electrocatalysis of myoglobin on carbon coated Fe3O4 nanospindle modified carbon ionic liquid electrode. RSC Advances, 2012, 2, 5676-5682.
[http://dx.doi.org/10.1039/c2ra20362f]
[33]
Kamin, R.A.; Wilson, G.S. Rotating ring-disk enzyme electrode for biocatalysis kineticstudies and characterization of the immobilized enzyme layer. Anal. Chem., 1980, 52, 1198-1205.
[http://dx.doi.org/10.1021/ac50058a010]
[34]
Panieri, E.; Gogvadze, V.; Norberg, E.; Venkatesh, R.; Orrenius, S.; Zhivotovsky, B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic. Biol. Med.,, 2013,, 57,, 176-187..
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.12.024] [PMID: 23295411]
[35]
Rapson, T.D.; Church, J.S.; Trueman, H.E.; Dacres, H.; Sutherland, T.D.; Trowell, S.C. Micromolar biosensing of nitric oxide using myoglobin immobilized in a synthetic silk film. Biosens. Bioelectron., 2014, 62, 214-220.
[http://dx.doi.org/10.1016/j.bios.2014.06.045] [PMID: 25014754]
[36]
Sun, W.; Li, L.; Lei, B.; Li, T.; Ju, X.; Wang, X.; Li, G.; Sun, Z. Fabrication of graphene-platinum nanocomposite for the direct electrochemistry and electrocatalysis of myoglobin. Mater. Sci. Eng. C, 2013, 33(4), 1907-1913.
[http://dx.doi.org/10.1016/j.msec.2012.12.077] [PMID: 23498212]
[37]
Chen, X.Q.; Yan, H.Q.; Shi, Z.F.; Feng, Y.H.; Li, J.C.; Lin, Q.; Wang, X.H.; Sun, W. A novel biosensor based on electro-co-deposition of sodium alginate-Fe3O4-graphene composite on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin. Polym. Bull., 2017, 74, 75-90.
[http://dx.doi.org/10.1007/s00289-016-1698-z]
[38]
Sun, W.; Wang, D.D.; Li, G.C.; Zhai, Z.Q.; Zhao, R.J.; Jiao, K. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode. Electrochim. Acta, 2008, 53, 8217-8221.
[http://dx.doi.org/10.1016/j.electacta.2008.06.021]
[39]
Sun, W.; Zhai, Z.Q.; Jiao, K. Hemoglobin modified carbon paste electrode: direct electrochemistry and electrocatalysis. Anal. Lett., 2008, 41, 2819-2831.
[http://dx.doi.org/10.1080/00032710802421640]
[40]
Li, Y.; Li, Y.; Yang, Y. Direct electrochemistry and electrocatalysis of myoglobin-based nanocomposite membrane electrode. Bioelectrochemistry,, 2011, 82(2), 112-116..
[http://dx.doi.org/10.1016/j.bioelechem.2011.06.004] [PMID: 21745763]
[41]
Qiu, J.D.; Cui, S.G.; Liang, R.P. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubes by a hydrothermal synthetic method. Microchimi. Acta.,, 2010,, 171,, 333-339..
[42]
Zhou,, Y.Z.; Wang, H; Dong, S.Y.; Tian,, A.X.; He, Z.X.; Chen, B. Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode. Chin. Chem. Lett., 2011, 22, 465-468.
[http://dx.doi.org/10.1016/j.cclet.2010.11.012]
[43]
Shen, Q.; Zhou, S.; Zhao, X.; Jiang, L.P.; Hou, W.; Zhu, J.J. Anatase TiO2 nanoparticle-graphene nanocomposites: One-step preparation and their enhanced direct electrochemistry of hemoglobin. Anal. Methods, 2012, 4, 619-622..
[http://dx.doi.org/10.1039/c2ay05781f]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy