Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison

Author(s): Cheng-Tang Pan, Wei-Hsi Chang, Ajay Kumar, Satya P. Singh, Aman Chandra Kaushik, Jyotsna Sharma, Zheng-Jing Long, Zhi-Hong Wen, Sunil Kumar Mishra, Chung-Kun Yen, Ravi Kumar Chaudhary, Yow-Ling Shiue*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 24 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors.

Objective: The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques.

Conclusion: We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.

Keywords: Brain, tumor, multimodal imaging, reporter gene imaging, nanoparticles, modalities.

[1]
Bhaskar S, Tian F, Stoeger T, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010; 7: 3.
[http://dx.doi.org/10.1186/1743-8977-7-3] [PMID: 20199661]
[2]
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154(2): 204-19.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[3]
Rao TS, Asha MR, Ramesh BN, Rao KS. Understanding nutrition, depression and mental illnesses. Indian J Psychiatry 2008; 50(2): 77-82.
[http://dx.doi.org/10.4103/0019-5545.42391] [PMID: 19742217]
[4]
Ogasawara K. Single photon emission computed tomography (SPECT). Carotid disease: The role of imaging in diagnosis and management 2006.
[http://dx.doi.org/10.1017/CBO9780511544941.029]
[5]
Boesen M, Ellegaard K, Henriksen M, et al. Osteoarthritis year in review 2016: Imaging. Osteoarthritis Cartilage 2017; 25(2): 216-26.
[http://dx.doi.org/10.1016/j.joca.2016.12.009] [PMID: 27965137]
[6]
Hu Y, Xia Y. 3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) In: 2018.
[http://dx.doi.org/10.1007/978-3-319-75238-9_36]
[7]
Lux CN, Culp WTN, Johnson LR, et al. Prospective comparison of tumor staging using computed tomography versus magnetic resonance imaging findings in dogs with nasal neoplasia: A pilot study. Vet Radiol Ultrasound 2017; 58(3): 315-25.
[http://dx.doi.org/10.1111/vru.12486] [PMID: 28233364]
[8]
Rajiah P. Magnetic resonance imaging. Right Heart Pathology: From Mechanism to Management 2018.
[http://dx.doi.org/10.1007/978-3-319-73764-5_36]
[9]
Goerne H, Rajiah P. Computed tomography Right Heart Pathology: From Mechanism to Management 2018.
[http://dx.doi.org/10.1007/978-3-319-73764-5_35]
[10]
Berker Y, Li Y. Attenuation correction in emission tomography using the emission data--A review. Med Phys 2016; 43(2): 807-32.
[http://dx.doi.org/10.1118/1.4938264] [PMID: 26843243]
[11]
Cherry SR. Multimodality imaging: Beyond PET/CT and SPECT/CT. Semin Nucl Med 2009; 39(5): 348-53.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.03.001] [PMID: 19646559]
[12]
Orza A, Yang Y, Feng T, et al. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging. Med Phys 2016; 43(1): 589.
[http://dx.doi.org/10.1118/1.4939062] [PMID: 26745951]
[13]
Wagner RF, Brown DG. Unified snr analysis of medical imaging systems. Phys Med Biol 1985; 30(6): 489-518.
[http://dx.doi.org/10.1088/0031-9155/30/6/001] [PMID: 29081545]
[14]
Kao YH, Steinberg JD, Tay YS, et al. Post-radioembolization yttrium-90 PET/CT - part 1: Diagnostic reporting. EJNMMI Res 2013; 3(1): 56.
[http://dx.doi.org/10.1186/2191-219X-3-56] [PMID: 23883566]
[15]
Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid imaging by SPECT/CT and PET/CT: Proven outcomes in cancer imaging. Semin Nucl Med 2009; 39(4): 276-89.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.03.003] [PMID: 19497404]
[16]
Judenhofer MS, Wehrl HF, Newport DF, et al. Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nat Med 2008; 14(4): 459-65.
[http://dx.doi.org/10.1038/nm1700] [PMID: 18376410]
[17]
Dash A, Knapp FF, Pillai MR. Targeted radionuclide therapy--an overview. Curr Radiopharm 2013; 6(3): 152-80.
[http://dx.doi.org/10.2174/18744710113066660023] [PMID: 24059327]
[18]
Taylor FG, Quirke P, Heald RJ, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: A prospective, multicenter, European study. Ann Surg 2011; 253(4): 711-9.
