Targeting the PAC1 Receptor for Neurological and Metabolic Disorders

Author(s): Chenyi Liao, Mathilde P. de Molliens, Severin T. Schneebeli, Matthias Brewer, Gaojie Song, David Chatenet, Karen M. Braas, Victor May*, Jianing Li*

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 16 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson’s and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.

Keywords: Class B GPCR, Behavioral disorders, Neurodegenerative diseases, Molecular modeling, Structure-based drug discovery, PAC1 Receptor.

[1]
Harmar, A.J.; Fahrenkrug, J.; Gozes, I.; Laburthe, M.; May, V.; Pisegna, J.R.; Vaudry, D.; Vaudry, H.; Waschek, J.A.; Said, S.I. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br. J. Pharmacol., 2012, 166(1), 4-17.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01871.x] [PMID: 22289055]
[2]
Bortolato, A.; Doré, A.S.; Hollenstein, K.; Tehan, B.G.; Mason, J.S.; Marshall, F.H. Structure of Class B GPCRs: new horizons for drug discovery. Br. J. Pharmacol., 2014, 171(13), 3132-3145.
[http://dx.doi.org/10.1111/bph.12689] [PMID: 24628305]
[3]
Culhane, K.J.; Liu, Y.; Cai, Y.; Yan, E.C.Y. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front. Pharmacol., 2015, 6, 264.
[http://dx.doi.org/10.3389/fphar.2015.00264] [PMID: 26594176]
[4]
Graaf, Cd.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.M.; Liao, J.; Fletcher, M.M.; Yang, D.; Brown, A.J.; Zhou, C.; Deng, J.; Wang, M.W. Glucagon-like peptide-1 and its class B G protein-coupled receptors: A long march to therapeutic successes. Pharmacol. Rev., 2016, 68(4), 954-1013.
[http://dx.doi.org/10.1124/pr.115.011395] [PMID: 27630114]
[5]
Pal, K.; Melcher, K.; Xu, H.E. Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol. Sin., 2012, 33(3), 300-311.
[http://dx.doi.org/10.1038/aps.2011.170] [PMID: 22266723]
[6]
de Graaf, C.; Song, G.; Cao, C.; Zhao, Q.; Wang, M.W.; Wu, B.; Stevens, R.C. Extending the structural view of class B GPCRs. Trends Biochem. Sci., 2017, 42(12), 946-960.
[http://dx.doi.org/10.1016/j.tibs.2017.10.003] [PMID: 29132948]
[7]
Siu, F.Y.; He, M.; de Graaf, C.; Han, G.W.; Yang, D.; Zhang, Z.; Zhou, C.; Xu, Q.; Wacker, D.; Joseph, J.S.; Liu, W.; Lau, J.; Cherezov, V.; Katritch, V.; Wang, M.W.; Stevens, R.C. Structure of the human glucagon class B G-protein-coupled receptor. Nature, 2013, 499(7459), 444-449.
[http://dx.doi.org/10.1038/nature12393] [PMID: 23863937]
[8]
Jazayeri, A.; Doré, A.S.; Lamb, D.; Krishnamurthy, H.; Southall, S.M.; Baig, A.H.; Bortolato, A.; Koglin, M.; Robertson, N.J.; Errey, J.C.; Andrews, S.P.; Teobald, I.; Brown, A.J.H.; Cooke, R.M.; Weir, M.; Marshall, F.H. Extra-helical binding site of a glucagon receptor antagonist. Nature, 2016, 533(7602), 274-277.
[http://dx.doi.org/10.1038/nature17414] [PMID: 27111510]
[9]
Song, G.; Yang, D.; Wang, Y.; de Graaf, C.; Zhou, Q.; Jiang, S.; Liu, K.; Cai, X.; Dai, A.; Lin, G.; Liu, D.; Wu, F.; Wu, Y.; Zhao, S.; Ye, L.; Han, G.W.; Lau, J.; Wu, B.; Hanson, M.A.; Liu, Z-J.; Wang, M-W.; Stevens, R.C. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature, 2017, 546(7657), 312-315.
[http://dx.doi.org/10.1038/nature22378] [PMID: 28514449]
[10]
Hollenstein, K.; Kean, J.; Bortolato, A.; Cheng, R.K.Y.; Doré, A.S.; Jazayeri, A.; Cooke, R.M.; Weir, M.; Marshall, F.H. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 2013, 499(7459), 438-443.
[http://dx.doi.org/10.1038/nature12357] [PMID: 23863939]
[11]
Jazayeri, A.; Rappas, M.; Brown, A.J.H.; Kean, J.; Errey, J.C.; Robertson, N.J.; Fiez-Vandal, C.; Andrews, S.P.; Congreve, M.; Bortolato, A.; Mason, J.S.; Baig, A.H.; Teobald, I.; Doré, A.S.; Weir, M.; Cooke, R.M.; Marshall, F.H. Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature, 2017, 546(7657), 254-258.
[http://dx.doi.org/10.1038/nature22800] [PMID: 28562585]
[12]
Zhang, H.; Qiao, A.; Yang, D.; Yang, L.; Dai, A.; de Graaf, C.; Reedtz-Runge, S.; Dharmarajan, V.; Zhang, H.; Han, G.W.; Grant, T.D.; Sierra, R.G.; Weierstall, U.; Nelson, G.; Liu, W.; Wu, Y.; Ma, L.; Cai, X.; Lin, G.; Wu, X.; Geng, Z.; Dong, Y.; Song, G.; Griffin, P.R.; Lau, J.; Cherezov, V.; Yang, H.; Hanson, M.A.; Stevens, R.C.; Zhao, Q.; Jiang, H.; Wang, M.W.; Wu, B. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature, 2017, 546(7657), 259-264.
[http://dx.doi.org/10.1038/nature22363] [PMID: 28514451]
[13]
Zhang, H.; Qiao, A.; Yang, L.; Van Eps, N.; Frederiksen, K.S.; Yang, D.; Dai, A.; Cai, X.; Zhang, H.; Yi, C.; Cao, C.; He, L.; Yang, H.; Lau, J.; Ernst, O.P.; Hanson, M.A.; Stevens, R.C.; Wang, M.W.; Reedtz-Runge, S.; Jiang, H.; Zhao, Q.; Wu, B. Structure of the glucagon receptor in complex with a glucagon analogue. Nature, 2018, 553(7686), 106-110.
[http://dx.doi.org/10.1038/nature25153] [PMID: 29300013]
[14]
Zhang, Y.; Sun, B.; Feng, D.; Hu, H.; Chu, M.; Qu, Q.; Tarrasch, J.T.; Li, S.; Sun Kobilka, T.; Kobilka, B.K.; Skiniotis, G. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature, 2017, 546(7657), 248-253.
