Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy

Author(s): Kandasamy Saravanakumar, Xiaowen Hu, Davoodbasha M. Ali and Myeong-Hyeon Wang*

Volume 25, Issue 24, 2019

Page: [2609 - 2625] Pages: 17

DOI: 10.2174/1381612825666190709221141

Price: $65

Abstract

The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.

Keywords: Nanomedicine, stimuli-responsive nanocarriers, polymers, enzymes, ligands, cancer therapy.

[1]
Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 2010; 62(6): 592-605.
[http://dx.doi.org/10.1016/j.addr.2010.03.003] [PMID: 20338204]
[2]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[3]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[4]
Farokhzad OC, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58(14): 1456-9.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[5]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[6]
Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab 2010; 11(2): 129-41.
[http://dx.doi.org/10.2174/138920010791110827] [PMID: 20359289]
[7]
Wu X, Kwon S-J, Kim J, Kane RS, Dordick JS. Biocatalytic nanocomposites for combating bacterial pathogens. Annu Rev Chem Biomol Eng 2017; 8: 87-113.
[http://dx.doi.org/10.1146/annurev-chembioeng-060816-101612] [PMID: 28592177]
[8]
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43(10): 3595-629.
[http://dx.doi.org/10.1039/c3cs60436e] [PMID: 24626293]
[9]
Shin YC, Song S-J, Hong SW, et al. Multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds. Nanomaterials (Basel) 2017; 7(11): 369.
[http://dx.doi.org/10.3390/nano7110369] [PMID: 29113052]
[10]
Galindo-Gonzalez C, Gantz S, Ourry L, Mammeri F, Ammar-Merah S, Ponton A. Elaboration and rheological investigation of magnetic sensitive nanocomposite biopolymer networks. Macromolecules 2014; 47: 3136-44.
[http://dx.doi.org/10.1021/ma402655g]
[11]
Brewer E, Coleman J, Lowman A. Emerging Technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater 2011; 2011408675
[http://dx.doi.org/10.1155/2011/408675]
[12]
Roy I, Gupta MN. Smart polymeric materials: Emerging biochemical applications. Chem Biol 2003; 10(12): 1161-71.
[http://dx.doi.org/10.1016/j.chembiol.2003.12.004] [PMID: 14700624]
[13]
Saravanakumar K, Jeevithan E, Chelliah R, et al. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol 2018; 119: 1144-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.017] [PMID: 30092310]
[14]
Kostarelos K. Rational design and engineering of delivery systems for therapeutics: Biomedical exercises in colloid and surface science. Adv Colloid Interface Sci 2003; 106: 147-68.
[http://dx.doi.org/10.1016/S0001-8686(03)00109-X] [PMID: 14672846]
[15]
Wang H, Zhao Y, Wu Y, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011; 32(32): 8281-90.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.032] [PMID: 21807411]
[16]
Liu D, Bimbo LM, Mäkilä E, et al. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. J Control Release 2013; 170(2): 268-78.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.036] [PMID: 23756152]
[17]
Vivek R, Thangam R, Kumar SR, et al. HER2 targeted breast cancer therapy with switchable “off/on” multifunctional “smart” magnetic polymer core-shell nanocomposites. ACS Appl Mater Interfaces 2016; 8(3): 2262-79.
[http://dx.doi.org/10.1021/acsami.5b11103] [PMID: 26771508]
[18]
Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978; 202(4374): 1290-3.
[http://dx.doi.org/10.1126/science.364652] [PMID: 364652]
[19]
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Sci Technol Adv Mater 2018; 19(1): 771-90.
[http://dx.doi.org/10.1080/14686996.2018.1528850] [PMID: 30815042]
[20]
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58(15): 1655-70.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[21]
Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res 1996; 56(6): 1194-8.
[PMID: 8640796]
[22]
Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 1984; 2(4): 343-66.
[http://dx.doi.org/10.1016/S0167-8140(84)80077-8] [PMID: 6097949]
[23]
Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 2013; 34(4): 1213-22.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.072] [PMID: 23102622]
[24]
Liu R, Li D, He B, et al. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. J Control Release 2011; 152(1): 49-56.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.031] [PMID: 21397642]
[25]
Zou L, Chen X, Servati A, Soltanian S, Servati P, Wang ZJ. A blind source separation framework for monitoring heart beat rate using nanofiber-based strain sensors. IEEE Sens J 2016; 16: 762-72.