[http://dx.doi.org/10.1097/SLA.0b013e31820b8d52] [PMID: 21475011]
[19]
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9(2): 79-89.
[http://dx.doi.org/10.1007/s12551-016-0246-2] [PMID: 28510082]
[20]
Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imaging 1995; 13(8): 1119-24.
[http://dx.doi.org/10.1016/0730-725X(95)02021-K] [PMID: 8750325]
[21]
Kremers G-J, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW. Fluorescent proteins at a glance. J Cell Sci 2011; 124(Pt 2): 157-60.
[http://dx.doi.org/10.1242/jcs.072744] [PMID: 21187342]
[22]
Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: Principles and techniques. Diagn Interv Imaging 2013; 94(5): 487-95.
[http://dx.doi.org/10.1016/j.diii.2013.01.022] [PMID: 23619292]
[23]
Hampel U. X-ray computed tomography. Industrial Tomography: Systems and Applications 2015; 175-96.
[http://dx.doi.org/10.1016/B978-1-78242-118-4.00006-X]
[24]
Baird MA. Towards the development of a reflective radiographer: Challenges and constraints. In: Biomed Imaging Interv J. In: 2008.
[25]
Saberi A, Stoorvogel A, Sannuti P. Control of linear systems with regulation and input constraints 2003.
[26]
Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219(2): 316-33.
[http://dx.doi.org/10.1148/radiology.219.2.r01ma19316] [PMID: 11323453]
[27]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[28]
Singh SP, Urooj S, Ekuakille A. Rotational-invariant texture analysis using radon and polar complex exponential transform. In: Satapathy S, Biswal B, Udgata S, Mandal J (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA). 2014.Advances in Intelligent Systems and Computing, vol 327. Springer, Cham..
[http://dx.doi.org/10.1007/978-3-319-11933-5_35]
[29]
Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience 2004; 129(4): 1021-9.
[http://dx.doi.org/10.1016/j.neuroscience.2004.06.046] [PMID: 15561417]
[30]
Brodie MJ, Zuberi SM, Scheffer IE, Fisher RS. The 2017 ILAE classification of seizure types and the epilepsies: what do people with epilepsy and their caregivers need to know? Epileptic Disord 2018; 20(2): 77-87.
[PMID: 29620013]
[31]
Hogan N, Boenau I. Transient ischemic attack. Emerg Med 2006.
[32]
Buck AK, Nekolla S, Ziegler S, et al. SPECT/CT. J Nucl Med 2008; 49(8): 1305-19.
[http://dx.doi.org/10.2967/jnumed.107.050195] [PMID: 18632825]
[33]
Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 2012; 18(5): 829-34.
[http://dx.doi.org/10.1038/nm.2721] [PMID: 22504484]
[34]
Kumar M, Medarova Z, Pantazopoulos P, Dai G, Moore A. Novel membrane-permeable contrast agent for brain tumor detection by MRI. Magn Reson Med 2010; 63(3): 617-24.
[http://dx.doi.org/10.1002/mrm.22216] [PMID: 20146231]
[35]
Yan H, Wang L, Wang J, et al. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 2012; 6(1): 410-20.
[http://dx.doi.org/10.1021/nn203749v] [PMID: 22148835]
[36]
Faucher L, Guay-Bégin A-A, Lagueux J, Côté M-F, Petitclerc É, Fortin M-A. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 2010; 6(4)
[http://dx.doi.org/10.1002/cmmi.420]
[37]
Sarin H, Kanevsky AS, Wu H, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 2008; 6(1): 80.
[http://dx.doi.org/10.1186/1479-5876-6-80] [PMID: 19094226]
[38]
Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA. Small solutions for big problems: The application of nanoparticles to brain tumor diagnosis and therapy. Clin Pharmacol Ther 2009; 85(5): 531-4.
[http://dx.doi.org/10.1038/clpt.2008.296] [PMID: 19242401]
[39]
Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Academic Press 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028]
[40]
Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 2008; 19(7): 1327-38.
[http://dx.doi.org/10.1021/bc800148t] [PMID: 18547095]
[41]
Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 2001; 46(1-3): 247-79.
