Synthesis and Evaluation of Anticonvulsant Activities of 4-Phenylpiperidin- 2-one Derivatives

Author(s): Shi-Ben Wang*, Hui Liu, Guang-Yong Li, Kang Lei, Xiao-Jing Li, Zhe-Shan Quan, Xue-Kun Wang*

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Although Antiepileptic Drugs (AEDs) acting on various targets have been applied in the clinic, the efficacy and tolerance of AEDs in the treatment of epilepsy have not significantly improved. Therefore, there is an urgent need to develop some novel chemical moieties with a better safety profile and greater efficacy. We designed and synthesized twenty-seven 4- phenylpiperidin-2-one derivatives. This study aimed to investigate the potential use of a series of 4- phenylpiperidin-2-one derivatives as anticonvulsant drugs.

Methods: Two experimental methods, Maximal Electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ), were used to evaluate the anticonvulsant activity of the target compounds. Moreover, neurotoxicity (NT) was tested using the rotarod test.

Results: Compound 7-[4-(trifluoromethyl)phenyl]-6,7-dihydrothieno[3,2-b]pyridin-5-(4H)-one (11; MES, ED50 = 23.7 mg/kg, PI > 33.7; PTZ, ED50 = 78.1 mg/kg, PI > 10.0) showed the best anticonvulsant activity. The results of in vivo γ-aminobutyric Acid (GABA) estimation showed that compound 11 may have an effect on the GABA system. Compound 11 showed significant interactions with residues at the benzodiazepine (BZD)-binding site on GABAA receptors. Most target compounds have favorable blood brain barrier (BBB) permeability and oral bioavailability in predictions using silico molecular properties.

Conclusion: According to the in vivo and in silico studies, compound 11 stand out as potential anticonvulsant agents for further studies.

Keywords: Synthesis, anticonvulsant, MES, scPTZ, GABA, molecular docking studies.