[http://dx.doi.org/10.1109/JSEN.2015.2490038]
[26]
Wu X, Liu J, Yang L, Wang F. Photothermally controlled drug release system with high dose loading for synergistic chemo-photothermal therapy of multidrug resistance cancer. Colloids Surf B Biointerfaces 2019; 175: 239-47.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.088] [PMID: 30540971]
[27]
Fan Z, Huang X, Tan C, Zhang H. Thin metal nanostructures: Synthesis, properties and applications. Chem Sci (Camb) 2015; 6(1): 95-111.
[http://dx.doi.org/10.1039/C4SC02571G] [PMID: 28553459]
[28]
Liu H, Chen D, Li L, et al. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed Engl 2011; 50(4): 891-5.
[http://dx.doi.org/10.1002/anie.201002820] [PMID: 21246685]
[29]
Shen S, Tang H, Zhang X, et al. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013; 34(12): 3150-8.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.051] [PMID: 23369218]
[30]
Gao L, Fei J, Zhao J, Li H, Cui Y, Li J. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 2012; 6(9): 8030-40.
[http://dx.doi.org/10.1021/nn302634m] [PMID: 22931130]
[31]
You J, Zhang R, Zhang G, et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J Control Release 2012; 158(2): 319-28.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[32]
Liang C, Diao S, Wang C, et al. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 2014; 26(32): 5646-52.
[http://dx.doi.org/10.1002/adma.201401825] [PMID: 24924258]
[33]
Song J, Yang X, Jacobson O, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015; 9(9): 9199-209.
[http://dx.doi.org/10.1021/acsnano.5b03804] [PMID: 26308265]
[34]
Huang Y, Lai Y, Shi S, Hao S, Wei J, Chen X. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Chem Asian J 2015; 10(2): 370-6.
[http://dx.doi.org/10.1002/asia.201403133] [PMID: 25425287]
[35]
Fang W, Tang S, Liu P, Fang X, Gong J, Zheng N. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small 2012; 8(24): 3816-22.
[http://dx.doi.org/10.1002/smll.201200962] [PMID: 22903778]
[36]
Shen S, Wang S, Zheng R, et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 2015; 39: 67-74.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.064] [PMID: 25477173]
[37]
Saravanakumar K, Shanmugam S, Varukattu NB. MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B 2019; 190: 103-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.017] [PMID: 30508758]
[38]
Shanmugam V, Selvakumar S, Yeh C-S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 2014; 43(17): 6254-87.
[http://dx.doi.org/10.1039/C4CS00011K] [PMID: 24811160]
[39]
Lakhani PM, Rompicharla SV, Ghosh B, Biswas S. An overview of synthetic strategies and current applications of gold nanorods in cancer treatment. Nanotechnology 2015; 26(43)432001
[http://dx.doi.org/10.1088/0957-4484/26/43/432001] [PMID: 26446935]
[40]
Chen Y, Tan C, Zhang H, Wang L. Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 2015; 44(9): 2681-701.
[http://dx.doi.org/10.1039/C4CS00300D] [PMID: 25519856]
[41]
Jabeen F, Najam-ul-Haq M, Javeed R, Huck CW, Bonn GK. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 2014; 19(12): 20580-93.
[http://dx.doi.org/10.3390/molecules191220580] [PMID: 25501919]
[42]
Vivek R, Varukattu N, Chandrababu R, et al. Multifunctional nanoparticles for trimodal photodynamic therapy-mediated photothermal and chemotherapeutic effects. Photodiagn Photodyn Ther 2018; 23: 244-53.
[http://dx.doi.org/10.1016/j.pdpdt.2018.06.025] [PMID: 29964221]
[43]
Zha Z, Deng Z, Li Y, et al. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 2013; 5(10): 4462-7.
[http://dx.doi.org/10.1039/c3nr00627a] [PMID: 23584573]
[44]
Li J, Arnal B, Wei C-W, et al. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 2015; 9(2): 1964-76.