[http://dx.doi.org/10.1038/nature22394] [PMID: 28538729]
[15]
Liang, Y.L.; Khoshouei, M.; Glukhova, A.; Furness, S.G.B.; Zhao, P.; Clydesdale, L.; Koole, C.; Truong, T.T.; Thal, D.M.; Lei, S.; Radjainia, M.; Danev, R.; Baumeister, W.; Wang, M.W.; Miller, L.J.; Christopoulos, A.; Sexton, P.M.; Wootten, D. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature, 2018, 555(7694), 121-125.
[http://dx.doi.org/10.1038/nature25773] [PMID: 29466332]
[16]
Liang, Y.L.; Khoshouei, M.; Radjainia, M.; Zhang, Y.; Glukhova, A.; Tarrasch, J.; Thal, D.M.; Furness, S.G.B.; Christopoulos, G.; Coudrat, T.; Danev, R.; Baumeister, W.; Miller, L.J.; Christopoulos, A.; Kobilka, B.K.; Wootten, D.; Skiniotis, G.; Sexton, P.M. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature, 2017, 546(7656), 118-123.
[http://dx.doi.org/10.1038/nature22327] [PMID: 28437792]
[17]
Liang, Y-L.; Khoshouei, M.; Deganutti, G.; Glukhova, A.; Koole, C.; Peat, T.S.; Radjainia, M.; Plitzko, J.M.; Baumeister, W.; Miller, L.J.; Hay, D.L.; Christopoulos, A.; Reynolds, C.A.; Wootten, D.; Sexton, P.M. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature, 2018, 561(7724), 492-497.
[http://dx.doi.org/10.1038/s41586-018-0535-y] [PMID: 30209400]
[18]
Spengler, D.; Waeber, C.; Pantaloni, C.; Holsboer, F.; Bockaert, J.; Seeburg, P.H.; Journot, L. Differential signal transduction by five splice variants of the PACAP receptor. Nature, 1993, 365(6442), 170-175.
[http://dx.doi.org/10.1038/365170a0] [PMID: 8396727]
[19]
Braas, K.M.; May, V. Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. J. Biol. Chem., 1999, 274(39), 27702-27710.
[http://dx.doi.org/10.1074/jbc.274.39.27702] [PMID: 10488112]
[20]
Blechman, J.; Levkowitz, G. Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: Mechanisms of fine tuning of brain activity. Front. Endocrinol. (Lausanne), 2013, 4, 55.
[http://dx.doi.org/10.3389/fendo.2013.00055] [PMID: 23734144]
[21]
Liao, C.; Zhao, X.; Brewer, M.; May, V.; Li, J. Conformational transitions of the pituitary adenylate cyclase-activating polypeptide receptor, a human class B GPCR. Sci. Rep., 2017, 7(1), 5427.
[http://dx.doi.org/10.1038/s41598-017-05815-x] [PMID: 28710390]
[22]
Millar, R.P.; Newton, C.L. The year in G protein-coupled receptor research. Mol. Endocrinol., 2010, 24(1), 261-274.
[http://dx.doi.org/10.1210/me.2009-0473] [PMID: 20019124]
[23]
Lebon, G.; Warne, T.; Edwards, P.C.; Bennett, K.; Langmead, C.J.; Leslie, A.G.W.; Tate, C.G. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature, 2011, 474(7352), 521-525.
[http://dx.doi.org/10.1038/nature10136] [PMID: 21593763]
[24]
Li, J.; Jonsson, A.L.; Beuming, T.; Shelley, J.C.; Voth, G.A. Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor. J. Am. Chem. Soc., 2013, 135(23), 8749-8759.
[http://dx.doi.org/10.1021/ja404391q] [PMID: 23678995]
[25]
Liao, C.; Zhao, X.; Liu, J.; Schneebeli, S.T.; Shelley, J.C.; Li, J. Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models. Phys. Chem. Chem. Phys., 2017, 19(13), 9181-9188.
[http://dx.doi.org/10.1039/C7CP00200A] [PMID: 28317993]
[26]
Dror, R.O.; Arlow, D.H.; Maragakis, P.; Mildorf, T.J.; Pan, A.C.; Xu, H.; Borhani, D.W.; Shaw, D.E. Activation mechanism of the β2-adrenergic receptor. Proc. Natl. Acad. Sci. USA, 2011, 108(46), 18684-18689.
[http://dx.doi.org/10.1073/pnas.1110499108] [PMID: 22031696]
[27]
Yuan, S.; Hu, Z.; Filipek, S.; Vogel, H. W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A2A receptor. Angew. Chem. Int. Ed. Engl., 2015, 54(2), 556-559.
[PMID: 25403323]
[28]
Latorraca, N.R.; Venkatakrishnan, A.J.; Dror, R.O. GPCR dynamics: Structures in motion. Chem. Rev., 2017, 117(1), 139-155.
[http://dx.doi.org/10.1021/acs.chemrev.6b00177] [PMID: 27622975]
[29]
Kohlhoff, K.J.; Shukla, D.; Lawrenz, M.; Bowman, G.R.; Konerding, D.E.; Belov, D.; Altman, R.B.; Pande, V.S. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem., 2014, 6(1), 15-21.
[http://dx.doi.org/10.1038/nchem.1821] [PMID: 24345941]
[30]
Liao, C.; May, V.; Li, J. PAC1 receptors: Shapeshifters in motion. J. Mol. Neurosci., 2019, 68(3), 331-339.
[PMID: 30074173]
[31]
Beauchamp, K.A.; Bowman, G.R.; Lane, T.J.; Maibaum, L.; Haque, I.S.; Pande, V.S. MSMBuilder2: Modeling conformational dynamics on the picosecond to millisecond scale. J. Chem. Theory Comput., 2011, 7(10), 3412-3419.
[http://dx.doi.org/10.1021/ct200463m] [PMID: 22125474]
[32]
Wootten, D.; Simms, J.; Miller, L.J.; Christopoulos, A.; Sexton, P.M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl. Acad. Sci. USA, 2013, 110(13), 5211-5216.
[http://dx.doi.org/10.1073/pnas.1221585110] [PMID: 23479653]
[33]
Hollenstein, K.; de Graaf, C.; Bortolato, A.; Wang, M.W.; Marshall, F.H.; Stevens, R.C. Insights into the structure of class B GPCRs. Trends Pharmacol. Sci., 2014, 35(1), 12-22.
[http://dx.doi.org/10.1016/j.tips.2013.11.001] [PMID: 24359917]
[34]
Grace, C.R.R.; Perrin, M.H.; Gulyas, J.; Rivier, J.E.; Vale, W.W.; Riek, R. NMR structure of the first extracellular domain of corticotropin-releasing factor receptor 1 (ECD1-CRF-R1) complexed with a high affinity agonist. J. Biol. Chem., 2010, 285(49), 38580-38589.