[1]
Siddall, T.L.; Ouse, D.G.; Benko, Z.L.; Garvin, G.M.; Jackson, J.L.; McQuiston, J.M.; Ricks, M.J.; Thibault, T.D.; Turner, J.A.; Vanheertum, J.C.; Weimer, M.R. Synthesis and herbicidal activity of phenyl-substituted benzoylpyrazoles. Pest Manag. Sci., 2002, 58(12), 1175-1186.
[http://dx.doi.org/10.1002/ps.588] [PMID: 12476990]
[2]
Culbreath, A.K.; Brenneman, T.B.; Kemerait, R.C., Jr; Hammes, G.G. Effect of the new pyrazole carboxamide fungicide penthiopyrad on late leaf spot and stem rot of peanut. Pest Manag. Sci., 2009, 65(1), 66-73.
[http://dx.doi.org/10.1002/ps.1646] [PMID: 18785218]
[3]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D. Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]ben-ze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[4]
Guzman-Perez, A.; Wester, R.T.; Allen, M.C.; Brown, J.A.; Buchholz, A.R.; Cook, E.R.; Day, W.W.; Hamanaka, E.S.; Kennedy, S.P.; Knight, D.R.; Kowalczyk, P.J.; Marala, R.B.; Mularski, C.J.; Novomisle, W.A.; Ruggeri, R.B.; Tracey, W.R.; Hill, R.J. Discovery of zoniporide: a potent and selective sodium-hydrogen exchanger type 1 (NHE-1) inhibitor with high aqueous solubility. Bioorg. Med. Chem. Lett., 2001, 11(6), 803-807.
[http://dx.doi.org/10.1016/S0960-894X(01)00059-2] [PMID: 11277524]
[5]
Marala, R.B.; Brown, J.A.; Kong, J.X.; Tracey, W.R.; Knight, D.R.; Wester, R.T.; Sun, D.; Kennedy, S.P.; Hamanaka, E.S.; Ruggeri, R.B.; Hill, R.J. Zoniporide: a potent and highly selective inhibitor of human Na(+)/H(+) exchanger-1. Eur. J. Pharmacol., 2002, 451(1), 37-41.
[http://dx.doi.org/10.1016/S0014-2999(02)02193-3] [PMID: 12223226]
[6]
Anton, O.; Ernst, T.; Oskar, D.U.S. Patent No.1,898,431; U.S, Patent and Trademark Office 1933.
[7]
Malinowska, K.; Lorenz, I.P.; Sadowska, B.; Mucha, P. Metal Ion Complexes with Pyrazoles, Aziridines and Diaziridines - Synthesis and Biological Activity. Curr. Med. Chem., 2019, 26(4), 648-663.
[http://dx.doi.org/10.2174/0929867325666180221124447] [PMID: 29473492]
[8]
Porzelle, A.; Woodrow, M.D.; Tomkinson, N.C. Synthesis of benzoxazolones from nitroarenes or aryl halides. Org. Lett., 2010, 12(4), 812-815.
[http://dx.doi.org/10.1021/ol902885j] [PMID: 20092263]
[9]
Kees, K.L.; Fitzgerald, J.J., Jr; Steiner, K.E.; Mattes, J.F.; Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M.L. New potent antihyperglycemic agents in db/db mice: synthesis and structure-activity relationship studies of (4-substituted benzyl) (trifluoromethyl)pyrazoles and -pyrazolones. J. Med. Chem., 1996, 39(20), 3920-3928.
[http://dx.doi.org/10.1021/jm960444z] [PMID: 8831758]
[10]
Chuprun, S.S.; Kantin, G.; Krasavin, M. Synthesis and Medicinal Applications of N-Aryl-C-nitroazoles. Mini Rev. Med. Chem., 2018, 18(20), 1733-1752.
[http://dx.doi.org/10.2174/1389557518666180831101841] [PMID: 30173645]
[11]
Hassan, G.S.; Abdel Rahman, D.E.; Abdelmajeed, E.A.; Refaey, R.H.; Alaraby Salem, M.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052] [PMID: 30928706]
[12]
Li, Y.R.; Li, C.; Liu, J.C.; Guo, M.; Zhang, T.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5052-5057.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.028] [PMID: 26490095]
[13]
Bildirici, I.; Cetin, A.; Menges, N.; Alan, Y. Synthesis and SAR studies of pyrazole-3-carboxamides and-3-carbonyl thioureides including chiral moiety: Novel candidates as antibacterial agents. J. Serb. Chem. Soc., 2018, 83(7-8), 795-807.
[http://dx.doi.org/10.2298/JSC170313029B]
[14]
Saeed, S.; Rashid, N.; Jones, P.G.; Hussain, R.; Bhatti, M.H. Synthesis, spectroscopic characterization, crystal structure and antifungal activity of thiourea derivatives containing a thiazole moiety. Cent. Eur. J. Chem., 2010, 8(3), 550-558.
[15]
Anusionwu, C.G.; Aderibigbe, B.A.; Mbianda, X.Y. Hybrid Molecules Development: A Versatile Landscape for the Control of Antifungal Drug Resistance: A Review. Mini Rev. Med. Chem., 2019, 19(6), 450-464.
[http://dx.doi.org/10.2174/1389557519666181210162003] [PMID: 30526457]
[16]
Turkan, F.; Cetin, A.; Taslimi, P.; Gulçin, İ. Some pyrazoles derivatives: Potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Arch. Pharm. (Weinheim), 2018, 351(10)e1800200
[http://dx.doi.org/10.1002/ardp.201800200] [PMID: 30246264]
[17]