[http://dx.doi.org/10.1021/nn5069258] [PMID: 25658655]
[45]
Jin Y, Li Y, Ma X, et al. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 2014; 35(22): 5795-804.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.086] [PMID: 24746966]
[46]
Wang X, Li H, Liu X, et al. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials 2017; 143: 130-41.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.004] [PMID: 28800434]
[47]
Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 2016; 244(Pt A): 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[48]
Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 2011; 71(1): 3-10.
[http://dx.doi.org/10.1016/j.lungcan.2010.08.022] [PMID: 20951465]
[49]
Liu R, Zhang H, Zhang F, Wang X, Liu X, Zhang Y. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. Mater Sci Eng C 2019; 96: 138-45.
[http://dx.doi.org/10.1016/j.msec.2018.10.093] [PMID: 30606519]
[50]
Tang P, Liu Y, Liu Y, et al. Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 2019; 188: 12-23.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.008] [PMID: 30317112]
[51]
Zhang W, Shen J, Su H, et al. Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl Mater Interfaces 2016; 8(21): 13332-40.
[http://dx.doi.org/10.1021/acsami.6b03881] [PMID: 27164222]
[52]
Zhang X, Tian G, Yin W, et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy. Adv Funct Mater 2015; 25: 3049-56.
[http://dx.doi.org/10.1002/adfm.201404402]
[53]
Zhang Z, Wang J, Nie X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 2014; 136(20): 7317-26.
[http://dx.doi.org/10.1021/ja412735p] [PMID: 24773323]
[54]
Loomis AL, Wood RW. XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. Lond Edinb Dublin Philos Mag J Sci 1927; 4: 417-36.
[55]
ter Haar G. Therapeutic ultrasound. Eur J Ultrasound 1999; 9(1): 3-9.
[http://dx.doi.org/10.1016/S0929-8266(99)00013-0] [PMID: 10099161]
[56]
Horvath J. Ultraschallwirkung beim menschlichen Sarkom. Strahlentherapie 1944; 75: 119-25.
[57]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[58]
Loverock P. Haar Gt, Ormerod MG, Imrie PR. The effect of ultrasound on the cytoxicity of adriamycin. Br J Radiol 1990; 63: 542-6.
[http://dx.doi.org/10.1259/0007-1285-63-751-542] [PMID: 2390688]
[59]
Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23(6): 953-9.
[http://dx.doi.org/10.1016/S0301-5629(97)00025-2] [PMID: 9300999]
[60]
Tachibana K, Uchida T, Tamura K, Eguchi H, Yamashita N, Ogawa K. Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells. Cancer Lett 2000; 149(1-2): 189-94.
[http://dx.doi.org/10.1016/S0304-3835(99)00358-4] [PMID: 10737723]
[61]
Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet 1999; 353(9162): 1409.
[http://dx.doi.org/10.1016/S0140-6736(99)01244-1] [PMID: 10227224]
[62]
Domenici F, Giliberti C, Bedini A, et al. Ultrasound well below the intensity threshold of cavitation can promote efficient uptake of small drug model molecules in fibroblast cells. Drug Deliv 2013; 20(7): 285-95.
[http://dx.doi.org/10.3109/10717544.2013.836620] [PMID: 24044646]
[63]
Rapoport NY, Herron JN, Pitt WG, Pitina L. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: Effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 1999; 58(2): 153-62.
[http://dx.doi.org/10.1016/S0168-3659(98)00149-7] [PMID: 10053188]
[64]
Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 2014; 72: 3-14.
[http://dx.doi.org/10.1016/j.addr.2013.12.010] [PMID: 24389162]
[65]
Gao J, Yu B, Li C, et al. Ultrasound triggered phase-change nanodroplets for doxorubicin prodrug delivery and ultrasound diagnosis: An in vitro study. Colloids Surf B Biointerfaces 2019; 174: 416-25.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.046] [PMID: 30481702]
[66]
Ranjan A, Jacobs GC, Woods DL, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 2012; 158(3): 487-94.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.011] [PMID: 22210162]
[67]
Xing R, Bhirde AA, Wang S, et al. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res 2013; 6: 1-9.
[http://dx.doi.org/10.1007/s12274-012-0275-5]
[68]
Abbasi AZ, Prasad P, Cai P, et al. Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer. J Control Release 2015; 209: 186-96.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.020] [PMID: 25908171]
[69]
Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009; 4(2)022001
[http://dx.doi.org/10.1088/1748-6041/4/2/022001] [PMID: 19261988]
[70]
Harris M, Ahmed H, Barr B, et al. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release.Int J Biol Macromol 2017; 104(Pt B): 1407-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.141] [PMID: 28365285]
[71]
Rodrigues RO, Baldi G, Doumett S, et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater Sci Eng C 2018; 93: 206-17.