[http://dx.doi.org/10.1016/S0169-409X(00)00139-3] [PMID: 11259843]
[42]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Jof Control Release 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018]
[43]
Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674(1): 171-4.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[44]
Sousa F, Mandal S, Garrovo C, et al. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2010; 2(12): 2826-34.
[http://dx.doi.org/10.1039/c0nr00345j] [PMID: 20949211]
[45]
Yan H, Wang J, Yi P, et al. Imaging brain tumor by dendrimer-based optical/paramagnetic nanoprobe across the blood-brain barrier. Chem Commun (Camb) 2011; 47(28): 8130-2.
[http://dx.doi.org/10.1039/c1cc12007g] [PMID: 21629879]
[46]
He H, Li Y, Jia XR, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011; 32(2): 478-87.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.002] [PMID: 20934215]
[47]
Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 2012; 18(5): 829-34.
[http://dx.doi.org/10.1038/nm.2721] [PMID: 22504484]
[48]
Nie G, Hah HJ, Kim G, et al. Hydrogel nanoparticles with covalently linked coomassie blue for brain tumor delineation visible to the surgeon. Small 2012; 8(6): 884-91.
[http://dx.doi.org/10.1002/smll.201101607] [PMID: 22232034]
[49]
Pardridge W M. Vector-mediated drug delivery to the brain. Adv Drug Del Rev 36(2-3): 299-321.
[http://dx.doi.org/10.1016/S0169-409X(98)00087-8]
[50]
Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem 1998; 70(5): 1781-92.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70051781.x] [PMID: 9572261]
[51]
Ker J, Singh SP, Bai Y, Rao J, Lim T, Wang L. Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors (Basel) 2019; 19(9): 2167.
[http://dx.doi.org/10.3390/s19092167] [PMID: 31083289]
[52]
Gross S, Piwnica-Worms D. Molecular imaging strategies for drug discovery and development. Curr Opin Chem Biol 2006; 10(4): 334-42.
[http://dx.doi.org/10.1016/j.cbpa.2006.06.028]
[53]
Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods 2010; 50(1): 2-13.
[http://dx.doi.org/10.1016/j.ymeth.2009.08.007] [PMID: 19706326]
[54]
Koba W, Kim K, Lipton ML, et al. Imaging devices for use in small animals. Semin Nucl Med 2011; 41(3): 151-65.
[http://dx.doi.org/10.1053/j.semnuclmed.2010.12.003]
[55]
Cao F, Drukker M, Lin S, et al. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 2007; 9(1): 107-17.
[http://dx.doi.org/10.1089/clo.2006.0E16] [PMID: 17386018]
[56]
Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc 2005; 2(6): 533-6.
[http://dx.doi.org/10.1513/pats.200508-079DS] [PMID: 16352760]
[57]
Serganova I, Moroz E, Vider J, et al. Multimodality imaging of TGFbeta signaling in breast cancer metastases. FASEB J 2009; 23(8): 2662-72.
[http://dx.doi.org/10.1096/fj.08-126920] [PMID: 19325038]
[58]
Schipper ML, Riese CGU, Seitz S, et al. Efficacy of 99mTc pertechnetate and 131I radioisotope therapy in sodium/iodide symporter (NIS)-expressing neuroendocrine tumors in vivo. Eur J Nucl Med Mol Imaging 2007; 34(5): 638-50.
[http://dx.doi.org/10.1007/s00259-006-0254-8] [PMID: 17160413]
[59]
Yang D, Han L, Kundra V. Exogenous gene expression in tumors: Noninvasive quantification with functional and anatomic imaging in a mouse model. Radiology 2005; 235(3): 950-8.
[http://dx.doi.org/10.1148/radiol.2353040108] [PMID: 15914480]
[60]
Parks A H, Belknap J K. Diagnostic Imaging Equine Laminitis 2016.
[61]
Braun HJ, Gold GE. Diagnosis of osteoarthritis: Imaging. Bone 2012; 51(2): 278-88.
[http://dx.doi.org/10.1016/j.bone.2011.11.019] [PMID: 22155587]
[62]
Yang C, Tian R, Liu T, Liu G. MRI reporter genes for noninvasive molecular imaging. Molecules 2016; 21(5)E580
[http://dx.doi.org/10.3390/molecules21050580] [PMID: 27213309]
[63]
Branca MA, Garber K, De Francesco L. Nature Biotechnology’s academic spinouts of 2017. Nat Biotechnol 2018; 36(4): 297-306.
