Synthesis, Structure and Luminescence Characterization of Erbium Doped Hydroxyapatite Nanoparticles by Precipitation Method

Author(s): Pooja Gitty*, Madanan Kailasnath, Vadakkedathu Parameswaran Narayanan Nampoori

Journal Name: Current Physical Chemistry

Volume 9 , Issue 3 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Introduction: Hydroxyapatite, Ca10 (PO4)6(OH)2, a ceramic material is the major inorganic component in bones and teeth of animals and humans. Although erbium is one of the prominent representative elements among the lanthanides, erbium doped hydroxyapatite has not been studied to a greater extent. This study reports the synthesis of erbium doped hydroxyapatite using the simple precipitation method and its structural and optical properties.

Objectives: The primary objective of this study was to synthesize erbium doped hydroxyapatite and to study the structural and optical properties.

Materials and Methods: Nanocrystalline erbium doped hydroxyapatite was successfully prepared using simple precipitation method. Average particle size of the synthesized particle was around 8-10 nm.

Results: The typical absorption spectra of the erbium doped hydroxyapatite sample shows almost well defined peaks of the erbium ions. The absorption bands were observed at 360 nm, 373 nm, 448 nm, 490 nm, 524 nm and at 653 nm. The photoluminescence spectrum showed the presence of a green band at 550 nm and a red band which peaked at 750 nm.

Conclusion: Spherical shaped nanocrystalline hydroxyapatite, Ca10 (PO4)6(OH)2 substituted with Erbium(III) were obtained using precipitation method. The synthesized Er3+ doped hydroxyapatite can be used for biophotonic applications, which exploits their exquisite optical properties and infrared imaging and several other therapeutic applications.

Keywords: Ceramic, characterization, erbium ions, hydroxyapatite, X-ray diffraction, nanoparticles.

