2D Honeycomb Silicon: A Review on Theoretical Advances for Silicene Field-Effect Transistors

Author(s): Mu Wen Chuan, Kien Liong Wong, Afiq Hamzah, Shahrizal Rusli, Nurul Ezaila Alias, Cheng Siong Lim, Michael Loong Peng Tan*

Journal Name: Current Nanoscience

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Catalysed by the success of mechanical exfoliated free-standing graphene, two dimensional (2D) semiconductor materials are successively an active area of research. Silicene is a monolayer of silicon (Si) atoms with a low-buckled honeycomb lattice possessing a Dirac cone and massless fermions in the band structure. Another advantage of silicene is its compatibility with the Silicon wafer fabrication technology. To effectively apply this 2D material in the semiconductor industry, it is important to carry out theoretical studies before proceeding to the next step. In this paper, an overview of silicene and silicene nanoribbons (SiNRs) is described. After that, the theoretical studies to engineer the bandgap of silicene are reviewed. Recent theoretical advancement on the applications of silicene for various field-effect transistor (FET) structures is also discussed. Theoretical studies of silicene have shown promising results for their application as FETs and the efforts to study the performance of bandgap-engineered silicene FET should continue to improve the device performance.

Keywords: Silicene, silicon, two-dimensional materials, bandgap engineering, transistor, theoretical studies.

Waldrop, M.M. The chips are down for Moore’s law. Nature, 2016, 530(7589), 144-147.
[http://dx.doi.org/10.1038/530144a] [PMID: 26863965]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 2015, 11(6), 640-652.
[http://dx.doi.org/10.1002/smll.201402041] [PMID: 25380184]
Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci., 2013, 58(8), 1244-1315.
Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11), 699-712.
[http://dx.doi.org/10.1038/nnano.2012.193] [PMID: 23132225]
Lim, W.H.; Hamzah, A.; Ahmadi, M.T.; Ismail, R. Performance analysis of one dimensional BC2N for nanoelectronics applications. Physica E, 2018, 102, 33-38.
Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6), 2979-2993.
[http://dx.doi.org/10.1021/nn1006495] [PMID: 20462272]
Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Neto, A.H.C. Phosphorene: From theory to applications. Nat. Rev. Mater., 2016, 1(11), 16061.
Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S.C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater., 2017, 16(2), 163-169.
[http://dx.doi.org/10.1038/nmat4802] [PMID: 28092688]
Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 2015, 10(3), 227-231.
[http://dx.doi.org/10.1038/nnano.2014.325] [PMID: 25643256]
Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B Condens. Matter, 1994, 50(20), 14916-14922.
[http://dx.doi.org/10.1103/PhysRevB.50.14916] [PMID: 9975837]
Cahangirov, S.; Topsakal, M.; Aktürk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett., 2009, 102(23) 236804
[http://dx.doi.org/10.1103/PhysRevLett.102.236804] [PMID: 19658958]
Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1), 109.
Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; Liang, L.; Louie, S.G.; Ringe, E.; Zhou, W.; Kim, S.S.; Naik, R.R.; Sumpter, B.G.; Terrones, H.; Xia, F.; Wang, Y.; Zhu, J.; Akinwande, D.; Alem, N.; Schuller, J.A.; Schaak, R.E.; Terrones, M.; Robinson, J.A. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12), 11509-11539.
[http://dx.doi.org/10.1021/acsnano.5b05556] [PMID: 26544756]
Ding, Y.; Ni, J. Electronic structures of silicon nanoribbons. Appl. Phys. Lett., 2009, 95(8) 083115
Voon, L.L.Y.; Sandberg, E.; Aga, R.; Farajian, A. Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett., 2010, 97(16) 163114
Durgun, E.; Tongay, S.; Ciraci, S. Silicon and III-V compound nanotubes: Structural and electronic properties. Phys. Rev. B Condens. Matter Mater. Phys., 2005, 72(7) 075420
Yang, X.; Ni, J. Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys., 2005, 72(19) 195426
Liu, C.C.; Feng, W.; Yao, Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett., 2011, 107(7) 076802
[http://dx.doi.org/10.1103/PhysRevLett.107.076802] [PMID: 21902414]
Guzmán-Verri, G.G.; Voon, L.L.Y. Electronic structure of silicon-based nanostructures. Phys. Rev. B Condens. Matter Mater. Phys., 2007, 76(7) 075131
Bechstedt, F.; Matthes, L.; Gori, P.; Pulci, O. Infrared absorbance of silicene and germanene. Appl. Phys. Lett., 2012, 100(26) 261906
Huang, S.; Kang, W.; Yang, L. Electronic structure and quasiparticle bandgap of silicene structures. Appl. Phys. Lett., 2013, 102(13) 133106
Shao, Z.G.; Ye, X.S.; Yang, L.; Wang, C.L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys., 2013, 114(9) 093712
Wei, W.; Dai, Y.; Huang, B.; Jacob, T. Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys., 2013, 15(22), 8789-8794.