[http://dx.doi.org/10.1016/j.msec.2018.07.060] [PMID: 30274052]
[72]
Abulateefeh SR, Spain SG, Aylott JW, Chan WC, Garnett MC, Alexander C. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 2011; 11(12): 1722-34.
[http://dx.doi.org/10.1002/mabi.201100252] [PMID: 22012834]
[73]
Lipowska-Kur D, Szweda R, Trzebicka B, Dworak A. Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. Eur Polym J 2018; 109: 391-401.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.008]
[74]
Aseyev V, Hietala S, Laukkanen A, et al. Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer (Guildf) 2005; 46: 7118-31.
[http://dx.doi.org/10.1016/j.polymer.2005.05.097]
[75]
Dawson KA, Gorelov AV, Timoshenko EG, Kuznetsov YA, Du Chesne A. Formation of mesoglobules from phase separation in dilute polymer solutions: a study in experiment, theory, and applications. Physica A 1997; 244: 68-80.
[http://dx.doi.org/10.1016/S0378-4371(97)00299-9]
[76]
Kujawa P, Aseyev V, Tenhu H, Winnik FM. Temperature-sensitive properties of poly(n-isopropylacrylamide) mesoglobules formed in dilute aqueous solutions heated above their demixing point. Macromolecules 2006; 39: 7686-93.
[http://dx.doi.org/10.1021/ma061604b]
[77]
Nuopponen M, Ojala J, Tenhu H. Aggregation behaviour of well defined amphiphilic diblock copolymers with poly(N-isopropylacrylamide) and hydrophobic blocks. Polymer (Guildf) 2004; 45: 3643-50.
[http://dx.doi.org/10.1016/j.polymer.2004.03.083]
[78]
Wu C, Li W, Zhu XX. Viscoelastic effect on the formation of mesoglobular phase in dilute solutions. Macromolecules 2004; 37: 4989-92.
[http://dx.doi.org/10.1021/ma049556n]
[79]
Rangelov S, Simon P, Toncheva-Moncheva N, Dimitrov P, Gajewska B, Tsvetanov CB. Nanosized colloidal particles from thermosensitive poly(methoxydiethyleneglycol methacrylate)s in aqueous media. Polym Bull 2012; 68: 2175-85.
[http://dx.doi.org/10.1007/s00289-012-0724-z]
[80]
Siu M, He C, Wu C. Formation of mesoglobular phase of amphiphilic copolymer chains in dilute solution: Effect of comonomer distribution. Macromolecules 2003; 36: 6588-92.
[http://dx.doi.org/10.1021/ma0302560]
[81]
Bolisetty S, Schneider C, Polzer F, et al. Formation of stable mesoglobules by a thermosensitive dendronized polymer. Macromolecules 2009; 42: 7122-8.
[http://dx.doi.org/10.1021/ma901135a]
[82]
Alejo T, Andreu V, Mendoza G, Sebastian V, Arruebo M. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating. J Colloid Interface Sci 2018; 523: 234-44.
[http://dx.doi.org/10.1016/j.jcis.2018.03.107] [PMID: 29626761]
[83]
Elbialy NS, Fathy MM, Al-Wafi R, et al. Multifunctional magnetic-gold nanoparticles for efficient combined targeted drug delivery and interstitial photothermal therapy. Int J Pharm 2019; 554: 256-63.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.021] [PMID: 30423414]
[84]
Das M, Solanki A, Joshi A, Devkar R, Seshadri S, Thakore S. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydr Polym 2019; 206: 694-705.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.049] [PMID: 30553374]
[85]
Namdee K, Khongkow M, Boonrungsiman S, et al. Thermoresponsive bacteriophage nanocarrier as a gene delivery vector targeted to the gastrointestinal tract. Mol Ther Nucleic Acids 2018; 12: 33-44.
[http://dx.doi.org/10.1016/j.omtn.2018.04.012] [PMID: 30195771]
[86]
Zardad A-Z, Choonara YE, Du Toit LC, et al. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers (Basel) 2016; 8(10): 359.