[64]
van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat Med 2011; 17(10): 1315-9.
[http://dx.doi.org/10.1038/nm.2472] [PMID: 21926976]
[65]
Takx RAP, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 2015; 8(1)e002666
[PMID: 25596143]
[66]
Radiology Society of North America and American College of Radiology. Patient Safety - Radiation Dose in X-Ray and CT Exams 2016.
[67]
Writing Committee Members, Hirshfeld JW, Ferrari VA, et al.ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging- Best practices for safety and effectiveness, Part 2: Radiological equipment operation, dose-sparing methodologies, patient and medical personal protection. Catheter Cardiovasc Interv 2018; 92(2): 222-46.
[68]
Gambhir SS, Berman DS, Ziffer J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009; 50(4): 635-43.
[http://dx.doi.org/10.2967/jnumed.108.060020] [PMID: 19339672]
[69]
D’Aguanno G, Le KQ, Trimm R, et al. Broadband metamaterial for nonresonant matching of acoustic waves. Sci Rep 2012; 2: 340.
[http://dx.doi.org/10.1038/srep00340] [PMID: 22468227]
[70]
Alioto M. Ultra-low power VLSI circuit design demystified and explained: A tutorial. IEEE Trans Circuits Syst I Regul Pap 2012; 59(1)
[http://dx.doi.org/10.1109/TCSI.2011.2177004]
[71]
Whittaker JL, Teyhen DS, Elliott JM, et al. Rehabilitative ultrasound imaging: Understanding the technology and its applications. J Orthop Sports Phys Ther 2007; 37(8): 434-49.
[72]
Khoshnoud F, de Silva CW. Recent advances in MEMS sensor technology; biomedical applications. IEEE Instrum Meas Mag 2012; 15(1): 8-14.
[http://dx.doi.org/10.1109/MIM.2012.6145254]
[73]
Chávez-Santiago R, Khaleghi A, Balasingham I, Ramstad TA. Architecture of an ultra wideband wireless body area network for medical applications 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL 2009.
[http://dx.doi.org/10.1109/ISABEL.2009.5373624]
[74]
Headland D, Monnai Y, Abbott D, Fumeaux C, Withayachumnankul W. Tutorial: Terahertz beamforming, from concepts to realizations. APL Photonics 2018.
[75]
Arridge SR. Optical tomography in medical imaging. Inverse Probl 1999.
[http://dx.doi.org/10.1088/0266-5611/15/2/022]
[76]
Fercher AF. Optical coherence tomography - development, principles, applications. Z Med Phys 2010; 20(4): 251-76.
[http://dx.doi.org/10.1016/j.zemedi.2009.11.002] [PMID: 21134630]
[77]
Eklund A, Dufort P, Forsberg D, LaConte SM. Medical image processing on the GPU - past, present and future. Med Image Anal 2013; 17(8): 1073-94.
[http://dx.doi.org/10.1016/j.media.2013.05.008] [PMID: 23906631]
[78]
Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 2008; 1(3): 203-12.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[79]
Wang L V, Hsin-I Wu. Biomedical Optics: Principles and Imaging 2012.
[80]
Durduran T, Choe R, Baker WB, Yodh AG. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 2010; 73(7)076701
[http://dx.doi.org/10.1088/0034-4885/73/7/076701] [PMID: 26120204]
[81]
Wang YM, Judkewitz B, Dimarzio CA, Yang C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat Commun 2012; 3: 928.
[http://dx.doi.org/10.1038/ncomms1925] [PMID: 22735456]
[82]
Park K, Kim JY, Lee C, Jeon S, Lim G, Kim C. Handheld photoacoustic microscopy probe. Sci Rep 2017; 7(1): 13359.
[http://dx.doi.org/10.1038/s41598-017-13224-3] [PMID: 29042650]
[83]
Jamshidi N, Margolis DJ, Raman S, Huang J, Reiter RE, Kuo MD. Multiregional radiogenomic assessment of prostate microenvironments with multiparametric MR imaging and DNA whole-exome sequencing of prostate glands with adenocarcinoma. Radiology 2017; 284(1): 109-19.
[http://dx.doi.org/10.1148/radiol.2017162827] [PMID: 28453432]
[84]
Rajapaksha RDAA, Hashim U, Gopinath SCB, Fernando CAN. Sensitive pH detection on gold interdigitated electrodes as an electrochemical sensor. Microsyst Technol 2018.