[http://dx.doi.org/10.1039/c3cp51078f] [PMID: 23640017]
Arora, V.K.; Tan, M.L.P.; Gupta, C. High-field transport in a graphene nanolayer. J. Appl. Phys., 2012, 112(11) 114330
Johansson, M.P.; Kaila, V.R.; Sundholm, D. Ab initio, density functional theory, and semi-empirical calculations. In: Biomolecular Simulations; Monticelli, L.; Salonen, E., Eds.; Springer: New York, 2013; Vol. 924, pp. 3-27.
Vogl, P.; Hjalmarson, H.P.; Dow, J.D. A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids, 1983, 44(5), 365-378.
Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M.H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev., 2018, 47(16), 6370-6387.
[http://dx.doi.org/10.1039/C8CS00338F] [PMID: 30065980]
Lim, W.H.; Hamzah, A.; Ahmadi, M.T.; Ismail, R. Band gap engineering of BC2N for nanoelectronic applications. Superlattices Microstruct., 2017, 112, 328-338.
Liu, C.C.; Jiang, H.; Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B Condens. Matter Mater. Phys., 2011, 84(19) 195430
Roome, N.J.; Carey, J.D. Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl. Mater. Interfaces, 2014, 6(10), 7743-7750.
[http://dx.doi.org/10.1021/am501022x] [PMID: 24724967]
Wallace, P.R. The band theory of graphite. Phys. Rev., 1947, 71(9), 622.
Han, M.Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett., 2007, 98(20) 206805
[http://dx.doi.org/10.1103/PhysRevLett.98.206805] [PMID: 17677729]
Barone, V.; Hod, O.; Scuseria, G.E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett., 2006, 6(12), 2748-2754.
[http://dx.doi.org/10.1021/nl0617033] [PMID: 17163699]
Jia, X.; Hofmann, M.; Meunier, V.; Sumpter, B.G.; Campos-Delgado, J.; Romo-Herrera, J.M.; Son, H.; Hsieh, Y.P.; Reina, A.; Kong, J.; Terrones, M.; Dresselhaus, M.S. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 2009, 323(5922), 1701-1705.
[http://dx.doi.org/10.1126/science.1166862] [PMID: 19325109]
Miller, M.; Owens, F.J. On the possibility of zigzag and armchair silicon nanoribbons having the graphene structure. Chem. Phys., 2011, 381(1-3), 1-4.
An, X.T.; Zhang, Y.Y.; Liu, J.J.; Li, S.S. Interplay between edge and bulk states in silicene nanoribbon. Appl. Phys. Lett., 2013, 102(21) 213115
Song, Y.L.; Zhang, S.; Lu, D.B.; Xu, H.R.; Wang, Z.; Zhang, Y.; Lu, Z.W. Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B, 2013, 86(12), 488.
Lu, D.B.; Song, Y.L.; Huang, X.Y. Electric and optical properties modulations of armchair silicene nanoribbons by transverse electric fields. Curr. Appl. Phys., 2019, 19(1), 31-36.
Zhou, B.; Zhou, B.; Zeng, Y.; Zhou, G.; Duan, M. Tunable electronic and transport properties for ultranarrow armchair-edge silicene nanoribbons under spin–orbit coupling and perpendicular electric field. Phys. Lett. A, 2016, 380(1-2), 282-287.