[http://dx.doi.org/10.3390/polym8100359] [PMID: 30974645]
[87]
Shao P, Wang B, Wang Y, Li J, Zhang Y. The application of thermosensitive nanocarriers in controlled drug delivery. J Nanomater 2011; 2011389640
[http://dx.doi.org/10.1155/2011/389640]
[88]
Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 2019; 536: 224-34.
[http://dx.doi.org/10.1016/j.jcis.2018.10.056] [PMID: 30368094]
[89]
Li Q-L, Sun Y, Sun Y-L, et al. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chem Mater 2014; 26(22): 6418-31.
[http://dx.doi.org/10.1021/cm503304p] [PMID: 25620848]
[90]
Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014; 32(4): 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[91]
Xu Y, Chen J, Tong L, et al. pH/NIR-responsive semiconducting polymer nanoparticles for highly effective photoacoustic image guided chemo-photothermal synergistic therapy. J Control Release 2019; 293: 94-103.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.016] [PMID: 30448086]
[92]
Yuba E. Liposome-based immunity-inducing systems for cancer immunotherapy. Mol Immunol 2018; 98: 8-12.
[http://dx.doi.org/10.1016/j.molimm.2017.11.001] [PMID: 29128232]
[93]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[94]
Liu J, Chi D, Pan S, et al. Effective co-encapsulation of doxorubicin and irinotecan for synergistic therapy using liposomes prepared with triethylammonium sucrose octasulfate as drug trapping agent. Int J Pharm 2019; 557: 264-72.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.072] [PMID: 30599233]
[95]
Goyal R, Ramakrishnan V. Chapter 2 -Peptide-based drug delivery systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, ed, Characterization and biology of nanomaterials for drug deliveryElsevier,. 2019; pp. 25-45.
[96]
Shah A, Malik MS, Khan GS, et al. Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chem Eng J 2018; 353: 559-83.
[http://dx.doi.org/10.1016/j.cej.2018.07.126]
[97]
Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292: 141-62.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.004] [PMID: 30408554]
[98]
Prasanna A, Pooja R, Suchithra V, Ravikumar A, Kumar Gupta P, Niranjan V. Smart drug delivery systems for cancer treatment using nanomaterials. Materials Today: Proceedings 2018; 5: 21047-54.
[99]
Xu W, Qian J, Hou G, et al. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Acta Biomater 2019; 83: 400-13.
[http://dx.doi.org/10.1016/j.actbio.2018.11.026] [PMID: 30465921]
[100]
Bao W, Liu X, Lv Y, et al. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy. ACS Nano 2019; 13(1): 260-73.
[http://dx.doi.org/10.1021/acsnano.8b05602] [PMID: 30616348]
[101]
Tang Z, Zhao P, Ni D, et al. Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Mater Horiz 2018; 5: 946-52.
[http://dx.doi.org/10.1039/C8MH00627J]
[102]
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Mater Sci Eng C 2017; 71: 1267-80.
[http://dx.doi.org/10.1016/j.msec.2016.11.030] [PMID: 27987683]
[103]
Gong H, Xie Z, Liu M, Sun H, Zhu H, Guo H. Research on redox-responsive mesoporous silica nanoparticles functionalized with PEG via a disulfide bond linker as drug carrier materials. Colloid Polym Sci 2015; 293: 2121-8.
[http://dx.doi.org/10.1007/s00396-015-3595-7]
[104]
Wen L, Hu Y, Meng T, et al. Redox-responsive polymer inhibits macrophages uptake for effective intracellular gene delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2019; 175: 392-402.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.016] [PMID: 30554018]
[105]
Sun C, Li X, Du X, Wang T. Redox-responsive micelles for triggered drug delivery and effective laryngopharyngeal cancer therapy. Int J Biol Macromol 2018; 112: 65-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.136] [PMID: 29371149]
[106]
Qu Y, Chu B, Wei X, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J Control Release 2019; 296: 93-106.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.016] [PMID: 30664976]
[107]
Choi CA, Lee JE, Mazrad ZAI, In I, Jeong JH, Park SY. Redox- and pH-responsive fluorescent carbon nanoparticles-MnO2-based FRET system for tumor-targeted drug delivery in vivo and in vitro. J Ind Eng Chem 2018; 63: 208-19.