[http://dx.doi.org/10.1074/jbc.M110.121897] [PMID: 20843795]
[35]
Parthier, C.; Kleinschmidt, M.; Neumann, P.; Rudolph, R.; Manhart, S.; Schlenzig, D.; Fanghänel, J.; Rahfeld, J-U.; Demuth, H-U.; Stubbs, M.T. Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc. Natl. Acad. Sci. USA, 2007, 104(35), 13942-13947.
[http://dx.doi.org/10.1073/pnas.0706404104] [PMID: 17715056]
[36]
Pioszak, A.A.; Xu, H.E. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5034-5039.
[http://dx.doi.org/10.1073/pnas.0801027105] [PMID: 18375760]
[37]
Sun, C.; Song, D.; Davis-Taber, R.A.; Barrett, L.W.; Scott, V.E.; Richardson, P.L.; Pereda-Lopez, A.; Uchic, M.E.; Solomon, L.R.; Lake, M.R.; Walter, K.A.; Hajduk, P.J.; Olejniczak, E.T. Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 7875-7880.
[http://dx.doi.org/10.1073/pnas.0611397104] [PMID: 17470806]
[38]
Yang, L.; Yang, D.; de Graaf, C.; Moeller, A.; West, G.M.; Dharmarajan, V.; Wang, C.; Siu, F.Y.; Song, G.; Reedtz-Runge, S.; Pascal, B.D.; Wu, B.; Potter, C.S.; Zhou, H.; Griffin, P.R.; Carragher, B.; Yang, H.; Wang, M.W.; Stevens, R.C.; Jiang, H. Conformational states of the full-length glucagon receptor. Nat. Commun., 2015, 6, 7859.
[http://dx.doi.org/10.1038/ncomms8859] [PMID: 26227798]
[39]
Kumar, S.; Pioszak, A.; Zhang, C.; Swaminathan, K.; Xu, H.E. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors. PLoS One, 2011, 6(5)e19682
[http://dx.doi.org/10.1371/journal.pone.0019682] [PMID: 21625560]
[40]
Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.C.; Hashimoto, H.; Galas, L.; Vaudry, H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev., 2009, 61(3), 283-357.
[http://dx.doi.org/10.1124/pr.109.001370] [PMID: 19805477]
[41]
Miyata, A.; Jiang, L.; Dahl, R.D.; Kitada, C.; Kubo, K.; Fujino, M.; Minamino, N.; Arimura, A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun., 1990, 170(2), 643-648.
[http://dx.doi.org/10.1016/0006-291X(90)92140-U] [PMID: 2383262]
[42]
Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun., 1989, 164(1), 567-574.
[http://dx.doi.org/10.1016/0006-291X(89)91757-9] [PMID: 2803320]
[43]
Arimura, A.; Somogyvári-Vigh, A.; Miyata, A.; Mizuno, K.; Coy, D.H.; Kitada, C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology, 1991, 129(5), 2787-2789.
[http://dx.doi.org/10.1210/endo-129-5-2787] [PMID: 1935809]
[44]
Sherwood, N.M.; Krueckl, S.L.; McRory, J.E. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr. Rev., 2000, 21(6), 619-670.
[PMID: 11133067]
[45]
Robberecht, P.; Gourlet, P.; De Neef, P.; Woussen-Colle, M.C.; Vandermeers-Piret, M.C.; Vandermeers, A.; Christophe, J. Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur. J. Biochem., 1992, 207(1), 239-246.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17043.x] [PMID: 1321043]
[46]
Lerner, E.A.; Iuga, A.O.; Reddy, V.B. Maxadilan, a PAC1 receptor agonist from sand flies. Peptides, 2007, 28(9), 1651-1654.
[http://dx.doi.org/10.1016/j.peptides.2007.06.021] [PMID: 17681401]
[47]
Soares, M.B.; Titus, R.G.; Shoemaker, C.B.; David, J.R.; Bozza, M. The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. J. Immunol., 1998, 160(4), 1811-1816.
[PMID: 9469441]
[48]
Tatsuno, I.; Uchida, D.; Tanaka, T.; Saeki, N.; Hirai, A.; Saito, Y.; Moro, O.; Tajima, M. Maxadilan specifically interacts with PAC1 receptor, which is a dominant form of PACAP/VIP family receptors in cultured rat cortical neurons. Brain Res., 2001, 889(1-2), 138-148.
[http://dx.doi.org/10.1016/S0006-8993(00)03126-7] [PMID: 11166697]
[49]
Uchida, D.; Tatsuno, I.; Tanaka, T.; Hirai, A.; Saito, Y.; Moro, O.; Tajima, M. Maxadilan is a specific agonist and its deleted peptide (M65) is a specific antagonist for PACAP type 1 receptor. Ann. N. Y. Acad. Sci., 1998, 865, 253-258.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb11185.x] [PMID: 9928019]
[50]
May, V.; Parsons, R.L. G protein-coupled receptor endosomal signaling and regulation of neuronal excitability and stress responses: Signaling options and lessons from the PAC1 receptor. J. Cell. Physiol., 2017, 232(4), 698-706.
[http://dx.doi.org/10.1002/jcp.25615] [PMID: 27661062]
[51]
Hammack, S.E.; Cheung, J.; Rhodes, K.M.; Schutz, K.C.; Falls, W.A.; Braas, K.M.; May, V. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology, 2009, 34(6), 833-843.
[http://dx.doi.org/10.1016/j.psyneuen.2008.12.013] [PMID: 19181454]
[52]
Ressler, K.J.; Mercer, K.B.; Bradley, B.; Jovanovic, T.; Mahan, A.; Kerley, K.; Norrholm, S.D.; Kilaru, V.; Smith, A.K.; Myers, A.J.; Ramirez, M.; Engel, A.; Hammack, S.E.; Toufexis, D.; Braas, K.M.; Binder, E.B.; May, V. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature, 2011, 470(7335), 492-497.
[http://dx.doi.org/10.1038/nature09856] [PMID: 21350482]
[53]
Hammack, S.E.; May, V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol. Psychiatry, 2015, 78(3), 167-177.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.003] [PMID: 25636177]
[54]
Lezak, K.R.; Roman, C.W.; Braas, K.M.; Schutz, K.C.; Falls, W.A.; Schulkin, J.; May, V.; Hammack, S.E. Regulation of bed nucleus of the stria terminalis PACAP expression by stress and corticosterone. J. Mol. Neurosci., 2014, 54(3), 477-484.
[http://dx.doi.org/10.1007/s12031-014-0269-8] [PMID: 24614974]
[55]
Roman, C.W.; Lezak, K.R.; Hartsock, M.J.; Falls, W.A.; Braas, K.M.; Howard, A.B.; Hammack, S.E.; May, V. PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology, 2014, 47, 151-165.
[http://dx.doi.org/10.1016/j.psyneuen.2014.05.014] [PMID: 25001965]
[56]
Missig, G.; Roman, C.W.; Vizzard, M.A.; Braas, K.M.; Hammack, S.E.; May, V. Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology, 2014, 86, 38-48.