Ezawa, M. Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons. Appl. Phys. Lett., 2013, 102(17) 172103
Kang, J.; Wu, F.; Li, J. Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons. Appl. Phys. Lett., 2012, 100(23) 233122
Kaneko, S.; Tsuchiya, H.; Kamakura, Y.; Mori, N.; Ogawa, M. Theoretical performance estimation of silicene, germanene, and graphene nanoribbon field-effect transistors under ballistic transport. Appl. Phys. Express, 2014, 7(3) 035102
Chen, J.; Wang, X.F.; Vasilopoulos, P.; Chen, A.B.; Wu, J.C. Single and multiple doping effects on charge transport in zigzag silicene nanoribbons. ChemPhysChem, 2014, 15(13), 2701-2706.
[http://dx.doi.org/10.1002/cphc.201402171] [PMID: 24986365]
Le, N.B.; Huan, T.D.; Woods, L.M. Tunable spin-dependent properties of zigzag silicene nanoribbons. Phys. Rev. Appl., 2014, 1(5) 054002
Liang, Y.; Wang, V.; Mizuseki, H.; Kawazoe, Y. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. J. Phys. Condens. Matter, 2012, 24(45) 455302
[http://dx.doi.org/10.1088/0953-8984/24/45/455302] [PMID: 23085744]
Dong, H.; Fang, D.; Gong, B.; Zhang, Y.; Zhang, E.; Zhang, S. Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects. J. Appl. Phys., 2015, 117(6) 064307
Li, S.; Wu, Y.; Tu, Y.; Wang, Y.; Jiang, T.; Liu, W.; Zhao, Y. Defects in silicene: vacancy clusters, extended line defects, and Di-adatoms. Sci. Rep., 2015, 5, 7881.
[http://dx.doi.org/10.1038/srep07881] [PMID: 25619941]
Brumfiel, G. Sticky problem snares wonder material. Nature, 2013, 495(7440), 152-153.
[http://dx.doi.org/10.1038/495152a] [PMID: 23486035]
Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene. ACS Nano, 2011, 5(1), 26-41.
[http://dx.doi.org/10.1021/nn102598m] [PMID: 21090760]
Gao, J.; Zhang, J.; Liu, H.; Zhang, Q.; Zhao, J. Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale, 2013, 5(20), 9785-9792.
[http://dx.doi.org/10.1039/c3nr02826g] [PMID: 23963524]
Li, R.; Han, Y.; Hu, T.; Dong, J.; Kawazoe, Y. Self-healing monovacancy in low-buckled silicene studied by first-principles calculations. Phys. Rev. B Condens. Matter Mater. Phys., 2014, 90(4) 045425
Sahin, H.; Sivek, J.; Li, S.; Partoens, B.; Peeters, F.M. Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites. Phys. Rev. B Condens. Matter Mater. Phys., 2013, 88(4) 045434
Manjanath, A.; Singh, A.K. Low formation energy and kinetic barrier of Stone–Wales defect in infinite and finite silicene. Chem. Phys. Lett., 2014, 592, 52-55.
Ali, M.; Pi, X.; Liu, Y.; Yang, D. Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration. AIP Adv., 2017, 7(4) 045308
Song, Y.L.; Zhang, Y.; Zhang, J.M.; Lu, D.B.; Xu, K.W. First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies. J. Mol. Struct., 2011, 990(1-3), 75-78.
Mehdi, A.S.; Calizo, I. Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes. J. Appl. Phys., 2015, 118(10) 104304
Iordanidou, K.; Houssa, M.; van den Broek, B.; Pourtois, G.; Afanas’ev, V.V.; Stesmans, A. Impact of point defects on the electronic and transport properties of silicene nanoribbons. J. Phys. Condens. Matter, 2016, 28(3) 035302
[http://dx.doi.org/10.1088/0953-8984/28/3/035302] [PMID: 26732643]
Liu, G.; Wu, M.; Ouyang, C.; Xu, B. Strain-induced semimetal-metal transition in silicene. EPL, 2012, 99(1), 17010.