[http://dx.doi.org/10.1016/j.jiec.2018.02.017]
[108]
Li J, Ma YJ, Wang Y, Chen BZ, Guo XD, Zhang CY. Dual redox/pH-responsive hybrid polymer-lipid composites: Synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem Eng J 2018; 341: 450-61.
[http://dx.doi.org/10.1016/j.cej.2018.02.055]
[109]
Sang M, Han L, Luo R, et al. Magnetic and CD44 receptor dual targeting redox-responsive polymeric micelle for precise delivery of Gambogic acid to triple-negative breast cancer. As. J Pharm Sci 2018.
[http://dx.doi.org/10.1016/j.ajps.2018.10.007]
[110]
Ray P, Confeld M, Borowicz P, Wang T, Mallik S, Quadir M. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf B Biointerfaces 2019; 174: 126-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.069] [PMID: 30447521]
[111]
Sonawane SJ, Kalhapure RS, Govender T. Hydrazone linkages in pH responsive drug delivery systems. Eur J Pharm Sci 2017; 99: 45-65.
[http://dx.doi.org/10.1016/j.ejps.2016.12.011] [PMID: 27979586]
[112]
Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 2018; 295: 20-37.
[http://dx.doi.org/10.1016/j.cbi.2018.07.016] [PMID: 30036501]
[113]
Bolla PK, Rodriguez VA, Kalhapure RS, Kolli CS, Andrews S, Renukuntla J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol 2018; 46: 416-35.
[http://dx.doi.org/10.1016/j.jddst.2018.05.037]
[114]
Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012; 6(4): 3491-8.
[http://dx.doi.org/10.1021/nn300524f] [PMID: 22409425]
[115]
Li S-Y, Cheng H, Qiu W-X, et al. Protease-activable cell-penetrating peptide-protoporphyrin conjugate for targeted photodynamic therapy in vivo. ACS Appl Mater Interfaces 2015; 7(51): 28319-29.
[http://dx.doi.org/10.1021/acsami.5b08637] [PMID: 26634784]
[116]
Garripelli VK, Kim J-K, Son S, Kim WJ, Repka MA, Jo S. Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater 2011; 7(5): 1984-92.
[http://dx.doi.org/10.1016/j.actbio.2011.02.005] [PMID: 21300184]
[117]
Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials 2013; 34(12): 3020-30.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.051] [PMID: 23360783]
[118]
Huang S, Shao K, Liu Y, et al. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 2013; 7(3): 2860-71.
[http://dx.doi.org/10.1021/nn400548g] [PMID: 23451830]
[119]
Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. Chemistry 2013; 19(5): 1778-83.
[http://dx.doi.org/10.1002/chem.201202038] [PMID: 23303570]
[120]
Popat A, Ross BP, Liu J, Jambhrunkar S, Kleitz F, Qiao SZ. Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. Angew Chem Int Ed Engl 2012; 51(50): 12486-9.
[http://dx.doi.org/10.1002/anie.201206416] [PMID: 23129230]
[121]
Clarhaut J, Fraineau S, Guilhot J, et al. A galactosidase-responsive doxorubicin-folate conjugate for selective targeting of acute myelogenous leukemia blasts. Leuk Res 2013; 37(8): 948-55.
[http://dx.doi.org/10.1016/j.leukres.2013.04.026] [PMID: 23726264]
[122]
Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 2013; 14(4): 1103-12.
[http://dx.doi.org/10.1021/bm302003m] [PMID: 23448580]
[123]
Xing Y, Wang C, Han P, Wang Z, Zhang X. Acetylcholinesterase responsive polymeric supra-amphiphiles for controlled self-assembly and disassembly. Langmuir 2012; 28(14): 6032-6.
[http://dx.doi.org/10.1021/la300612k] [PMID: 22404254]
[124]
Xiong M-H, Bao Y, Yang X-Z, Wang Y-C, Sun B, Wang J. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc 2012; 134(9): 4355-62.
[http://dx.doi.org/10.1021/ja211279u] [PMID: 22304702]
[125]
Yang Y, Aw J, Chen K, et al. Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem Asian J 2011; 6(6): 1381-9.
