Effects of Sonication Time on the Stability and Viscosity of Functionalized MWCNT-Based Nanolubricants

Author(s): Ahmet Selim Dalkilic*, Bedri Onur Küçükyıldırım, Ayşegül Akdoğan Eker, Faruk Yıldız, Altuğ Akpinar, Chaiwat Jumpholkul, Somchai Wongwises

Journal Name: Current Nanoscience

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Active scholars in the nanofluid field have continuously attempted to remove the associated challenge of the stability of nanofluids via various approaches, such as functionalization and adding a surfactant. After preparing a stable nanofluid, one must measure the properties, as this is vital in the design of thermal systems.

Objective: Authors aimed to investigate the stability and viscosity of refrigeration lubrication oilbased nanofluids containing functionalized MWCNTs. The effects of concentration and temperature on viscosity were studied. Furthermore, the present study focused on the effect of sonication time on the stability and viscosity of the prepared samples.

Methods: After the preparation of chemically functionalized MWCNTs, solutions were dispersed with an ultrasonic homogenizer for 2, 4 and 8 hours sonication at maximum power. Viscosity measurements for all samples were made 10 minutes after sonication by adjusting the proper spinning velocity using a digital rotary viscometer.

Results: The first part deals with the stability of the nanofluid as a nanolubricant, and the second one investigates the viscosity of the nanofluid and the effects of various parameters on it. The last one is related to the validation of the measured viscosity values by means of well-known empirical correlations. The measured data are given for validation issues.

Conclusion: The samples will have higher stability by increasing the time of sonication. The viscosity of a nanofluid does not change with the increase of sonication time to two hours and higher. Up to mass concentration of 0.1%, the effective viscosity increases with adding nanotubes linearly.

Keywords: Sonication time, nanofluid, nanolubricant, viscosity, stability, lubrication, MWCNT.