[http://dx.doi.org/10.1007/s00542-017-3592-5]
[85]
Yun SH, Tearney G, de Boer J, Bouma B. Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt Express 2004; 12(13): 2977-98.
[http://dx.doi.org/10.1364/OPEX.12.002977] [PMID: 19483816]
[86]
Tomlins PH, Wang RK. Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 2005; 38(15): 2519-35.
[http://dx.doi.org/10.1088/0022-3727/38/15/002]
[87]
König K. Multiphoton Tomography (MPT): A novel imaging tool for high-resolution multimodal in-vivo histology. Multiphoton Microscopy and Fluorescence Lifetime Imaging: Applications in Biology and Medicine 2018.
[88]
Chen Z, Liu G, Sui J, et al. Multifunctional PVP-Ba<inf>2</inf>GdF<inf>7</inf>:Yb3+, Ho3+coated on Ag nanospheres for bioimaging and tumor photothermal therapy. Appl Surf Sci 2018.
[89]
Unterrainer M, Fleischmann DF, Lindner S, et al. Detection of cerebrospinal fluid dissemination of recurrent glioblastoma using TSPO-PET with 18F-GE-180. Clin Nucl Med 2018; 43(7): 518-9.
[http://dx.doi.org/10.1097/RLU.0000000000002113] [PMID: 29742608]
[90]
Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51(3): 333-6.
[http://dx.doi.org/10.2967/jnumed.109.061853] [PMID: 20150252]
[91]
Madsen MT. Emission tomography: the fundamentals of pet and spect. Shock 2005; 23(4): 390.
[http://dx.doi.org/10.1097/00024382-200504000-00016]
[92]
Delbeke D, Schöder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): Improving therapeutic decisions. Semin Nucl Med 2009; 39(5): 308-40.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.03.002] [PMID: 19646557]
[93]
Jan S, Benoit D, Becheva E, et al. GATE V6: A major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol 2011; 56(4): 881-901.
[http://dx.doi.org/10.1088/0031-9155/56/4/001] [PMID: 21248393]
[94]
Tamaki Y, Morimoto T, Koike K, Ishitani O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci USA 2012; 109(39): 15673-8.
[http://dx.doi.org/10.1073/pnas.1118336109] [PMID: 22908243]
[95]
Elschot M, Vermolen BJ, Lam MGEH, de Keizer B, van den Bosch MAAJ, de Jong HWAM. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One 2013; 8(2)e55742
[http://dx.doi.org/10.1371/journal.pone.0055742] [PMID: 23405207]
[96]
Buck AK, Nekolla S, Ziegler S, et al. SPECT/CT. J Nucl Med 2008; 49(8): 1305-19.
[http://dx.doi.org/10.2967/jnumed.107.050195] [PMID: 18632825]
[97]
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47(2): 287-97.
[98]
Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013; 54(1): 83-9.
[http://dx.doi.org/10.2967/jnumed.112.111476] [PMID: 23283563]
[99]
Singh SP, Urooj S, Lay-Ekuakille A, Lay-Ekuakille A. Lay-Ekuakille, and Lay-Ekuakille, “Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sens J 2016; 16(12): 4847-55.
[http://dx.doi.org/10.1109/JSEN.2016.2533440]
[100]
Karger CP, Hipp P, Henze M, et al. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT. Phys Med Biol 2003; 48(2): 211-21.
[http://dx.doi.org/10.1088/0031-9155/48/2/305] [PMID: 12587905]
[101]
Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63(2): 511-9.
[http://dx.doi.org/10.1016/j.ijrobp.2005.01.056] [PMID: 16168843]
[102]
Knowlton RC, Elgavish RA, Bartolucci A, et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 2008; 64(1): 35-41.
[http://dx.doi.org/10.1002/ana.21419] [PMID: 18570291]
[103]
Sharma S, Moon CS, Khogali A, et al. Biomarkers in Parkinson’s disease (recent update). Neurochem Int 2013; 63(3): 201-29.
[http://dx.doi.org/10.1016/j.neuint.2013.06.005] [PMID: 23791710]
[104]
Descloux A, Grußmayer KS, Bostan E. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat Photonics 2018; 12: 165-72.