[1]
Chen, F.; Zhu, Y.J.; Zhang, K.H.; Wu, J.; Wang, K.W.; Tang, Q.L.; Mo, X.M. Europium-doped amorphous calcium phosphate porous nanospheres: Preparation and application as luminescent drug carriers. Nanoscale Res. Lett., 2011, 6(1), 67.
[http://dx.doi.org/10.1186/1556-276X-6-67] [PMID: 21711603]
[2]
Ciobanu, C.S.; Iconaru, S.L.; Popa, C.L.; Heino, M. Motelica, predoi, evaluation of samarium doped hydroxyapatite, ceramics for medical applications. J. Nanomater., 2015, 2015, 14.
[http://dx.doi.org/10.1155/2015/849216]
[3]
Radin, S.R.; Ducheyne, P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J. Biomed. Mater. Res., 1994, 28(11), 1303-1309.
[http://dx.doi.org/10.1002/jbm.820281108] [PMID: 7829560]
[4]
Siddharthan, A.; Seshadri, S.K.; Sampath Kumar, T.S. Influence of microwave power on nanosized hydroxyapatite particles. Scr. Mater., 2006, 55(2), 175-178.
[http://dx.doi.org/10.1016/j.scriptamat.2006.03.044]
[5]
Stupp, S.I.; Braun, P.V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 1997, 277(5330), 1242-1248.
[http://dx.doi.org/10.1126/science.277.5330.1242] [PMID: 9271562]
[6]
Suchanek, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 1998, 13(1), 94-117.
[http://dx.doi.org/10.1557/JMR.1998.0015]
[7]
Maitra, A. Calcium phosphate nanoparticles: Second-generation non viral vectors in gene therapy. Expert Rev. Mol. Diagn., 2005, 5(6), 893-905.
[http://dx.doi.org/10.1586/14737159.5.6.893] [PMID: 16255631]
[8]
Wang, K.W.; Zhou, L.Z.; Sun, Y.; Wu, G.J.; Gu, H.C.; Duan, Y.R.; Chen, F.; Zhu, Y.J. Calcium phosphate/PLGA- m PEG hybrid porous nanospheres: A promising vector with ultrahigh gene loading and transfection efficiency. J. Mater. Chem., 2010, 20, 1161-1166.
[http://dx.doi.org/10.1039/B917441A]
[9]
Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater., 2013, 9(8), 7591-7621.
[http://dx.doi.org/10.1016/j.actbio.2013.04.012] [PMID: 23583646]
[10]
Doat, A.; Fanjul, M.; Pellé, F.; Hollande, E.; Lebugle, A. Europium-doped bioapatite: A new photostable biological probe, internalizable by human cells. Biomaterials, 2003, 24(19), 3365-3371.
[http://dx.doi.org/10.1016/S0142-9612(03)00169-8] [PMID: 12763463]
[11]
Doat, A.; Pelle, F.; Gardant, N.; Lebugle, A. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe. J. Solid State Chem., 2004, 177, 1179-1187.
[http://dx.doi.org/10.1016/j.jssc.2003.10.023]
[12]
Lebugle, A.; Pellé, F.; Charvillat, C.; Rousselot, I.; Chane-Ching, J.Y. Colloidal and monocrystalline Ln3+ doped apatite calcium phosphate as biocompatible fluorescent probes. Chem. Commun. (Camb.), 2006, (6), 606-608.
[http://dx.doi.org/10.1039/b515164c] [PMID: 16446824]
[13]
Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S.T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. Engl., 2011, 50(32), 7385-7390.
[http://dx.doi.org/10.1002/anie.201101447] [PMID: 21714049]
[14]
Coelho, J.; Hussain, N.S.; Gomes, P.S. Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue application; Curr. Trends Glass Ceramic Mat, 2012, pp. 87-115.
[15]
Fricker, S.P. The therapeutic application of lanthanides. Chem. Soc. Rev., 2006, 35(6), 524-533.
[http://dx.doi.org/10.1039/b509608c] [PMID: 16729146]
[16]
Gayathri, K.; Kumar, G.A.; Manrique, S.I.R.; Santhosh, C.; Sardar, D.K. Optical characterization of infrared emitting Nd3+ doped hydroxyapatite nanoparticles prepared by hydrothermal method. J. Lumin., 2017, 185, 180-186.
[http://dx.doi.org/10.1016/j.jlumin.2017.01.005]
[17]
Alshemary, A.Z.; Akram, M.; Goh, Y.F.; Kadir, M.R.A.; Abdolahi, A.; Hussain, R. Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J. Alloys Compd., 2015, 645, 478-486.
[http://dx.doi.org/10.1016/j.jallcom.2015.05.064]
[18]
Zaichick, S.; Zaichick, V.; Karandashev, V.; Nosenko, S. Accumulation of rare earth elements in human bone within the lifespan. Metallomics, 2011, 3(2), 186-194.
[http://dx.doi.org/10.1039/C0MT00069H] [PMID: 21173982]
[19]
Babu, N.R.; Rao, K.P.; Kumar, T.S.S. Accelerated microwave processing of nanocrystalline hydroxyapatite. J. Mater. Sci., 2005, 40, 6319-6323.
[http://dx.doi.org/10.1007/s10853-005-2957-9]
[20]
Arami, H.; Mohajerani, M.; Mazloumi, M.; Khalifehzadeh, R.; Lak, A.; Sadrnezhaad, S.K. Rapid formation of hydroxyapatite nanostrips via microwave irradiation. J. Alloys Compd., 2009, 469(1-2), 391-394.
[http://dx.doi.org/10.1016/j.jallcom.2008.01.116]
[21]
Wang, P.; Li, C.; Gong, H.; Jiang, X.; Wang, H.; Li, K. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol., 2010, 203, 315-321.
[http://dx.doi.org/10.1016/j.powtec.2010.05.023]
[22]
Mahraz, Z.A.S.; Sahar, M.R.; Ghoshal, S.K.; Dousti, M.R. Concentration dependent luminescence quenching of Er doped zinc boro-tellurite glass. J. Lumin., 2013, 144, 139-145.
[http://dx.doi.org/10.1016/j.jlumin.2013.06.050]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2019
Published on: 26 November, 2019
Page: [218 - 225]
Pages: 8
DOI: 10.2174/1877946809666190708124928

Article Metrics

PDF: 11
HTML: 2