Cheng, L.; Zhao, W.; Shen, Z.H.; Xu, T.M.; Wu, H.K.; Peng, W.L.; Liu, X.H. Synthesis, Nematicidal Activity and Docking Study of Novel Pyrazole-4-Carboxamide Derivatives Against Meloidogyne incognita. Lett. Drug Des. Discov., 2019, 16(1), 29-35.
[http://dx.doi.org/10.2174/1570180815666180326150827]
[18]
Alferez, F.; Pozo, L.; Burns, J.K. Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. Physiol. Plant., 2006, 127, 66-73.
[http://dx.doi.org/10.1111/j.1399-3054.2006.00642.x]
[19]
Kumar, N.; Ebel, R.C. Oxidative metabolism in ‘Valencia’sweet orange [Citrus sinensis (L.) Osbeck] flavedo tissue treated with the abscission agent 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). J. Hortic. Sci. Biotechnol., 2015, 90(4), 413-418.
[http://dx.doi.org/10.1080/14620316.2015.11513203]
[20]
Barot, K.P.; Nikolova, S.; Ivanov, I.; Ghate, M.D. Antitubercular drug development: current status and research strategies. Mini Rev. Med. Chem., 2013, 13(11), 1664-1684.
[http://dx.doi.org/10.2174/13895575113139990076] [PMID: 23895192]
[21]
Radi, S.; Salhi, S.; Radi, A. Synthesis and preliminary biological activity of some new pyrazole derivatives as acyclonucleoside analogues. Lett. Drug Des. Discov., 2010, 7(1), 27-30.
[http://dx.doi.org/10.2174/157018010789869307]
[22]
Seibert, C.; Sakmar, T.P. Small-molecule antagonists of CCR5 and CXCR4: a promising new class of anti-HIV-1 drugs. Curr. Pharm. Des., 2004, 10(17), 2041-2062.
[http://dx.doi.org/10.2174/1381612043384312] [PMID: 15279544]
[23]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[24]
Kasımoğulları, R.; Arslan, B.S. Synthesis and characterization of some pyrazole derivatives of 1,5-diphenyl-1H-pyrazole-3,4-dicarboxylic acid. J. Het. Chem., 2010, 47(5), 1040-1048.
[http://dx.doi.org/10.1002/jhet.416]
[25]
Cetin, A.; Korkmaz, A.; Bildirici, I. A novel oligo-pyrazole-based thin film: synthesis, characterization, optical and morphological properties. Colloid Polym. Sci., 2018, 296(7), 1249-1257.
[http://dx.doi.org/10.1007/s00396-018-4342-7] [PMID: 29983478]
[26]
Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem., 2004, 12(8), 1935-1945.
[http://dx.doi.org/10.1016/j.bmc.2004.01.037] [PMID: 15051061]
[27]
Korkusuz, E.; Yildirim, I. Reactions of 4-benzoyl-1, 5-diphenyl-1H-pyrazole-3-carboxylic acid chloride with various hydroxylamines and carbazates. Turk. J. Chem., 2010, 34(6), 859-868.
[28]
Cetin, A.; Bildirici, İ. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. J Saud. Chem. Soc., 2018, 22(3), 279-296.
[29]
Abdel-Hafez, S.M.; Abuo-Rahma, Gel-D.; Abdel-Aziz, M.; Radwan, M.F.; Farag, H.H. Design, synthesis and biological investigation of certain pyrazole-3-carboxylic acid derivatives as novel carriers for nitric oxide. Bioorg. Med. Chem., 2009, 17(11), 3829-3837.
[http://dx.doi.org/10.1016/j.bmc.2009.04.037] [PMID: 19419878]
[30]
Turkan, F.; Cetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 86, 420-427.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.013] [PMID: 30769267]
[31]
Cetin, A.; Gündüz, B.; Menges, N.; Bildirici, I. Unsymmetrical pyrazole-based new semiconductor oligomer: synthesis and optical properties. Polym. Bull., 2017, 74(7), 2593-2604.
[http://dx.doi.org/10.1007/s00289-016-1846-5]
[32]
Kandile, N.G.; Mohamed, M.I.; Zaky, H.; Mohamed, H.M. Novel pyridazine derivatives: Synthesis and antimicrobial activity evaluation. Eur. J. Med. Chem., 2009, 44(5), 1989-1996.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.047] [PMID: 19013692]
[33]
Schrödinger, L.L.C. Small-Molecule Drug Discovery Suite 2017-4; Schrödinger, LLC: New York, NY, 2017.
[34]
Akcamur, Y.; Sener, A.; Ipekoglu, A.M.; Kollenz, G. Functionalization and cyclization reactions of 4-benzoyl-1, 5-diphenyl-1H-pyrazole-3-carboxylic acid. J. Het. Chem., 1997, 34(1), 221-224.
[http://dx.doi.org/10.1002/jhet.5570340133]
[35]
Schmidt, A.; Dreger, A. Recent advances in the chemistry of pyrazoles. Properties, biological activities, and syntheses. Curr. Org. Chem., 2011, 15(9), 1423-1463.
[http://dx.doi.org/10.2174/138527211795378263]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 6
Year: 2020
Published on: 29 June, 2020
Page: [713 - 724]
Pages: 12
DOI: 10.2174/1570180816666190710142848

Article Metrics

PDF: 18
HTML: 2
PRC: 1