Kaloni, T.P.; Cheng, Y.; Schwingenschlögl, U. Hole doped Dirac states in silicene by biaxial tensile strain. J. Appl. Phys., 2013, 113(10) 104305
Qin, R.; Wang, C.H.; Zhu, W.; Zhang, Y. First-principles calculations of mechanical and electronic properties of silicene under strain. AIP Adv., 2012, 2(2) 022159
Wang, Y.; Ding, Y. Strain-induced self-doping in silicene and germanene from first-principles. Solid State Commun., 2013, 155, 6-11.
Umam, K.; Nurwantoro, P.; Absor, M.A.U.; Nugraheni, A.D.; Budhi, R.H. Biaxial strain effects on the electronic properties of silicene: the density-functional-theory-based calculations. J. Phys. Conf. Ser., 2018, 1011, 012074
Mohan, B.; Kumar, A.; Ahluwalia, P. Electronic and optical properties of silicene under uni-axial and bi-axial mechanical strains: A first principle study. Physica E, 2014, 61, 40-47.
Zhang, C.; De Sarkar, A.; Zhang, R.Q. Strain induced band dispersion engineering in Si nanosheets. J. Phys. Chem. C, 2011, 115(48), 23682-23687.
Zhao, H. Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys. Lett. A, 2012, 376(46), 3546-3550.
Voon, L.L.Y.; Lopez-Bezanilla, A.; Wang, J.; Zhang, Y.; Willatzen, M. Effective Hamiltonians for phosphorene and silicene. New J. Phys., 2015, 17(2) 025004
Lang, N.; Kohn, W. Theory of metal surfaces: Work function. Phys. Rev. B, 1971, 3(4), 1215.
Qin, R.; Zhu, W.; Zhang, Y.; Deng, X. Uniaxial strain-induced mechanical and electronic property modulation of silicene. Nanoscale Res. Lett., 2014, 9(1), 521.
[http://dx.doi.org/10.1186/1556-276X-9-521] [PMID: 25276108]
Spear, W.; Le Comber, P. Substitutional doping of amorphous silicon. Solid State Commun., 1975, 17(9), 1193-1196.
Taur, Y.; Mii, Y.J.; Frank, D.J.; Wong, H.S.; Buchanan, D.A.; Wind, S.J.; Rishton, S.A.; Saihalasz, G.A.; Nowak, E.J. CMOS scaling into the 21st-century: 0.1 μm and beyond IBM J. Res. Dev,, 1995, 39(1.2), 245-260.
Zhao, K.; Zhao, M.; Wang, Z.; Fan, Y. Tight-binding model for the electronic structures of SiC and BN nanoribbons. Physica E, 2010, 43(1), 440-445.
Tan, X.; Li, F.; Chen, Z. Metallic BSi3 silicene and its one-dimensional derivatives: Unusual nanomaterials with planar aromatic D6h six-membered silicon rings. J. Phys. Chem. C, 2014, 118(45), 25825-25835.
Ding, Y.; Wang, Y. Density functional theory study of the silicene-like SiX and XSi3 (X= B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J. Phys. Chem. C, 2013, 117(35), 18266-18278.
Luan, H.X.; Zhang, C.W.; Zheng, F.B.; Wang, P.J. First-principles study of the electronic properties of B/N atom doped silicene nanoribbons. J. Phys. Chem. C, 2013, 117(26), 13620-13626.
Zheng, F.B.; Zhang, C.W.; Yan, S.S.; Li, F. Novel electronic and magnetic properties in N or B doped silicene nanoribbons. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(15), 2735-2743.
Lopez-Bezanilla, A. Substitutional doping widens silicene gap. J. Phys. Chem. C, 2014, 118(32), 18788-18792.
Jiang, Q.; Zhang, J.; Ao, Z.; Huang, H.; Wu, Y. Tuneable electronic and magnetic properties of hybrid silicene/silicane nanoribbons induced by nitrogen doping. Thin Solid Films, 2018, 653, 126-135.
Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B Condens. Matter Mater. Phys., 2013, 87(8) 085444
Cocoletzi, H.H.; Águila, J.C. DFT studies on the Al, B, and P doping of silicene. Superlattices Microstruct., 2018, 114, 242-250.
Wang, Z.; Jin, J.; Sun, M.; Dai, X. The half metallicity of zigzag silicene nanoribbon with Al/P co-doping. J. Supercond. Nov. Magn., 2017, 30(11), 3225-3229.