Prasad, A.R.; Singh, D.S.; Nagar, D.H. A review on nanofluids: Properties and applications. Int. J. Adv. Res. Innov. Ideas. Educ., 2017, 3(3), 3185-3209.
Wong, K.V.; De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng., 2010, 2, 519659
Yu, W.; Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater., 2012, 2012, 435873
Bowers, J.; Cao, H.; Qiao, G.; Li, Q.; Zhang, G.; Mura, E.; Ding, Y. Flow and heat transfer behaviour of nanofluids in microchannels. Prog. Nat. Sci-Mater., 2018, 28(2), 225-234.
Shamshirgaran, S.R.; Assadi, M.K.; Al-Kayiem, H.H.; Sharma, K.V. Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector. MATEC Web Conf, 2017, 131, p. 01003.
Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett., 2015, 10(1), 358.
[http://dx.doi.org/10.1186/s11671-015-1056-3] [PMID: 26377211]
Prapainop, R.; Suen, K.O. Effects of refrigerant properties on refrigerant performance comparison: A review. Int. J. Eng. Res. Appl., 2012, 2(4), 486-493.
Minami, I. Molecular science of lubricant additives. Appl. Sci. (Basel), 2017, 7(5), 445.
Lebreton, J-M.; Vuillame, L. Oil concentration measurement in saturated liquid refrigerant flowing inside a refrigeration machine. Int. J. Appl. Thermodyan., 2001, 4, 53-60.
Nadler, M.; Werner, J.; Mahrholz, T.; Riedel, U.; Hufenbach, W. Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos., Part A Appl. Sci. Manuf., 2009, 40(6-7), 932-937.
Su, F.; Ma, X.; Lan, Z. The effect of carbon nanotubes on the physical properties of a binary nanofluid. J. Taiwan Inst. Chem. Eng., 2011, 42(2), 252-257.
Abbasi, S.M.; Rashidi, A.; Nemati, A.; Arzani, K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int., 2013, 39(4), 3885-3891.
Ghadimi, A.; Metselaar, I.H. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp. Therm. Fluid Sci., 2013, 51, 1-9.
Mondragón, R.; Segarra, C.; Martínez-Cuenca, R.; Juliá, J.E.; Jarque, J.C. Experimental characterization and modeling of thermophysical properties of nanofluids at high temperature conditions for heat transfer applications. Powder Technol., 2013, 249, 516-529.
Zhang, P.; Hong, W.; Wu, J.F.; Liu, G.Z.; Xiao, J.; Chen, Z.B.; Cheng, H.B. Effects of surface modificationon the suspension stability and thermal conductivity of carbon nanotubes nanofluids. Energy Procedia, 2015, 69, 699-705.
Farbod, M.; Ahangarpour, A.; Etemad, S.G. Stability and thermal conductivity of water-based carbon nanotube nanofluids. Particuology, 2015, 22, 59-65.
Mahbubul, I.M.; Saidur, R.; Hepbasli, A.; Amalina, M.A. Experimental investigation of the relation between yield stress and ultrasonication period of nanofluid. Int. J. Heat Mass Transf., 2016, 93, 1169-1174.
İlhan, B.; Kurt, M.; Ertürk, H. Experimental investigation of heat transfer enhancement and viscosity change of HBN nanofluids. Exp. Therm. Fluid Sci., 2016, 77, 272-283.
Corcione, M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage., 2011, 52(1), 789-793.
Manasrah, A.D.; Laoui, T.; Zaidi, S.J.; Atieh, M.A. Effect of PEG functionalized carbon nanotubes on the enhancement of thermal and physical properties of nanofluids. Exp. Therm. Fluid Sci., 2017, 84, 231-241.
Iranmanesh, S.; Mehrali, M.; Sadeghinezhad, E.; Ang, B.C.; Ong, H.C.; Esmaeilzadeh, A. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental-statistical approach using respond surface methodology method. Int. Commun. Heat Mass Transf., 2016, 79, 74-80.
Alirezaie, A.; Saedodin, S.; Esfe, M.H.; Rostamian, S.H. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-engine oil hybrid nanofluids and modelling the results with artificial neural networks. J. Mol. Liq., 2017, 241, 173-181.
Ilyas, S.U.; Pendyala, R.; Narahari, M. Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf. A Physicochem. Eng. Asp., 2017, 527, 11-22.
Baig, Z.; Mamat, O.; Mustapha, M. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review. Crit. Rev. Solid State Mater. Sci., 2018, 43(1), 1-46.
Yang, D-Q.; Rochette, J-F.; Sacher, E. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication. J. Phys. Chem. B, 2005, 109(16), 7788-7794.
[http://dx.doi.org/10.1021/jp045147h] [PMID: 16851905]
Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys., 1952, 20(4), 571.
Batchelor, G.K. The effect of brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech., 1977, 83(01), 97-117.
Vand, V. Viscosity of solutions and suspensions; theory. J. Phys. Colloid Chem., 1948, 52(2), 277-299.
[http://dx.doi.org/10.1021/j150458a001] [PMID: 18906401]
Lundgren, T.S. Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech., 1972, 51(2), 273-299.
Hatschek, E. The general theory of viscosity of two-phase systems. J. Chem. Soc., Faraday Trans., 1913, 9, 80-92.
Thomas, C.U.; Muthukumar, M. Three‐body hydrodynamic effects on viscosity of suspensions of spheres. J. Chem. Phys., 1991, 94(7), 5180-5189.
Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluıids with submicron metallic oxıde particles. Exp. Heat Transf., 1998, 11(2), 151-170.
Godson, L.; Raja, B.; Lal, D.M.; Wongwises, S. Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp. Heat Transf., 2010, 23(4), 317-332.
Davalos, L.A.; Orozco, L.A.; Del Castillo, L.F. Hydrodynamic behavior of suspensions of polar particles. In: Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; Marcel Decker Inc., 2002; vol. 4, pp. 2375-2396.
Wang, X.; Xu, X.; Choi, S.U. Thermal conductivity of nanoparticle -fluid mixture. J. Thermophys. Heat Tr., 1999, 13(4), 474-480.