[http://dx.doi.org/10.1038/s41566-018-0109-4]
[105]
Encyclopaedia Brittanica. Solubility | chemistry | Britannicacom 2018.
[106]
Jacob D1, Shelton RL, Applegate BE. Fourier domain pump-probe optical coherence tomography imaging of melanin. Opt Express 2004; 18(12): 12399-410.
[http://dx.doi.org/10.1364/OPEX.12.002156]
[107]
Delcourt V, Franck J, Quanico J, et al. Spatially-resolved top-down proteomics bridged to MALDI MS imaging reveals the molecular physiome of brain regions. Mol Cell Proteomics 2018; 17(2): 357-72.
[http://dx.doi.org/10.1074/mcp.M116.065755] [PMID: 29122912]
[108]
Hao Z, Bechtel HA, Kneafsey T, Gilbert B, Nico PS. Cross-scale molecular analysis of chemical heterogeneity in shale rocks. Sci Rep 2018; 8(1): 2552.
[http://dx.doi.org/10.1038/s41598-018-20365-6] [PMID: 29416052]
[109]
Kubala E, Menzel MI, Feuerecker B, Glaser SJ, Schwaiger M. Chapter 11: Molecular Imaging. In: RSC Drug Discovery Series. In: 2018.
[110]
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev 2010; 110(5): 3019-42.
[http://dx.doi.org/10.1021/cr100025t] [PMID: 20415475]
[111]
Thrall JH. Molecular imaging and molecular biology. Acad Radiol 2003; 10(11): 1213-4.
[http://dx.doi.org/10.1016/S1076-6332(03)00504-X] [PMID: 14626295]
[112]
Swanson JM, Kinsbourne M, Nigg J, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 2007; 17(1): 39-59.
[http://dx.doi.org/10.1007/s11065-007-9019-9] [PMID: 17318414]
[113]
Singh SP, Urooj S. A New Computational Framework for Fast Computation of a Class of Polar Harmonic Transforms. J Signal Process Syst 2019; 91(8): 915-22.
[http://dx.doi.org/10.1007/s11265-018-1417-0]
[114]
Singh SP, Urooj S. Geometric invariant feature extraction of medical images using Hu’s invariants. 3rd International Conference on Computing for Sustainable Global Development (INDIACom). 1560-2.
[115]
Singh SP, Urooj S. Wavelet Packets Based Spectral Estimation of Textured Images. IEEE International Conference on Computational Intelligence & Communication Technolog. 651-4.
[http://dx.doi.org/10.1109/CICT.2015.126]
[116]
Singh SP, Urooj S, Urooj S. Localized Radon Polar Harmonic Transform (LRPHT) based rotation invariant analysis of textured images. IJSDA 2015; 4(2): 21-41.
[117]
Kaletaş BK, van der Wiel IM, Stauber J, et al. Sample preparation issues for tissue imaging by imaging MS. Proteomics 2009; 9(10): 2622-33.
[http://dx.doi.org/10.1002/pmic.200800364] [PMID: 19415667]
[118]
Dzik-Jurasz ASK. Molecular imaging in oncology. Cancer Imaging 2004; 4(2): 162-73.
[http://dx.doi.org/10.1102/1470-7330.2004.0060] [PMID: 18250026]
[119]
Youn H, Chung JK. Reporter gene imaging. AJR Am J Roentgenol 2013; 201(2)W206-14
[http://dx.doi.org/10.2214/AJR.13.10555] [PMID: 23883235]
[120]
Serganova I, Blasberg R. Reporter gene imaging: Potential impact on therapy. Nucl Med Biol 2005; 32(7): 763-80.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.05.008] [PMID: 16243653]
[121]
Patrick PS, Hammersley J, Loizou L, et al. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci USA 2014; 111(1): 415-20.
[http://dx.doi.org/10.1073/pnas.1319000111] [PMID: 24347640]
[122]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2012; 64: 61-71.
[http://dx.doi.org/10.1016/j.addr.2012.09.023] [PMID: 12628320]
[123]
Syamchand SS, Sony G. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchimica Acta 2015.
[http://dx.doi.org/10.1007/s00604-015-1504-x]
[124]
Niers JM, Chen JW, Lewandrowski G, et al. Single reporter for targeted multimodal in vivo imaging. J Am Chem Soc 2012; 134(11): 5149-56.