[http://dx.doi.org/10.1002/asia.201000905] [PMID: 21548100]
[126]
Habraken GJM, Peeters M, Thornton PD, Koning CE, Heise A. Selective enzymatic degradation of self-assembled particles from amphiphilic block copolymers obtained by the combination of N-carboxyanhydride and nitroxide-mediated polymerization. Biomacromolecules 2011; 12(10): 3761-9.
[http://dx.doi.org/10.1021/bm2010033] [PMID: 21905644]
[127]
Kapoor D, Bhatt S, Kumar M, Maheshwari R, Tekade RK. Chapter 8 -Ligands for targeted drug delivery and applications.In: Tekade RK, ed, Basic fundamentals of drug deliveryAcademic Press, . 2019; pp. 307-42.
[128]
Vivek R, Thangam R. NipunBabu V, et alMultifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl Mater Interfaces 2014; 6(9): 6469-80.
[http://dx.doi.org/10.1021/am406012g] [PMID: 24780315]
[129]
Ding F, Gao Y, He X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg Med Chem Lett 2017; 27(18): 4256-69.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.032] [PMID: 28803753]
[130]
Taghdisi SM, Danesh NM, Lavaee P, et al. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 2016; 61: 753-61.
[http://dx.doi.org/10.1016/j.msec.2016.01.009] [PMID: 26838906]
[131]
Xiang D, Shigdar S, Qiao G, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine. Theranostics 2015; 5(1): 23-42.
[http://dx.doi.org/10.7150/thno.10202] [PMID: 25553096]
[132]
Belleperche M, DeRosa MC. pH-Control in aptamer-based diagnostics, therapeutics, and analytical applications. Pharmaceuticals (Basel) 2018; 11(3): 80.
[http://dx.doi.org/10.3390/ph11030080] [PMID: 30149664]
[133]
Lale SV. R G A, Aravind A, Kumar DS, Koul V. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules 2014; 15(5): 1737-52.
[http://dx.doi.org/10.1021/bm5001263] [PMID: 24689987]
[134]
Ding C, Tong L, Feng J, Fu J. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules 2016; 21(12): 21.
[http://dx.doi.org/10.3390/molecules21121715] [PMID: 27999414]
[135]
Egusquiaguirre SP, Igartua M, Hernández RM, Pedraz JL. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research. Clin Transl Oncol 2012; 14(2): 83-93.
[http://dx.doi.org/10.1007/s12094-012-0766-6] [PMID: 22301396]
[136]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[137]
Valle JW, Armstrong A, Newman C, et al. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs 2011; 29(5): 1029-37.
[http://dx.doi.org/10.1007/s10637-010-9399-1] [PMID: 20179989]
[138]
Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085-91.
[http://dx.doi.org/10.1038/sj.bjc.6601856] [PMID: 15150584]
[139]
Armstrong A, Brewer J, Newman C, et al. SP1049C as first-line therapy in advanced (inoperable or metastatic) adenocarcinoma of the oesophagus: A phase II window study. J Clin Oncol 2006; 24: 4080.
[140]
Rivera Gil P, Hühn D, del Mercato LL, Sasse D, Parak WJ. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 2010; 62(2): 115-25.
[http://dx.doi.org/10.1016/j.phrs.2010.01.009] [PMID: 20097288]
[141]
Hou Z, Zhan C, Jiang Q, et al. Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res Lett 2011; 6(1): 563.
[http://dx.doi.org/10.3390/molecules21121715] [PMID: 27999414]
[142]
Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004; 96(2): 273-83.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.003] [PMID: 15081218]
[143]
Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 2004; 100(2): 247-56.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.017] [PMID: 15544872]
[144]
Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 2005; 109(1-3): 158-68.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.039] [PMID: 16263189]
[145]
Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 2005; 26(9): 1053-61.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.008] [PMID: 15369694]
[146]
Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103(16): 6315-20.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[147]
Zhang HZ, Li XM, Gao FP, Liu LR, Zhou ZM, Zhang QQ. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery. Drug Deliv 2010; 17(1): 48-57.
[http://dx.doi.org/10.3109/10717540903508979] [PMID: 22747075]
[148]
Fasehee H, Dinarvand R, Ghavamzadeh A, et al. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: In vitro and in vivo investigations. J Nanobiotechnology 2016; 14: 32.