Duangthongsuk, W.; Wongwises, S. Measurement of temperaturedependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci., 2009, 33(4), 706-714.
Khanafer, K.; Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf., 2011, 54(19-20), 4410-4428.
Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Angue Mintsa, H. Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon. Int. J. Heat Fluid Flow, 2007, 28(6), 1492-1506.
Chen, H.; Ding, Y.; He, Y.; Tan, C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett., 2007, 444(4-6), 333-337.
Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A. Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Ind. Eng. Chem. Res., 2014, 53(16), 6677-6684.
Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H.J. Ultrasoundassisted swnts dispersion: Effects of sonication parameters and solvent properties. J. Phys. Chem. C, 2010, 114(19), 8821-8827.
Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Procedia Eng., 2013, 56, 310-315.
Mahbubul, I.M.; Shahrul, I.M.; Khaleduzzaman, S.S.; Saidur, R.; Amalina, M.A.; Turgut, A. Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. Int. J. Heat Mass Transf., 2015, 88, 73-81.
Štěpina, V.; Veselý, V. Lubricants and Special Fluids; Tribology series; Elsevier: Amsterdam, New York, 1992.
Rothfuss, N.E.; Petters, M.D. Influence of functional groups on the viscosity of organic aerosol. Environ. Sci. Technol., 2017, 51(1), 271-279.
[http://dx.doi.org/10.1021/acs.est.6b04478] [PMID: 27990815]
Silambarasan, D.; Vasu, V.; Iyakutti, K.; Surya, V.J.; Ravindran, T.R. Reversible hydrogen storage in functionalized single-walled carbon nanotubes. Physica E, 2014, 60, 75-79.
Ghavanloo, E.; Fazelzadeh, S.A. Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Physica E, 2011, 44(1), 17-24.
Shyu, F-L. Field-enhanced electronic specific heat of carbon nanotubes. Physica E, 2015, 67, 89-98.
Gao, N.; Fang, X. Synthesis and development of graphene–ınorganic semiconductor nanocomposites. Chem. Rev., 2015, 115(16), 8294-8343.
[http://dx.doi.org/10.1021/cr400607y] [PMID: 26237085]
Das, S.; Hossain, M.J.; Leung, S-F.; Lenox, A.; Jung, Y.; Davis, K.; He, J-H.; Roy, T. A leaf-ınspired photon management scheme using optically tuned bilayer nanoparticles for ultra-thin and highly efficient photovoltaic devices. Nano Energy, 2019, 58, 47-56.
Tang, R.; Han, S.; Teng, F.; Hu, K.; Zhang, Z.; Hu, M.; Fang, X. Size-controlled graphene nanodot arrays/zno hybrids for high-performance uv photodetectors. Adv. Sci. (Weinh.), 2017, 5(1) 1700334
[http://dx.doi.org/10.1002/advs.201700334] [PMID: 29375965]
Lin, C-H.; Cheng, B.; Li, T-Y.; Retamal, J.R.D.; Wei, T-C.; Fu, H-C.; Fang, X.; He, J-H. Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano, 2019, 13(2), 1168-1176.
[PMID: 30588789]
Han, S.; Pu, Y-C.; Zheng, L.; Hu, L.; Zhang, J.Z.; Fang, X. Uniform carbon-coated Cds core-shell nanostructures: Synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(3), 1078-1086.
Zhang, Q.; Hai, Z.; Wang, J.; Jian, A.; Duan, Q.; Ji, J.; Zhang, W.; Sang, S. Synthesis and characterization of C-TiO2 nanomaterials via carbon assistance method. Curr. Nanosci., 2019, 15(3), 260-266.
Bajestan, E.E.; Mahian, O.; Dalkılıç, A.S.; Wongwises, S. Nanofluids: Synthesis, properties and applications, pool boiling heat transfer of nanofluids. Nova Science Publishers, New-York. 2014, 193-214.[ISBN: 978-1-63321-677-8]
Yiamsawasd, T.; Dalkilic, A.S.; Wongwises, S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim. Acta, 2012, 545, 48-56.
Dalkilic, A.S.; Wongwises, S. Measurement of specific heat of nanofluids. Curr. Nanosci., 2012, 8, 939-944.
Yiamsawas, T.; Mahian, O.; Dalkilic, A.S.; Kaewnai, S.; Wongwises, S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl. Energy, 2013, 111, 40-45.
Yiamsawas, T.; Dalkilic, A.S.; Mahian, O.; Wongwises, S. Measurement and correlation of the viscosity of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. J. Dispers. Sci. Technol., 2013, 34, 1697-1703.
Celen, A.; Cebi, A.; Aktas, M.; Mahian, O.; Dalkilic, A.S.; Wongwises, S. A review of nanorefrigerants: Flow characteristics and applications. Int. J. Refrig., 2014, 44, 125-140.
Bashirnezhad, K.; Bazri, S.; Safaei, M.R.; Goodarzi, M.; Dahari, M.; Mahian, O.; Dalkilic, A.S.; Wongwises, S. Viscosity of nanofluids: A review of recent experimental studies. Int. Commun. Heat Mass Transf., 2016, 73, 114-123.
Dalkilic, A.S.; Cebi, A.; Celen, A.; Yildiz, O.; Açıkgöz, Ö.; Jumpholkul, C.; Bayrak, M.; Surana, K.; Wongwises, S. Prediction of graphite nanofluids’ dynamic viscosity by means of artificial neural networks. Int. Commun. Heat Mass Transf., 2016, 73, 33-42.
Dalklılıç, A.S.; Küçükyıldırım, O.; Eker, A.; Cebi, A.; Tapan, S.; Jumpholkul, C.; Wongwises, S. Experimental investigation on the viscosity of Water-CNT and Antifreeze-CNT nanofluids. Int. Commun. Heat Mass Transf., 2017, 80, 47-59.
Dalkilic, A.S.; Mahian, O.; Kucukyildirim, B.O.; Eker, A.A.; Ozturk, T.H.; Jumpholkul, C.; Wongwises, S. Experimental study on the stability and viscosity for the blends of functionalized MWCNTS with refrigeration compressor oils. Curr. Nanosci., 2018, 14, 216-226.
Dalkılıç, A.S.; Açıkgöz, Ö.; Kucukyildirim, B.O.; Eker, A.A.; Lüleci, B.; Jumpholkul, C.; Nakkaew, S.; Wongwises, S. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int. Commun. Heat Mass Transf., 2018, 99, 18-25.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 20 August, 2020
Page: [639 - 654]
Pages: 16
DOI: 10.2174/1573413715666190710161617
Price: $65

Article Metrics

PDF: 17