[http://dx.doi.org/10.1021/ja209868g] [PMID: 22397453]
[125]
Terwisscha van Scheltinga AGT, van Dam GM, Nagengast WB, et al. Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 2011; 52(11): 1778-85.
[http://dx.doi.org/10.2967/jnumed.111.092833] [PMID: 21990576]
[126]
Chan CT, Reeves RE, Geller R, et al. Discovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects. Proc Natl Acad Sci USA 2012; 109(37): E2476-85.
[http://dx.doi.org/10.1073/pnas.1205459109] [PMID: 22895790]
[127]
Sekar TV, Foygel K, Ilovich O, Paulmurugan R. Theranostics, and undefined 2014, noninvasive theranostic imaging of hsv1-sr39tk-ntr/gcv-cb1954 dual-prodrug therapy in metastatic lung lesions of mda-mb-231 triple negative breast. Theranostics 2014; 4(5): 460-74.
[128]
Shirshahi V, Soltani M. Solid silica nanoparticles: applications in molecular imaging. Contrast Media Mol Imaging 2015; 10(1): 1-17.
[http://dx.doi.org/10.1002/cmmi.1611] [PMID: 24996058]
[129]
Puyol-Antón E, Sinclair M, Gerber B, et al. Multiview machine learning using an atlas of cardiac cycle motion. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), . 2018.
[http://dx.doi.org/10.1007/978-3-319-75541-0_1]
[130]
John R, Nguyen FT, Kolbeck KJ, et al. Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. Mol Imaging Biol 2012; 14(1): 17-24.
[http://dx.doi.org/10.1007/s11307-011-0473-7] [PMID: 21298354]
[131]
Singh SP, Urooj S. Rotation invariant detection of benign and malignant masses using PHT. 2nd International Conference on Computing for Sustainable Global Development (INDIACom).
[132]
Urooj S, Singh SP, Ansari AQ. Computer-aided detection of breast cancer using pseudo Zernike moment as texture descriptors. Sens Image Process 2017; 651: 85-92.
[http://dx.doi.org/10.1007/978-981-10-6614-6_9]
[133]
Singh SP, Urooj S. “Wavelet Transform-Based Soft Computational Techniques and Applications in Medical Imaging,” in Biometrics: Concepts, Methodologies, Tools, and Applications. IGI Global 2017; pp. 969-93.
[134]
Mahapatra D, Antony B, Sedai S, Garnavi R. Deformable medical image registration using generative adversarial networks.Proceedings - International Symposium on Biomedical Imaging.
[http://dx.doi.org/10.1109/ISBI.2018.8363845]
[135]
Guo S, Huang CC, Zhao W, et al. Combining multi-modality data for searching biomarkers in schizophrenia. PLoS One 2018; 13(2)e0191202
[http://dx.doi.org/10.1371/journal.pone.0191202] [PMID: 29389986]
[136]
Salmon R, Nguyen TC, Moore LW, Bass BL, Garbey M. “Multimodal imaging of the breast to retrieve the reference state in the absence of gravity using finite element modeling,” in Smart Innovation. Systems and Technologies 2018.
[http://dx.doi.org/10.1007/978-3-319-59397-5_27]
[137]
Pu K, Shuhendler AJ, Jokerst JV, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 2014; 9(3): 233-9.
[http://dx.doi.org/10.1038/nnano.2013.302] [PMID: 24463363]
[138]
Saunders BR, Turner ML. Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 2008; 138(1): 1-23.
[http://dx.doi.org/10.1016/j.cis.2007.09.001] [PMID: 17976501]
[139]
Sussman EM, Jayagopal A, Haselton FR, Shastri VP. Engineering of solid lipid nanoparticles for biomedical applications. ACS Symp Ser; 992: 139-52.
[http://dx.doi.org/10.1021/bk-2008-0992.ch008]
[140]
Xie C, Zhen X, Miao Q, Lyu Y, Pu K. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv Mater 2018; 30(21)e1801331
[http://dx.doi.org/10.1002/adma.201801331] [PMID: 29611257]
[141]
Chan YH, Wu PJ. Semiconducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Charact 2015.
[http://dx.doi.org/10.1002/ppsc.201400123]
[142]
Gualandi I, Tessarolo M. Mariani, P, et al. Nanoparticle gated semiconducting polymer for a new generation of electrochemical sensors. Sensors Actuators, B Chem 2018.