Zhang, J.M.; Song, W.T.; Xu, K.W.; Ji, V. The study of the P doped silicene nanoribbons with first-principles. Comput. Mater. Sci., 2014, 95, 429-434.
Zhang, X.; Zhang, D.; Xie, F.; Zheng, X.; Wang, H.; Long, M. First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons. Phys. Lett. A, 2017, 381(25-26), 2097-2102.
Drummond, N.; Zolyomi, V.; Fal’Ko, V. Electrically tunable band gap in silicene. Phys. Rev. B Condens. Matter Mater. Phys., 2012, 85(7) 075423
Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Tunable bandgap in silicene and germanene. Nano Lett., 2012, 12(1), 113-118.
[http://dx.doi.org/10.1021/nl203065e] [PMID: 22050667]
Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys., 2012, 14(3) 033003
Chegel, R.; Behzad, S. Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach. Superlattices Microstruct., 2013, 63, 79-90.
Vali, M.; Dideban, D.; Moezi, N. Silicene field effect transistor with high on/off current ratio and good current saturation. J. Comput. Electron., 2016, 15(1), 138-143.
Patel, N.; Choudhary, S. Current saturation and kink effect in zero-bandgap double-gate silicene field-effect transistors. Superlattices Microstruct., 2017, 110, 155-161.
Balestra, F.; Cristoloveanu, S.; Benachir, M.; Brini, J.; Elewa, T. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett., 1987, 8(9), 410-412.
Schwierz, F. Graphene transistors. Nat. Nanotechnol., 2010, 5(7), 487-496.
[http://dx.doi.org/10.1038/nnano.2010.89] [PMID: 20512128]
Mech, B.C.; Saha, S.; Hussain, S.; Kumar, J. In: A three dimensional numerical study of transport characteristics of Silicene Nanoribbon TFETs in comparison to GNR TFETs 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), IEEE: Pittsburgh, PA USA 25-28 July 2017, 2017 . 928-931.
Choi, W.Y.; Park, B.G.; Lee, J.D.; Liu, T.J.K. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett., 2007, 28(8), 743-745.
Ni, Z.; Zhong, H.; Jiang, X.; Quhe, R.; Luo, G.; Wang, Y.; Ye, M.; Yang, J.; Shi, J.; Lu, J. Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale, 2014, 6(13), 7609-7618.
[http://dx.doi.org/10.1039/C4NR00028E] [PMID: 24896227]
Fahad, M.S.; Srivastava, A.; Sharma, A.K.; Mayberry, C.; Mohsin, K. Silicene nanoribbon tunnel field effect transistor. ECS Trans., 2016, 75(5), 175-181.
Schwierz, F. Graphene transistors: Status, prospects, and problems. Proc. IEEE, 2013, 101(7), 1567-1584.
Johari, Z.; Hamid, F.; Tan, M.L.P.; Ahmadi, M.T.; Harun, F.; Ismail, R. Graphene nanoribbon field effect transistor logic gates performance projection. J. Comput. Theor. Nanosci., 2013, 10(5), 1164-1170.
Li, H.; Wang, L.; Liu, Q.H.; Zheng, J.X.; Mei, W.N.; Gao, Z.X.; Shi, J.J.; Lu, J. High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B, 2012, 85(8), 274.
Mahmoudi, M.; Ahangari, Z.; Fathipour, M. Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap. Chin. Phys. B, 2015, 25(1) 018501
Clendennen, C.; Mori, N.; Tsuchiya, H. Non-equilibrium green function simulations of graphene, silicene, and germanene nanoribbon field-effect transistors. J. Adv. Simul. Sci. Eng., 2015, 2(1), 171-177.
Salimian, F.; Dideban, D. Comparative study of nanoribbon field effect transistors based on silicene and graphene. Mater. Sci. Semicond. Process., 2019, 93, 92-98.
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater., 2016, 1(11), 16052.
Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature, 2012, 490(7419), 192-200.
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 20 August, 2020
Page: [595 - 607]
Pages: 13
DOI: 10.2174/1573413715666190709120019
Price: $65

Article Metrics

PDF: 39