[http://dx.doi.org/10.1016/j.neuropharm.2014.06.022] [PMID: 24998751]
[57]
Missig, G.; Mei, L.; Vizzard, M.A.; Braas, K.M.; Waschek, J.A.; Ressler, K.J.; Hammack, S.E.; May, V. Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol. Psychiatry, 2017, 81(8), 671-682.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.025] [PMID: 28057459]
[58]
Hashimoto, H.; Shintani, N.; Tanaka, K.; Mori, W.; Hirose, M.; Matsuda, T.; Sakaue, M.; Miyazaki, J.; Niwa, H.; Tashiro, F.; Yamamoto, K.; Koga, K.; Tomimoto, S.; Kunugi, A.; Suetake, S.; Baba, A. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13355-13360.
[http://dx.doi.org/10.1073/pnas.231094498] [PMID: 11687615]
[59]
Girard, B.A.; Lelievre, V.; Braas, K.M.; Razinia, T.; Vizzard, M.A.; Ioffe, Y.; El Meskini, R.; Ronnett, G.V.; Waschek, J.A.; May, V. Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J. Neurochem., 2006, 99(2), 499-513.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04112.x] [PMID: 17029602]
[60]
Hattori, S.; Takao, K.; Tanda, K.; Toyama, K.; Shintani, N.; Baba, A.; Hashimoto, H.; Miyakawa, T. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front. Behav. Neurosci., 2012, 6, 58.
[http://dx.doi.org/10.3389/fnbeh.2012.00058] [PMID: 23060763]
[61]
Otto, C.; Kovalchuk, Y.; Wolfer, D.P.; Gass, P.; Martin, M.; Zuschratter, W.; Gröne, H.J.; Kellendonk, C.; Tronche, F.; Maldonado, R.; Lipp, H.P.; Konnerth, A.; Schütz, G. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J. Neurosci., 2001, 21(15), 5520-5527.
[http://dx.doi.org/10.1523/JNEUROSCI.21-15-05520.2001] [PMID: 11466423]
[62]
Stroth, N.; Eiden, L.E. Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience, 2010, 165(4), 1025-1030.
[http://dx.doi.org/10.1016/j.neuroscience.2009.11.023] [PMID: 19931358]
[63]
Hatanaka, M.; Tanida, M.; Shintani, N.; Isojima, Y.; Kawaguchi, C.; Hashimoto, H.; Kakuda, M.; Haba, R.; Nagai, K.; Baba, A. Lack of light-induced elevation of renal sympathetic nerve activity and plasma corticosterone levels in PACAP-deficient mice. Neurosci. Lett., 2008, 444(2), 153-156.
[http://dx.doi.org/10.1016/j.neulet.2008.08.030] [PMID: 18722505]
[64]
Tsukiyama, N.; Saida, Y.; Kakuda, M.; Shintani, N.; Hayata, A.; Morita, Y.; Tanida, M.; Tajiri, M.; Hazama, K.; Ogata, K.; Hashimoto, H.; Baba, A. PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress, 2011, 14(4), 368-375.
[http://dx.doi.org/10.3109/10253890.2010.544345] [PMID: 21438773]
[65]
Otto, C.; Martin, M.; Wolfer, D.P.; Lipp, H.P.; Maldonado, R.; Schütz, G. Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res. Mol. Brain Res., 2001, 92(1-2), 78-84.
[http://dx.doi.org/10.1016/S0169-328X(01)00153-X] [PMID: 11483244]
[66]
Dias, B.G.; Ressler, K.J. PACAP and the PAC1 receptor in post-traumatic stress disorder. Neuropsychopharmacology, 2013, 38(1), 245-246.
[http://dx.doi.org/10.1038/npp.2012.147] [PMID: 23147486]
[67]
Almli, L.M.; Mercer, K.B.; Kerley, K.; Feng, H.; Bradley, B.; Conneely, K.N.; Ressler, K.J. ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2013, 162B(3), 262-272.
[http://dx.doi.org/10.1002/ajmg.b.32145] [PMID: 23505260]
[68]
Jovanovic, T.; Norrholm, S.D.; Davis, J.; Mercer, K.B.; Almli, L.; Nelson, A.; Cross, D.; Smith, A.; Ressler, K.J.; Bradley, B. PAC1 receptor (ADCYAP1R1) genotype is associated with dark-enhanced startle in children. Mol. Psychiatry, 2013, 18(7), 742-743.
[http://dx.doi.org/10.1038/mp.2012.98] [PMID: 22776899]
[69]
Uddin, M.; Chang, S.C.; Zhang, C.; Ressler, K.; Mercer, K.B.; Galea, S.; Keyes, K.M.; McLaughlin, K.A.; Wildman, D.E.; Aiello, A.E.; Koenen, K.C. Adcyap1r1 genotype, posttraumatic stress disorder, and depression among women exposed to childhood maltreatment. Depress. Anxiety, 2013, 30(3), 251-258.
[http://dx.doi.org/10.1002/da.22037] [PMID: 23280952]
[70]
Wang, L.; Cao, C.; Wang, R.; Qing, Y.; Zhang, J.; Zhang, X.Y. PAC1 receptor (ADCYAP1R1) genotype is associated with PTSD’s emotional numbing symptoms in Chinese earthquake survivors. J. Affect. Disord., 2013, 150(1), 156-159.
[http://dx.doi.org/10.1016/j.jad.2013.01.010] [PMID: 23394710]
[71]
Pohlack, S.T.; Nees, F.; Ruttorf, M.; Cacciaglia, R.; Winkelmann, T.; Schad, L.R.; Witt, S.H.; Rietschel, M.; Flor, H. Neural mechanism of a sex-specific risk variant for posttraumatic stress disorder in the type I receptor of the pituitary adenylate cyclase activating polypeptide. Biol. Psychiatry, 2015, 78(12), 840-847.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.018] [PMID: 25680674]
[72]
Rouwette, T.; Vanelderen, P.; Roubos, E.W.; Kozicz, T.; Vissers, K. The amygdala, a relay station for switching on and off pain. Eur. J. Pain, 2012, 16(6), 782-792.
[http://dx.doi.org/10.1002/j.1532-2149.2011.00071.x] [PMID: 22337528]
[73]
Gauriau, C.; Bernard, J-F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol., 2002, 87(2), 251-258.
[http://dx.doi.org/10.1113/eph8702357] [PMID: 11856971]
[74]
Otis, J.D.; Keane, T.M.; Kerns, R.D. An examination of the relationship between chronic pain and post-traumatic stress disorder. J. Rehabil. Res. Dev., 2003, 40(5), 397-405.
[http://dx.doi.org/10.1682/JRRD.2003.09.0397] [PMID: 15080224]
[75]
McFarlane, A.C.; Atchison, M.; Rafalowicz, E.; Papay, P. Physical symptoms in post-traumatic stress disorder. J. Psychosom. Res., 1994, 38(7), 715-726.
[http://dx.doi.org/10.1016/0022-3999(94)90024-8] [PMID: 7877126]
[76]
McWilliams, L.A.; Cox, B.J.; Enns, M.W. Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain, 2003, 106(1-2), 127-133.
[http://dx.doi.org/10.1016/S0304-3959(03)00301-4] [PMID: 14581119]
[77]
Asmundson, G.J.; Katz, J. Understanding the co-occurrence of anxiety disorders and chronic pain: state-of-the-art. Depress. Anxiety, 2009, 26(10), 888-901.
[http://dx.doi.org/10.1002/da.20600] [PMID: 19691031]
[78]
Moeller-Bertram, T.; Keltner, J.; Strigo, I.A. Pain and post traumatic stress disorder - review of clinical and experimental evidence. Neuropharmacology, 2012, 62(2), 586-597.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.028] [PMID: 21586297]
[79]
Norman, S.B.; Stein, M.B.; Dimsdale, J.E.; Hoyt, D.B. Pain in the aftermath of trauma is a risk factor for post-traumatic stress disorder. Psychol. Med., 2008, 38(4), 533-542.
[http://dx.doi.org/10.1017/S0033291707001389] [PMID: 17825121]
[80]
Scioli-Salter, E.R.; Forman, D.E.; Otis, J.D.; Gregor, K.; Valovski, I.; Rasmusson, A.M. The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications. Clin. J. Pain, 2015, 31(4), 363-374.
[http://dx.doi.org/10.1097/AJP.0000000000000115] [PMID: 24806468]
[81]
Syed, A.U.; Koide, M.; Braas, K.M.; May, V.; Wellman, G.C. Pituitary adenylate cyclase-activating polypeptide (PACAP) potently dilates middle meningeal arteries: implications for migraine. J. Mol. Neurosci., 2012, 48(3), 574-583.
[http://dx.doi.org/10.1007/s12031-012-9851-0] [PMID: 22766684]
[82]
Edvinsson, L.; Tajti, J.; Szalárdy, L.; Vécsei, L. PACAP and its role in primary headaches. J. Headache Pain, 2018, 19(1), 21.
[http://dx.doi.org/10.1186/s10194-018-0852-4] [PMID: 29523978]
[83]
Akerman, S.; Goadsby, P.J. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci. Transl. Med., 2015, 7(308)308ra157
[http://dx.doi.org/10.1126/scitranslmed.aaa7557] [PMID: 26446954]
[84]
Brain, S.D.; Williams, T.J.; Tippins, J.R.; Morris, H.R.; MacIntyre, I. Calcitonin gene-related peptide is a potent vasodilator. Nature, 1985, 313(5997), 54-56.
[http://dx.doi.org/10.1038/313054a0] [PMID: 3917554]
[85]
Lassen, L.H.; Haderslev, P.A.; Jacobsen, V.B.; Iversen, H.K.; Sperling, B.; Olesen, J. CGRP may play a causative role in migraine. Cephalalgia, 2002, 22(1), 54-61.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00310.x] [PMID: 11993614]
[86]
Tepper, S.J. History and review of anti-calcitonin gene-related peptide (CGRP) therapies: From translational research to treatment. Headache, 2018, 58(Suppl. 3), 238-275.
[http://dx.doi.org/10.1111/head.13379] [PMID: 30242830]
[87]
Schytz, H.W.; Birk, S.; Wienecke, T.; Kruuse, C.; Olesen, J.; Ashina, M. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain, 2009, 132(Pt 1), 16-25.
[http://dx.doi.org/10.1093/brain/awn307] [PMID: 19052139]
[88]
Amin, F.M.; Asghar, M.S.; Guo, S.; Hougaard, A.; Hansen, A.E.; Schytz, H.W.; van der Geest, R.J.; de Koning, P.J.; Larsson, H.B.; Olesen, J.; Ashina, M. Headache and prolonged dilatation of the middle meningeal artery by PACAP38 in healthy volunteers. Cephalalgia, 2012, 32(2), 140-149.
[http://dx.doi.org/10.1177/0333102411431333] [PMID: 22174350]
[89]
Syed, A.U.; Koide, M.; May, V.; Wellman, G.C. PACAP regulation of vascular tone: differential mechanism among vascular beds.Pituitary Adenylate Cyclase Activating Polypeptide — PACAP; Reglodi, D; Tamas, A., Ed.; Springer International Publishing: Cham, 2016, pp. 617-630.
[http://dx.doi.org/10.1007/978-3-319-35135-3_36]
[90]
Carrasquillo, Y.; Gereau, R.W., IV Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J. Neurosci., 2007, 27(7), 1543-1551.
[http://dx.doi.org/10.1523/JNEUROSCI.3536-06.2007] [PMID: 17301163]
[91]
May, V.; Buttolph, T.R.; Girard, B.M.; Clason, T.A.; Parsons, R.L. PACAP-induced ERK activation in HEK cells expressing PAC1 receptors involves both receptor internalization and PKC signaling. Am. J. Physiol. Cell Physiol., 2014, 306(11), C1068-C1079.
[http://dx.doi.org/10.1152/ajpcell.00001.2014] [PMID: 24696141]
[92]
Hannibal, J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J. Comp. Neurol., 2002, 453(4), 389-417.
[http://dx.doi.org/10.1002/cne.10418] [PMID: 12389210]
[93]
Mounien, L.; Do Rego, J.C.; Bizet, P.; Boutelet, I.; Gourcerol, G.; Fournier, A.; Brabet, P.; Costentin, J.; Vaudry, H.; Jégou, S. Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system. Neuropsychopharmacology, 2009, 34(2), 424-435.
[http://dx.doi.org/10.1038/npp.2008.73] [PMID: 18536705]
[94]
Mizuno, Y.; Kondo, K.; Terashima, Y.; Arima, H.; Murase, T.; Oiso, Y. Anorectic effect of pituitary adenylate cyclase activating polypeptide (PACAP) in rats: lack of evidence for involvement of hypothalamic neuropeptide gene expression. J. Neuroendocrinol., 1998, 10(8), 611-616.
[http://dx.doi.org/10.1046/j.1365-2826.1998.00244.x] [PMID: 9725713]
[95]
Vu, J.P.; Larauche, M.; Flores, M.; Luong, L.; Norris, J.; Oh, S.; Liang, L.J.; Waschek, J.; Pisegna, J.R.; Germano, P.M. Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J. Mol. Neurosci., 2015, 56(2), 377-387.
[http://dx.doi.org/10.1007/s12031-015-0556-z] [PMID: 25904310]
[96]
Vu, J.P.; Goyal, D.; Luong, L.; Oh, S.; Sandhu, R.; Norris, J.; Parsons, W.; Pisegna, J.R.; Germano, P.M. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(10), G816-G825.
[http://dx.doi.org/10.1152/ajpgi.00190.2015] [PMID: 26336928]
[97]
Resch, J.M.; Boisvert, J.P.; Hourigan, A.E.; Mueller, C.R.; Yi, S.S.; Choi, S. Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 301(6), R1625-R1634.
[http://dx.doi.org/10.1152/ajpregu.00334.2011] [PMID: 21957159]
[98]
Resch, J.M.; Maunze, B.; Gerhardt, A.K.; Magnuson, S.K.; Phillips, K.A.; Choi, S. Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am. J. Physiol. Endocrinol. Metab., 2013, 305(12), E1452-E1463.
[http://dx.doi.org/10.1152/ajpendo.00293.2013] [PMID: 24148346]
[99]
Krashes, M.J.; Shah, B.P.; Madara, J.C.; Olson, D.P.; Strochlic, D.E.; Garfield, A.S.; Vong, L.; Pei, H.; Watabe-Uchida, M.; Uchida, N.; Liberles, S.D.; Lowell, B.B. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature, 2014, 507(7491), 238-242.
[http://dx.doi.org/10.1038/nature12956] [PMID: 24487620]
[100]
Yi, C-X.; Sun, N.; Ackermans, M.T.; Alkemade, A.; Foppen, E.; Shi, J.; Serlie, M.J.; Buijs, R.M.; Fliers, E.; Kalsbeek, A. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats. Diabetes, 2010, 59(7), 1591-1600.
[http://dx.doi.org/10.2337/db09-1398] [PMID: 20357362]
[101]
Yamamoto, J.; Imai, J.; Izumi, T.; Takahashi, H.; Kawana, Y.; Takahashi, K.; Kodama, S.; Kaneko, K.; Gao, J.; Uno, K.; Sawada, S.; Asano, T.; Kalinichenko, V.V.; Susaki, E.A.; Kanzaki, M.; Ueda, H.R.; Ishigaki, Y.; Yamada, T.; Katagiri, H. Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism. Nat. Commun., 2017, 8(1), 1930.
[http://dx.doi.org/10.1038/s41467-017-01869-7] [PMID: 29208957]
[102]
Tatsuno, I.; Morio, H.; Tanaka, T.; Uchida, D.; Hirai, A.; Tamura, Y.; Saito, Y. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulator of astrocytes: PACAP stimulates proliferation and production of interleukin 6 (IL-6), but not nerve growth factor (NGF), in cultured rat astrocyte. Ann. N. Y. Acad. Sci., 1996, 805, 482-488.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb17508.x] [PMID: 8993428]
[103]
Lu, N.; Zhou, R.; DiCicco-Bloom, E. Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J. Neurosci. Res., 1998, 53(6), 651-662.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980915)53:6<651:AID-JNR3>3.0.CO;2-4] [PMID: 9753193]
[104]
Mercer, A.; Rönnholm, H.; Holmberg, J.; Lundh, H.; Heidrich, J.; Zachrisson, O.; Ossoinak, A.; Frisén, J.; Patrone, C. PACAP promotes neural stem cell proliferation in adult mouse brain. J. Neurosci. Res., 2004, 76(2), 205-215.
[http://dx.doi.org/10.1002/jnr.20038] [PMID: 15048918]
[105]
Vaudry, D.; Gonzalez, B.J.; Basille, M.; Fournier, A.; Vaudry, H. Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 9415-9420.
[http://dx.doi.org/10.1073/pnas.96.16.9415] [PMID: 10430957]
[106]
Allais, A.; Burel, D.; Isaac, E.R.; Gray, S.L.; Basille, M.; Ravni, A.; Sherwood, N.M.; Vaudry, H.; Gonzalez, B.J. Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. Eur. J. Neurosci., 2007, 25(9), 2604-2618.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05535.x] [PMID: 17561835]
[107]
Manecka, D-L.; Boukhzar, L.; Falluel-Morel, A.; Lihrmann, I.; Anouar, Y. PACAP signaling in neuroprotection.Pituitary Adenylate Cyclase Activating Polypeptide — PACAP; Reglodi, D.; Tamas, A., Eds.; Springer International Publishing: Cham, 2016, pp. 549-561.
[http://dx.doi.org/10.1007/978-3-319-35135-3_32]
[108]
Reglodi, D.; Tamas, A.; Jungling, A.; Vaczy, A.; Rivnyak, A.; Fulop, B.D.; Szabo, E.; Lubics, A.; Atlasz, T. Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents. Neurotoxicology, 2018, 66, 185-194.
[http://dx.doi.org/10.1016/j.neuro.2018.03.010] [PMID: 29604313]
[109]
Vaudry, D.; Falluel-Morel, A.; Basille, M.; Pamantung, T.F.; Fontaine, M.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. J. Neurosci. Res., 2003, 72(3), 303-316.
[http://dx.doi.org/10.1002/jnr.10530] [PMID: 12692897]
[110]
Falluel-Morel, A.; Aubert, N.; Vaudry, D.; Basille, M.; Fontaine, M.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J. Neurochem., 2004, 91(5), 1231-1243.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02810.x] [PMID: 15569266]
[111]
Reglodi, D.; Vaczy, A.; Rubio-Beltran, E. MaassenVanDenBrink, A. Protective effects of PACAP in ischemia. J. Headache Pain, 2018, 19(1), 19.
[http://dx.doi.org/10.1186/s10194-018-0845-3] [PMID: 29500688]
[112]
Ohtaki, H.; Nakamachi, T.; Dohi, K.; Aizawa, Y.; Takaki, A.; Hodoyama, K.; Yofu, S.; Hashimoto, H.; Shintani, N.; Baba, A.; Kopf, M.; Iwakura, Y.; Matsuda, K.; Arimura, A.; Shioda, S. Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7488-7493.
[http://dx.doi.org/10.1073/pnas.0600375103] [PMID: 16651528]
[113]
Zhang, Y.; Malmberg, A.B.; Yaksh, T.L.; Sjölund, B.; Sundler, F.; Håkanson, R. Capsaicin-evoked release of pituitary adenylate cyclase activating peptide (PACAP) and calcitonin gene-related peptide (CGRP) from rat spinal cord in vivo. Regul. Pept., 1997, 69(2), 83-87.
[http://dx.doi.org/10.1016/S0167-0115(97)02133-2] [PMID: 9178350]
[114]
Nakamachi, T.; Ohtaki, H.; Yofu, S.; Dohi, K.; Watanabe, J.; Hayashi, D.; Matsuno, R.; Nonaka, N.; Itabashi, K.; Shioda, S. Pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) co-localizes with activity-dependent neuroprotective protein (ADNP) in the mouse brains. Regul. Pept., 2008, 145(1-3), 88-95.
[http://dx.doi.org/10.1016/j.regpep.2007.09.025] [PMID: 17942168]
[115]
Gillardon, F.; Hata, R.; Hossmann, K-A. Delayed up-regulation of Zac1 and PACAP type I receptor after transient focal cerebral ischemia in mice. Brain Res. Mol. Brain Res., 1998, 61(1-2), 207-210.
[http://dx.doi.org/10.1016/S0169-328X(98)00202-2] [PMID: 9795221]
[116]
Brifault, C.; Gras, M.; Liot, D.; May, V.; Vaudry, D.; Wurtz, O. Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke, 2015, 46(2), 520-528.
[http://dx.doi.org/10.1161/STROKEAHA.114.006864] [PMID: 25550371]
[117]
Dejda, A.; Sokołowska, P.; Nowak, J.Z. Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol. Rep., 2005, 57(3), 307-320.
[PMID: 15985713]
[118]
Silveira, M.S.; Costa, M.R.; Bozza, M.; Linden, R. Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J. Biol. Chem., 2002, 277(18), 16075-16080.
[http://dx.doi.org/10.1074/jbc.M110106200] [PMID: 11847214]
[119]
Rőth, E.; Wéber, G.; Kiss, P.; Horváth, G.; Tóth, G.; Gasz, B.; Ferencz, A.; Gallyas, F., Jr; Reglődi, D.; Rácz, B. Effects of PACAP and preconditioning against ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro. Ann. N. Y. Acad. Sci., 2009, 1163, 512-516.
[http://dx.doi.org/10.1111/j.1749-6632.2008.03635.x] [PMID: 19456402]
[120]
Laszlo, E.; Juhasz, T.; Varga, A.; Czibere, B.; Kovacs, K.; Degrell, P.; Horvath, G.; Jancso, G.; Szakaly, P.; Tamas, A.; Reglodi, D. Protective effect of PACAP on ischemia/reperfusion-induced kidney injury of male and female rats: gender differences. J. Mol. Neurosci., 2018, 68(3), 408-419.
[PMID: 30443839]
[121]
Ferencz, A.; Kiss, P.; Weber, G.; Helyes, Z.; Shintani, N.; Baba, A.; Reglodi, D. Comparison of intestinal warm ischemic injury in PACAP knockout and wild-type mice. J. Mol. Neurosci., 2010, 42(3), 435-442.
[http://dx.doi.org/10.1007/s12031-010-9357-6] [PMID: 20387008]
[122]
Ferencz, A.; Weber, G.; Helyes, Z.; Hashimoto, H.; Baba, A.; Reglodi, D. Presence of endogenous PACAP-38 ameliorated intestinal cold preservation tissue injury. J. Mol. Neurosci., 2010, 42(3), 428-434.
[http://dx.doi.org/10.1007/s12031-010-9352-y] [PMID: 20379803]
[123]
Wang, G.; Qi, C.; Fan, G-H.; Zhou, H-Y.; Chen, S-D. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett., 2005, 579(18), 4005-4011.
[http://dx.doi.org/10.1016/j.febslet.2005.06.013] [PMID: 16004991]
[124]
Deguil, J.; Jailloux, D.; Page, G.; Fauconneau, B.; Houeto, J-L.; Philippe, M.; Muller, J-M.; Pain, S. Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in MPP+-induced alteration of translational control in Neuro-2a neuroblastoma cells. J. Neurosci. Res., 2007, 85(9), 2017-2025.
[http://dx.doi.org/10.1002/jnr.21318] [PMID: 17492795]
[125]
Reglődi, D.; Lubics, A.; Tamás, A.; Szalontay, L.; Lengvári, I. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson’s disease. Behav. Brain Res., 2004, 151(1-2), 303-312.
[http://dx.doi.org/10.1016/j.bbr.2003.09.007] [PMID: 15084446]
[126]
Reglődi, D.; Tamás, A.; Lubics, A.; Szalontay, L.; Lengvári, I. Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regul. Pept., 2004, 123(1-3), 85-94.
[http://dx.doi.org/10.1016/j.regpep.2004.05.016] [PMID: 15518897]
[127]
Onoue, S.; Endo, K.; Ohshima, K.; Yajima, T.; Kashimoto, K. The neuropeptide PACAP attenuates β-amyloid (1-42)-induced toxicity in PC12 cells. Peptides, 2002, 23(8), 1471-1478.
[http://dx.doi.org/10.1016/S0196-9781(02)00085-2] [PMID: 12182949]
[128]
Rat, D.; Schmitt, U.; Tippmann, F.; Dewachter, I.; Theunis, C.; Wieczerzak, E.; Postina, R.; van Leuven, F.; Fahrenholz, F.; Kojro, E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer’s disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J., 2011, 25(9), 3208-3218.
[http://dx.doi.org/10.1096/fj.10-180133] [PMID: 21593432]
[129]
Cabezas-Llobet, N.; Vidal-Sancho, L.; Masana, M.; Fournier, A.; Alberch, J.; Vaudry, D.; Xifró, X. Pituitary adenylate cyclase-activating polypeptide (PACAP) enhances hippocampal synaptic plasticity and improves memory performance in Huntington’s disease. Mol. Neurobiol., 2018, 55(11), 8263-8277.
[http://dx.doi.org/10.1007/s12035-018-0972-5] [PMID: 29526016]
[130]
Bourgault, S.; Chatenet, D.; Wurtz, O.; Doan, N.D.; Leprince, J.; Vaudry, H.; Fournier, A.; Vaudry, D. Strategies to convert PACAP from a hypophysiotropic neurohormone into a neuroprotective drug. Curr. Pharm. Des., 2011, 17(10), 1002-1024.
[http://dx.doi.org/10.2174/138161211795589337] [PMID: 21524253]
[131]
Bourgault, S.; Vaudry, D.; Dejda, A.; Doan, N.D.; Vaudry, H.; Fournier, A. Pituitary adenylate cyclase-activating polypeptide: Focus on structure-activity relationships of a neuroprotective Peptide. Curr. Med. Chem., 2009, 16(33), 4462-4480.
[http://dx.doi.org/10.2174/092986709789712899] [PMID: 19835562]
[132]
Doan, N.D.; Bourgault, S.; Dejda, A.; Létourneau, M.; Detheux, M.; Vaudry, D.; Vaudry, H.; Chatenet, D.; Fournier, A. Design and in vitro characterization of PAC1/VPAC1-selective agonists with potent neuroprotective effects. Biochem. Pharmacol., 2011, 81(4), 552-561.
[http://dx.doi.org/10.1016/j.bcp.2010.11.015] [PMID: 21114961]
[133]
Bourgault, S.; Vaudry, D.; Ségalas-Milazzo, I.; Guilhaudis, L.; Couvineau, A.; Laburthe, M.; Vaudry, H.; Fournier, A. Molecular and conformational determinants of pituitary adenylate cyclase-activating polypeptide (PACAP) for activation of the PAC1 receptor. J. Med. Chem., 2009, 52(10), 3308-3316.
[http://dx.doi.org/10.1021/jm900291j] [PMID: 19413310]
[134]
Ramos-Álvarez, I.; Mantey, S.A.; Nakamura, T.; Nuche-Berenguer, B.; Moreno, P.; Moody, T.W.; Maderdrut, J.L.; Coy, D.H.; Jensen, R.T. A structure-function study of PACAP using conformationally restricted analogs: Identification of PAC1 receptor-selective PACAP agonists. Peptides, 2015, 66, 26-42.
[http://dx.doi.org/10.1016/j.peptides.2015.01.009] [PMID: 25698233]
[135]
Onoue, S.; Waki, Y.; Nagano, Y.; Satoh, S.; Kashimoto, K. The neuromodulatory effects of VIP/PACAP on PC-12 cells are associated with their N-terminal structures. Peptides, 2001, 22(6), 867-872.
[http://dx.doi.org/10.1016/S0196-9781(01)00411-9] [PMID: 11390015]
[136]
Inooka, H.; Ohtaki, T.; Kitahara, O.; Ikegami, T.; Endo, S.; Kitada, C.; Ogi, K.; Onda, H.; Fujino, M.; Shirakawa, M. Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat. Struct. Biol., 2001, 8(2), 161-165.
[http://dx.doi.org/10.1038/84159] [PMID: 11175907]
[137]
Neumann, J.M.; Couvineau, A.; Murail, S.; Lacapère, J.J.; Jamin, N.; Laburthe, M.; Class, B. Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem. Sci., 2008, 33(7), 314-319.
[http://dx.doi.org/10.1016/j.tibs.2008.05.001] [PMID: 18555686]
[138]
Lamine, A.; Létourneau, M.; Doan, N.D.; Maucotel, J.; Couvineau, A.; Vaudry, H.; Chatenet, D.; Vaudry, D.; Fournier, A. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson’s disease model. Neuropharmacology, 2016, 108, 440-450.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.014] [PMID: 26006268]
[139]
Igarashi, H.; Ito, T.; Pradhan, T.K.; Mantey, S.A.; Hou, W.; Coy, D.H.; Jensen, R.T. Elucidation of the vasoactive intestinal peptide pharmacophore for VPAC(2) receptors in human and rat and comparison to the pharmacophore for VPAC(1) receptors. J. Pharmacol. Exp. Ther., 2002, 303(2), 445-460.
[http://dx.doi.org/10.1124/jpet.102.038075] [PMID: 12388623]
[140]
Gourlet, P.; Vandermeers-Piret, M.C.; Rathé, J.; De Neef, P.; Cnudde, J.; Robberecht, P.; Waelbroeck, M. Vasoactive intestinal peptide modification at position 22 allows discrimination between receptor subtypes. Eur. J. Pharmacol., 1998, 348(1), 95-99.
[http://dx.doi.org/10.1016/S0014-2999(98)00133-2] [PMID: 9650836]
[141]
Poujol de Molliens, M.; Létourneau, M.; Devost, D.; Hébert, T.E.; Fournier, A.; Chatenet, D. New insights about the peculiar role of the 28-38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection. Biochem. Pharmacol., 2018, 154, 193-202.
[http://dx.doi.org/10.1016/j.bcp.2018.04.024] [PMID: 29704474]
[142]
Beebe, X.; Darczak, D.; Davis-Taber, R.A.; Uchic, M.E.; Scott, V.E.; Jarvis, M.F.; Stewart, A.O. Discovery and SAR of hydrazide antagonists of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor type 1 (PAC1-R). Bioorg. Med. Chem. Lett., 2008, 18(6), 2162-2166.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.052] [PMID: 18272364]
[143]
Wacker, D.; Stevens, R.C.; Roth, B.L. How ligands illuminate GPCR molecular pharmacology. Cell, 2017, 170(3), 414-427.
[http://dx.doi.org/10.1016/j.cell.2017.07.009] [PMID: 28753422]
[144]
Kufareva, I.; Katritch, V. Stevens, Raymond C.; Abagyan, R. Advances in GPCR modeling dvaluated by the GPCR Dock 2013 assessment: Meeting new challenges. Structure, 2014, 22, 1120-1139.
[http://dx.doi.org/10.1016/j.str.2014.06.012] [PMID: 25066135]
[145]
Willard, F.S.; Bueno, A.B.; Sloop, K.W. Small molecule drug discovery at the glucagon-like peptide-1 receptor. Exp. Diabetes Res., 2012, 2012, 709-893.
[http://dx.doi.org/10.1155/2012/709893] [PMID: 22611375]
[146]
Takasaki, I.; Watanabe, A.; Yokai, M.; Watanabe, Y.; Hayakawa, D.; Nagashima, R.; Fukuchi, M.; Okada, T.; Toyooka, N.; Miyata, A.; Gouda, H.; Kurihara, T. In silico screening identified novel small-molecule antagonists of PAC1 receptor. J. Pharmacol. Exp. Ther., 2018, 365(1), 1-8.
[http://dx.doi.org/10.1124/jpet.117.245415] [PMID: 29363578]
[147]
Yu, R.; Zheng, L.; Cui, Y.; Zhang, H.; Ye, H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology, 2016, 103, 1-15.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.032] [PMID: 26700245]
[148]
Chu, A.; Caldwell, J.S.; Chen, Y.A. Identification and characterization of a small molecule antagonist of human VPAC(2) receptor. Mol. Pharmacol., 2010, 77(1), 95-101.
[http://dx.doi.org/10.1124/mol.109.060137] [PMID: 19854890]
[149]
Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[150]
Bortolanza, M.; Nascimento, G.C.; Socias, S.B.; Ploper, D.; Chehín, R.N.; Raisman-Vozari, R.; Del-Bel, E. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. J. Neural Transm. (Vienna), 2018, 125(10), 1403-1415.
[http://dx.doi.org/10.1007/s00702-018-1913-1] [PMID: 30109452]
[151]
Yu, R.; Zheng, L.; Cui, Y.; Zhang, H.; Ye, H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology, 2016, 103, 1-15.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.032] [PMID: 26700245]
[152]
Amaro, R.E.; Baudry, J.; Chodera, J.; Demir, Ö.; McCammon, J.A.; Miao, Y.; Smith, J.C. Ensemble docking in drug discovery. Biophys. J., 2018, 114(10), 2271-2278.
[http://dx.doi.org/10.1016/j.bpj.2018.02.038] [PMID: 29606412]
[153]
Beuming, T.; Lenselink, B.; Pala, D.; McRobb, F.; Repasky, M.; Sherman, W. Docking and virtual screening strategies for GPCR drug discovery. In: G Protein-Coupled Receptors in Drug Discovery: Methods and Protocols; Filizola, M., Ed.; Springer: New York, NY, 2015, pp. 251-276.
[http://dx.doi.org/10.1007/978-1-4939-2914-6_17]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 16
Year: 2019
Page: [1399 - 1417]
Pages: 19
DOI: 10.2174/1568026619666190709092647

Article Metrics

PDF: 54
HTML: 7
EPUB: 1
PRC: 2