[http://dx.doi.org/10.1016/j.snb.2018.06.109]
[143]
Millstone JE, Kavulak DF, Woo CH, et al. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 2010; 26(16): 13056-61.
[http://dx.doi.org/10.1021/la1022938] [PMID: 20695542]
[144]
Ko SH, Park I, Pan H, et al. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 2007; 7(7): 1869-77.
[http://dx.doi.org/10.1021/nl070333v] [PMID: 17547465]
[145]
Ocheje MU, Charron BP, Cheng YH, et al. Amide-containing alkyl chains in conjugated polymers: Effect on self-assembly and electronic properties. Macromolecules 2018; 51(4): 1336-44.
[http://dx.doi.org/10.1021/acs.macromol.7b02393]
[146]
Creamer A, Wood CS, Howes PD, et al. Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nat Commun 2018; 9(1): 3237.
[http://dx.doi.org/10.1038/s41467-018-05381-4] [PMID: 30104597]
[147]
Di Luccio T, Piscopiello E, Laera AM, Antisari MV. Structural studies of thin films of semiconducting nanoparticles in polymer matrices. Mater Sci Eng C 2007; 27(5-8): 1372-6.
[http://dx.doi.org/10.1016/j.msec.2006.07.018]
[148]
Lohmüller T, Iversen L, Schmidt M, et al. Single molecule tracking on supported membranes with arrays of optical nanoantennas. Nano Lett 2012; 12(3): 1717-21.
[http://dx.doi.org/10.1021/nl300294b] [PMID: 22352856]
[149]
Cao Z, Feng L, Zhang G, et al. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials 2018; 155: 103-11.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.016] [PMID: 29175079]
[150]
Pu K, Shuhendler AJ, Valta MP, et al. Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthc Mater 2014; 3(8): 1292-8.
[http://dx.doi.org/10.1002/adhm.201300534] [PMID: 24668903]
[151]
Wu C, Bull B, Szymanski C, Christensen K, McNeill J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008; 2(11): 2415-23.
[http://dx.doi.org/10.1021/nn800590n] [PMID: 19206410]
[152]
Pu K, Chattopadhyay N, Rao J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 2016; 240: 312-22.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.004] [PMID: 26773769]
[153]
Hamidi M, Rostamizadeh K, Shahbazi MA. “Hydrogel Nanoparticles in Drug Delivery,” in Intelligent Nanomaterials: Processes. Properties, and Applications 2012.
[154]
Konwarh R, Gogoi B, Philip R, Laskar MA, Karak N. Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B Biointerfaces 2011; 84(2): 338-45.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.024] [PMID: 21316933]
[155]
Jiang Y, Upputuri PK, Xie C, et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett 2017; 17(8): 4964-9.
[http://dx.doi.org/10.1021/acs.nanolett.7b02106] [PMID: 28654292]
[156]
Zhen X, Zhang C, Xie C, Miao Q, Lim KL, Pu K. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016; 10(6): 6400-9.
[http://dx.doi.org/10.1021/acsnano.6b02908] [PMID: 27299477]
[157]
Zhu H, Li J, Qi X, Chen P, Pu K. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett 2018; 18(1): 586-94.
[http://dx.doi.org/10.1021/acs.nanolett.7b04759] [PMID: 29220576]
[158]
Fournier A, Safar M, Veillon B, Papanicolaou N, Milliez P. [Separate renal function tests in arterial hypertension. Determination of the best pronostic criterion Pathol Biol (Paris) 1971.
[159]
Li J, Zhen X, Lyu Y, Jiang Y, Huang J, Pu K. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 2018; 12(8): 8520-30.
[http://dx.doi.org/10.1021/acsnano.8b04066] [PMID: 30071159]
[160]
Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T. Infrared thermography for condition monitoring - A review. Infrared Phys Technol 2013.
[http://dx.doi.org/10.1016/j.infrared.2013.03.006]
[161]
Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. Sensors (Basel) 2017; 17(1)E130
[http://dx.doi.org/10.3390/s17010130] [PMID: 28085085]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 24
Year: 2019
Published on: 02 October, 2019
Page: [2637 - 2649]
Pages: 13
DOI: 10.2174/1381612825666190709220139
Price: $65

Article Metrics

PDF: 24
HTML: 2