[http://dx.doi.org/10.1186/s12951-016-0183-z] [PMID: 27102110]
[149]
Alberti D, Protti N, Franck M, et al. Theranostic nanoparticles loaded with imaging probes and rubrocurcumin for combined cancer therapy by folate receptor targeting. ChemMedChem 2017; 12(7): 502-9.
[http://dx.doi.org/10.1002/cmdc.201700039] [PMID: 28217982]
[150]
Alibolandi M, Abnous K, Sadeghi F, Hosseinkhani H, Ramezani M, Hadizadeh F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int J Pharm 2016; 500(1-2): 162-78.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.040] [PMID: 26802496]
[151]
Valencia PM, Pridgen EM, Perea B, et al. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (Lond) 2013; 8(5): 687-98.
[http://dx.doi.org/10.2217/nnm.12.134] [PMID: 23075285]
[152]
Liu P, Qin L, Wang Q, et al. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer. Biomaterials 2012; 33(28): 6739-47.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.008] [PMID: 22763223]
[153]
Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 2004; 43(46): 6323-7.
[http://dx.doi.org/10.1002/anie.200460800] [PMID: 15558662]
[154]
Liu CW, Lin WJ. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin. Int J Nanomedicine 2012; 7: 4749-67.
[PMID: 22973097]
[155]
Graf N, Bielenberg DR, Kolishetti N, et al. α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 2012; 6(5): 4530-9.
[http://dx.doi.org/10.1021/nn301148e] [PMID: 22584163]
[156]
Valencia PM, Hanewich-Hollatz MH, Gao W, et al. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011; 32(26): 6226-33.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.078] [PMID: 21658757]
[157]
Kulhari H, Pooja D, Kota R, et al. Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells. Mol Pharm 2016; 13(5): 1491-500.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00935] [PMID: 26930230]
[158]
Jeong Y-I, Seo S-J, Park I-K, et al. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(γ-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 2005; 296(1-2): 151-61.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.027] [PMID: 15885467]
[159]
Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed block copolymer micelles: Their preparation and specific interaction with lectin molecules. Biomacromolecules 2001; 2(4): 1067-70.
[http://dx.doi.org/10.1021/bm015574q] [PMID: 11777374]
[160]
Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem 2003; 14(1): 177-86.
[http://dx.doi.org/10.1021/bc025598+] [PMID: 12526707]
[161]
Jule E, Nagasaki Y, Kataoka K. Surface plasmon resonance study on the interaction between lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles and lectins immobilized on a gold surface. Langmuir 2002; 18: 10334-9.
[http://dx.doi.org/10.1021/la0258042]
[162]
Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K. Sugar-installed polymer micelles: Synthesis and micellization of poly(ethylene glycol)-poly(d,l-lactide) block copolymers having sugar groups at the peg chain end. Macromolecules 1999; 32: 8024-32.
[http://dx.doi.org/10.1021/ma991066l]
[163]
Chittasupho C, Xie S-X, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 2009; 37: 141-50.
[164]
Kabanov AV, Chekhonin VP, Alakhov VYu, et al. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 1989; 258(2): 343-5.
[http://dx.doi.org/10.1016/0014-5793(89)81689-8] [PMID: 2599097]
[165]
Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100(10): 6039-44.
[http://dx.doi.org/10.1073/pnas.0931428100] [PMID: 12716967]
[166]
Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res 2004; 64(21): 7668-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2550] [PMID: 15520166]
[167]
Aggarwal S, Yadav S, Gupta S. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer. J Biomed Nanotechnol 2011; 7(1): 137-8.
[http://dx.doi.org/10.1166/jbn.2011.1238] [PMID: 21485840]
[168]
Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007; 28(5): 869-76.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[169]
Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 2008; 105(45): 17356-61.
[http://dx.doi.org/10.1073/pnas.0809154105] [PMID: 18978032]
[170]
Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 2011; 108(5): 1850-5.
[http://dx.doi.org/10.1073/pnas.1011379108] [PMID: 21233423]
[171]
Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 2008; 105(7): 2586-91.
[http://dx.doi.org/10.1073/pnas.0711714105] [PMID: 18272481]
[172]
Jiang J, Chen H, Yu C, et al. The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles. Nanomedicine (Lond) 2015; 10(12): 1863-79.
[http://dx.doi.org/10.2217/nnm.15.43] [PMID: 26139123]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy