Potential of Gentiana lutea for the Treatment of Obesity-associated Diseases

Author(s): Gordana Joksić*, Jelena Filipović Tričković, Ivana Joksić

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 18 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Obesity, diabetes, and associated diseases are increasing all over the world, and pose a great burden on public health. According to the latest reports, 440 million people are suffering from diabetes. Diabetes is caused by impaired ability to produce or respond to the hormone insulin consequently resulting in hyperglycemia.

Methods: Data used for this review was obtained by using PUBMED/MEDLINE (1987-2018). The main data search terms were: Gentiana lutea, Gentiana lutea extract, Gentiana lutea constituents, obesity, diabetes mellitus, diabetic complications.

Results: In the present review, we describe the potential of root powder of yellow gentian (Gentiana lutea) for the prevention of obesity and diabetes including complications related to this disease.

Conclusion: Reasonably effective, low-cost alternatives could fulfill an important role for a large part of the human population and could be of great value for the food market. Even a modest reduction of morbidity and mortality with respect to this disease translates into millions of lives saved.

Keywords: Gentiana lutea, obesity, diabetes mellitus, supplementation, antidiabetic, anti-atherosclerotic.

[1]
American Medical Association House of Delegates [homepage on the Internet Recognition of obesity as a disease 2013 [cited 2019 Jan 31 Available from: http://www.ama-assn.org/
[2]
Feingold KR, Anawalt B, Boyce A, et al. Endotext [Internet] Definitions, Classification, and Epidemiology of Obesity/[monograph on the internet South Dartmouth (MA): MDText.com, Inc. 2000- [cited 2019 Jan 31 Available from: https://www.ncbi.nlm.nih.gov/books/NBK279167/
[3]
Racette SB, Deusinger SS, Deusinger RH. Obesity: Overview of prevalence, etiology, and treatment. Phys Ther 2003; 83(3): 276-88.
[PMID: 12620091]
[4]
Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med 2017; 376(3): 254-66.
[http://dx.doi.org/10.1056/NEJMra1514009] [PMID: 28099824]
[5]
Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet 2014; 383(9933): 1990-8.
[http://dx.doi.org/10.1016/S0140-6736(13)62674-4] [PMID: 24630777]
[6]
Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 2019; 28(1): 166-74.
[PMID: 30239722]
[7]
Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: pathophysiology and management. J Am Coll Cardiol 2018; 71(1): 69-84.
[http://dx.doi.org/10.1016/j.jacc.2017.11.011] [PMID: 29301630]
[8]
Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2016; 130(12): 943-86.
[http://dx.doi.org/10.1042/CS20160136] [PMID: 27154742]
[9]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[10]
Yumuk V, Frühbeck G, Oppert JM, Woodward E, Toplak H. An EASO position statement on multidisciplinary obesity management in adults. Obes Facts 2014; 7(2): 96-101.
[http://dx.doi.org/10.1159/000362191] [PMID: 24685592]
[11]
Montesi L, El Ghoch M, Brodosi L, Calugi S, Marchesini G, Dalle Grave R. Long-term weight loss maintenance for obesity: A multidisciplinary approach. Diabetes Metab Syndr Obes 2016; 9: 37-46.
[PMID: 27013897]
[12]
Andreja L, Joksić G, Igor P, Tamara L-P, Branislav N, Petrović S. The antiradical, anti-inflammatory and anti-genotoxic potential of herbal preparation chlamyfin. Maced J Chem Chem Eng 2013; 32: 227-37.
[13]
Janković T, Savikin K, Menković N, et al. Radioprotective effects of Gentianella austriaca fractions and polyphenolic constituents in human lymphocytes. Planta Med 2008; 74(7): 736-40.
[http://dx.doi.org/10.1055/s-2008-1074524] [PMID: 18446672]
[14]
Joksić G, Petrović S, Joksić I, Leskovac A. Biological effects of Echinacea purpurea on human blood cells. Arh Hig Rada Toksikol 2009; 60(2): 165-72.
[http://dx.doi.org/10.2478/10004-1254-60-2009-1920] [PMID: 19581209]
[15]
Joksić G, Stanković M, Novak A. Antibacterial medicinal plants Equiseti herba and Ononidis radix modulate micronucleus formation in human lymphocytes in vitro. J Environ Pathol Toxicol Oncol 2003; 22(1): 41-8.
[http://dx.doi.org/10.1615/JEnvPathToxOncol.v22.i1.40] [PMID: 12678404]
[16]
Leskovac A, Joksic G, Jankovic T, Savikin K, Menkovic N. Radioprotective properties of the phytochemically characterized extracts of Crataegus monogyna, Cornus mas and Gentianella austriaca on human lymphocytes in vitro. Planta Med 2007; 73(11): 1169-75.
[http://dx.doi.org/10.1055/s-2007-981586] [PMID: 17764067]
[17]
Leskovac A, Petrovic S, Valenta-Sobot A, et al. The radiorecovery potential of nutraceuticals in cellular defense after ionizing radiation in vitro. Eur Rev Med Pharmacol Sci 2011; 15(12): 1421-7.
[PMID: 22288303]
[18]
Petrovic S, Leskovac A, Joksic G. Radioprotective properties of Gentiana dinarica polyphenols on human lymphocytes in vitro. Curr Sci 2008; 95: 1035-41.
[19]
Franz C, Fritz D. Cultivation aspects of Gentiana Lutea L. Acta Hortic 1978; (73): 307-14.
[http://dx.doi.org/10.17660/ActaHortic.1978.73.39]
[20]
Olennikov DN, Kashchenko NI, Chirikova NK, Tankhaeva LM. Iridoids and flavonoids of four siberian gentians: Chemical profile and gastric stimulatory effect. Molecules 2015; 20(10): 19172-88.
[http://dx.doi.org/10.3390/molecules201019172] [PMID: 26506331]
[21]
Pan Y, Zhao YL, Zhang J, Li WY, Wang YZ. Phytochemistry and pharmacological activities of the genus gentiana (Gentianaceae). Chem Biodivers 2016; 13(2): 107-50.
[http://dx.doi.org/10.1002/cbdv.201500333] [PMID: 26880427]
[22]
Aberham A, Pieri V, Croom EM Jr, Ellmerer E, Stuppner H. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC. J Pharm Biomed Anal 2011; 54(3): 517-25.
[http://dx.doi.org/10.1016/j.jpba.2010.09.030] [PMID: 21050691]
[23]
Ando H, Hirai Y, Fujii M, Hori Y, Fukumura M, Niiho Y, et al. The chemical constituents of fresh Gentian Root. J Nat Med 2007; 61: 269-79.
[http://dx.doi.org/10.1007/s11418-007-0143-x]
[24]
Verotta L. Isolation and HPLC detrmination of the active principles of Rosmarinus officinalis and Gentiana lutea. Fitoterapia 1985; 56: 25-9.
[25]
Mirzaee F, Hosseini A, Jouybari HB, Davoodi A, Azadbakht M. Medicinal, biological and phytochemical properties of Gentiana species. J Tradit Complement Med 2017; 7(4): 400-8.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.013] [PMID: 29034186]
[26]
Mennella I, Fogliano V, Ferracane R, Arlorio M, Pattarino F, Vitaglione P. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans. Br J Nutr 2016; 1-10.
[http://dx.doi.org/10.1017/S0007114516003858] [PMID: 27829482]
[27]
Park J, Jang H-J. Anti-diabetic effects of natural products an overview of therapeutic strategies. Mol Cell Toxicol 2017; 13: 1-20.
[http://dx.doi.org/10.1007/s13273-017-0001-1]
[28]
Deloose E, Corsetti M, Van Oudenhove L, Depoortere I, Tack JF. Su2070 In man intragastric administration of the bitter compound denatonium benzoate decreases hunger and the occurrence of gastric phase III in the fasting state. Gastroenterology 2013; 144: S-548.
[http://dx.doi.org/10.1016/S0016-5085(13)62032-6]
[29]
Verschueren S, Janssen P, Andrews C, Verbeke K, Depoortere I, Tack JF. Su2071 The effect of the bitter taste receptor agonist denatonium benzoate on gastric emptying, satiety and return of hunger after a meal in healthy volunteers. Gastroenterology 2013; 144: S-548.
[http://dx.doi.org/10.1016/S0016-5085(13)62033-8]
[30]
Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord 2014; 15(3): 181-7.
[http://dx.doi.org/10.1007/s11154-014-9289-5] [PMID: 24811133]
[31]
Blaslov K, Naranđa FS, Kruljac I, Renar IP. Treatment approach to type 2 diabetes: Past, present and future. World J Diabetes 2018; 9(12): 209-19.
[http://dx.doi.org/10.4239/wjd.v9.i12.209] [PMID: 30588282]
[32]
Choi K, Kim Y-B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med (Korean Assoc Intern Med) 2010; 25(2): 119-29.
[http://dx.doi.org/10.3904/kjim.2010.25.2.119] [PMID: 20526383]
[33]
Gutiérrez-Rodelo C, Roura-Guiberna A, Olivares-Reyes JA. Molecular Mechanisms of Insulin Resistance: An Update. Gac Med Mex 2017; 153(2): 214-28.
[PMID: 28474708]
[34]
Klaman LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20(15): 5479-89.
[http://dx.doi.org/10.1128/MCB.20.15.5479-5489.2000] [PMID: 10891488]
[35]
Knobler H, Elson A. Metabolic regulation by protein tyrosine phosphatases. J Biomed Res 2014; 28(3): 157-68.
[PMID: 25013399]
[36]
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell 2017; 170(4): 605-35.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[37]
Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 2010; 1(3): 68-75.
[http://dx.doi.org/10.4239/wjd.v1.i3.68] [PMID: 21537430]
[38]
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: Insights into insulin action. Nat Rev Mol Cell Biol 2006; 7(2): 85-96.
[http://dx.doi.org/10.1038/nrm1837] [PMID: 16493415]
[39]
Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: Of feedbacks and cross-talks. Oncogene 2008; 27(41): 5527-41.
[http://dx.doi.org/10.1038/onc.2008.247] [PMID: 18794886]
[40]
Shi Y, Wang J, Chandarlapaty S, et al. PTEN is a protein tyrosine phosphatase for IRS1. Nat Struct Mol Biol 2014; 21(6): 522-7.
[http://dx.doi.org/10.1038/nsmb.2828] [PMID: 24814346]
[41]
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132(6): 2131-57.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[42]
Miao X, Gu Z, Liu Y, et al. The glucagon-like peptide-1 analogue liraglutide promotes autophagy through the modulation of 5′-AMP-activated protein kinase in INS-1 β-cells under high glucose conditions. Peptides 2018; 100: 127-39.
[http://dx.doi.org/10.1016/j.peptides.2017.07.006] [PMID: 28712893]
[43]
Rodriguez S, Marston A, Wolfender JL, Hostettmann K. Iridoids and secoiridoids in the Gentianaceae. Curr Org Chem 1998; 2: 627-48.
[44]
Behrens M, Brockhoff A, Batram C, Kuhn C, Appendino G, Meyerhof W. The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. J Agric Food Chem 2009; 57(21): 9860-6.
[http://dx.doi.org/10.1021/jf9014334] [PMID: 19817411]
[45]
Meyerhof W, Batram C, Kuhn C, et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 2010; 35(2): 157-70.
[http://dx.doi.org/10.1093/chemse/bjp092] [PMID: 20022913]
[46]
Niu HS, Chao PC, Ku PM, Niu CS, Lee KS, Cheng JT. Amarogentin ameliorates diabetic disorders in animal models. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(11): 1215-23.
[http://dx.doi.org/10.1007/s00210-016-1283-x] [PMID: 27485449]
[47]
Nastasijević B, Lazarević-Pašti T, Dimitrijević-Branković S, et al. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. J Pharm Biomed Anal 2012; 66: 191-6.
[http://dx.doi.org/10.1016/j.jpba.2012.03.052] [PMID: 22521634]
[48]
Friedrich N, Thuesen B, Jørgensen T, et al. The association between IGF-I and insulin resistance: A general population study in Danish adults. Diabetes Care 2012; 35(4): 768-73.
[http://dx.doi.org/10.2337/dc11-1833] [PMID: 22374641]
[49]
Kim MS, Lee D-Y. Insulin-like growth factor (IGF)-I and IGF binding proteins axis in diabetes mellitus. Ann Pediatr Endocrinol Metab 2015; 20(2): 69-73.
[http://dx.doi.org/10.6065/apem.2015.20.2.69] [PMID: 26191509]
[50]
Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front Endocrinol (Lausanne) 2018; 9: 117.
[http://dx.doi.org/10.3389/fendo.2018.00117] [PMID: 29686648]
[51]
Levitt Katz LE, Satin-Smith MS, Collett-Solberg P, et al. Insulin-like growth factor binding protein-1 levels in the diagnosis of hypoglycemia caused by hyperinsulinism. J Pediatr 1997; 131(2): 193-9.
[http://dx.doi.org/10.1016/S0022-3476(97)70153-7] [PMID: 9290603]
[52]
Thankamony A, Capalbo D, Marcovecchio ML, et al. Low circulating levels of IGF-1 in healthy adults are associated with reduced β-cell function, increased intramyocellular lipid, and enhanced fat utilization during fasting. J Clin Endocrinol Metab 2014; 99(6): 2198-207.
[http://dx.doi.org/10.1210/jc.2013-4542] [PMID: 24617714]
[53]
Schneider HJ, Friedrich N, Klotsche J, et al. Prediction of incident diabetes mellitus by baseline IGF1 levels. Eur J Endocrinol 2011; 164(2): 223-9.
[http://dx.doi.org/10.1530/EJE-10-0963] [PMID: 21059863]
[54]
Katz LE, Gralewski KA, Abrams P, et al. Insulin-like growth factor-I and insulin-like growth factor binding protein-1 are related to cardiovascular disease biomarkers in obese adolescents. Pediatr Diabetes 2016; 17(2): 77-86.
[http://dx.doi.org/10.1111/pedi.12242] [PMID: 25491378]
[55]
Sharma A, Purohit S, Sharma S, et al. IGF-Binding Proteins in Type-1 Diabetes Are More Severely Altered in the Presence of Complications. Front Endocrinol (Lausanne) 2016; 7: 2.
[http://dx.doi.org/10.3389/fendo.2016.00002] [PMID: 26858687]
[56]
Tekle M, Gromadzinska J, Joksic G, et al. Plasma levels of insulin-like growth factor-I, insulin-like growth factor binding protein-1, coenzyme Q10 and vitamin E in female populations from Poland, Serbia and Sweden. Environ Int 2010; 36(2): 188-94.
[http://dx.doi.org/10.1016/j.envint.2009.11.003] [PMID: 20015549]
[57]
Nilsson R, Antić R, Berni A, et al. Exposure to polycyclic aromatic hydrocarbons in women from Poland, Serbia and Italy--relation between PAH metabolite excretion, DNA damage, diet and genotype (the EU DIEPHY project). Biomarkers 2013; 18(2): 165-73.
[http://dx.doi.org/10.3109/1354750X.2012.762807] [PMID: 23384313]
[58]
Julius U. Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia. Exp Clin Endocrinol Diabetes 2003; 111(5): 246-50.
[http://dx.doi.org/10.1055/s-2003-41284] [PMID: 12951628]
[59]
Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15(4): 6184-223.
[http://dx.doi.org/10.3390/ijms15046184] [PMID: 24733068]
[60]
Kang YE, Kim JM, Joung KH, et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One 2016; 11(4): e0154003.
[http://dx.doi.org/10.1371/journal.pone.0154003] [PMID: 27101398]
[61]
Mancuso P. The role of adipokines in chronic inflammation. ImmunoTargets Ther 2016; 5: 47-56.
[http://dx.doi.org/10.2147/ITT.S73223] [PMID: 27529061]
[62]
Kesavan R, Chandel S, Upadhyay S, et al. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration. Nutr Metab Cardiovasc Dis 2016; 26(4): 293-301.
[http://dx.doi.org/10.1016/j.numecd.2015.12.016] [PMID: 26868432]
[63]
Kaur N, Kishore L, Singh R. Dillenia indica L. attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in STZ-nicotinamide induced diabetic rats. J Tradit Complement Med 2017; 8(1): 226-38.
[http://dx.doi.org/10.1016/j.jtcme.2017.06.004] [PMID: 29322013]
[64]
Hashimoto Y, Yamagishi S, Mizukami H, et al. Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase. J Diabetes Investig 2011; 2(2): 111-22.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00071.x] [PMID: 24843470]
[65]
Reddy GB, Satyanarayana A, Balakrishna N, et al. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy. Mol Vis 2008; 14: 593-601.
[PMID: 18385795]
[66]
Akileshwari C, Raghu G, Muthenna P, et al. Bioflavonoid ellagic acid inhibits aldose reductase: Implications for prevention of diabetic complications. J Funct Foods 2014; 6: 374-83.
[http://dx.doi.org/10.1016/j.jff.2013.11.004]
[67]
Kinoshita JH, Nishimura C. The involvement of aldose reductase in diabetic complications. Diabetes Metab Rev 1988; 4(4): 323-37.
[http://dx.doi.org/10.1002/dmr.5610040403] [PMID: 3134179]
[68]
Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 2005; 26(3): 380-92.
[http://dx.doi.org/10.1210/er.2004-0028] [PMID: 15814847]
[69]
Akileshwari C, Muthenna P, Nastasijević B, Joksić G, Petrash JM, Reddy GB. Inhibition of aldose reductase by Gentiana lutea extracts. Exp Diabetes Res 2012; 2012: 147965.
[http://dx.doi.org/10.1155/2012/147965] [PMID: 22844269]
[70]
Huang C, Li R, Zhang Y, Gong J. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice. Technol Cancer Res Treat 2017; 16(5): 546-58.
[http://dx.doi.org/10.1177/1533034616657976] [PMID: 27402632]
[71]
Shukla S, Bafna K, Sundar D, Thorat SS. The bitter barricading of prostaglandin biosynthesis pathway: Understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita. PLoS One 2014; 9(6): e90637.
[http://dx.doi.org/10.1371/journal.pone.0090637] [PMID: 24603686]
[72]
Yen TL, Lu WJ, Lien LM, et al. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways. BioMed Res Int 2014; 2014: 728019.
[http://dx.doi.org/10.1155/2014/728019] [PMID: 24868545]
[73]
Patel TP, Rawal K, Soni S, Gupta S. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis. Biomed Pharmacother 2016; 83: 785-91.
[http://dx.doi.org/10.1016/j.biopha.2016.07.028] [PMID: 27490779]
[74]
Sozański T, Kucharska AZ, Rapak A, et al. Iridoid-loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 2016; 254: 151-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.10.001] [PMID: 27744131]
[75]
Lv H, Yu Z, Zheng Y, et al. Isovitexin Exerts Anti-Inflammatory and Anti-Oxidant Activities on Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting MAPK and NF-κB and Activating HO-1/Nrf2 Pathways. Int J Biol Sci 2016; 12(1): 72-86.
[http://dx.doi.org/10.7150/ijbs.13188] [PMID: 26722219]
[76]
Kesavan R, Potunuru UR, Nastasijević BTA, Joksić G, Dixit M. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS One 2013; 8(4): e61393.
[http://dx.doi.org/10.1371/journal.pone.0061393] [PMID: 23637826]
[77]
Hanafi MMM, Afzan A, Yaakob H, et al. In Vitro Pro-apoptotic and Anti-migratory Effects of Ficus deltoidea L. Plant Extracts on the Human Prostate Cancer Cell Lines PC3. Front Pharmacol 2017; 8: 895.
[http://dx.doi.org/10.3389/fphar.2017.00895] [PMID: 29326585]
[78]
Huang CY, Hsu TC, Kuo WW, et al. The Root Extract of Gentiana macrophylla Pall. Alleviates Cardiac Apoptosis in Lupus Prone Mice. PLoS One 2015; 10(5): e0127440.
[http://dx.doi.org/10.1371/journal.pone.0127440] [PMID: 25985203]
[79]
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12: 18-34.
[http://dx.doi.org/10.1016/j.redox.2017.01.007] [PMID: 28212521]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 18
Year: 2019
Page: [2071 - 2076]
Pages: 6
DOI: 10.2174/1381612825666190708215743
Price: $65

Article Metrics

PDF: 24
HTML: 5