Schistosomal Sulfotransferase Interaction with Oxamniquine Involves Hybrid Mechanism of Induced-fit and Conformational Selection

Author(s): Fortunatus C. Ezebuo*, Ikemefuna C. Uzochukwu

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention.

Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations.

Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA.

Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol.

Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.

Keywords: Sulfotransferase, oxamniquine, conformational selection, induced-fit, binding energy, protein data bank.

[1]
Taylor, A.B.; Roberts, K.M.; Cao, X.; Clark, N.E.; Holloway, S.P.; Donati, E.; Polcaro, C.M.; Pica-Mattoccia, L.; Tarpley, R.S.; McHardy, S.F.; Cioli, D.; LoVerde, P.T.; Fitzpatrick, P.F.; Hart, P.J. Structural and enzymatic insights into species-specific resistance to schistosome parasite drug therapy. J. Biol. Chem., 2017, 292(27), 11154-11164.
[http://dx.doi.org/10.1074/jbc.M116.766527] [PMID: 28536265]
[2]
Pica-Mattoccia, L.; Carlini, D.; Guidi, A.; Cimica, V.; Vigorosi, F.; Cioli, D. The schistosome enzyme that activates ox-amniquine has the characteristics of a sulfotransferase. Mem. Inst. Oswaldo Cruz, 2006, 101(Suppl. I), 307-312.
[3]
Valentim, C.L.; Cioli, D.; Chevalier, F.D.; Cao, X.; Taylor, A.B.; Holloway, S.P.; Pica-Mattoccia, L.; Guidi, A.; Basso, A.; Tsai, I.J.; Berriman, M.; Carvalho-Queiroz, C.; Almeida, M.; Aguilar, H.; Frantz, D.E.; Hart, P.J.; LoVerde, P.T.; Anderson, T.J. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science, 2013, 342(6164), 1385-1389.
[http://dx.doi.org/10.1126/science.1243106] [PMID: 24263136]
[4]
Seo, M-H.; Park, J.; Kim, E.; Hohng, S.; Kim, H-S. Protein conformational dynamics dictate the binding affinity for a ligand. Nat. Commun., 2014, 5, 3724.
[http://dx.doi.org/10.1038/ncomms4724] [PMID: 24758940]
[5]
Teilum, K.; Olsen, J.G.; Kragelund, B.B. Protein stability, flexibility and function. Biochim. Biophys. Acta, 2011, 1814(8), 969-976.
[http://dx.doi.org/10.1016/j.bbapap.2010.11.005] [PMID: 21094283]
[6]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[7]
Sanner, M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model., 1999, 17(1), 57-61.
[PMID: 10660911]
[8]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[9]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics J. Mol. Graph, 14(1), 33-38.1996, 27-28.
[10]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[11]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[12]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[13]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[14]
Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2), 195-201.
[http://dx.doi.org/10.1093/bioinformatics/bti770] [PMID: 16301204]
[15]
Bordoli, L.; Schwede, T. Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal In: Homology Modeling Methods and Protocols; Methods in Molecular Biology; Andrew J.W, Orry.; Ruben, Abagyan., Eds. Springer Science+Business Media: LLC, 2012; 857, pp. 107-136.
[16]
Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[17]
Weber, W.; Hunenbeger, P.H.; McCammon, J.A. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: influence of artificial periodicity on peptide conformation. J. Phys. Chem. B, 2000, 104(15), 3668-3675.
[http://dx.doi.org/10.1021/jp9937757]
[18]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In: Intermolecular Forces; Pullman, B, Ed.;. D.Reidel Publishing Company Dordrecht, 1981; pp. 331-338.
[http://dx.doi.org/10.1007/978-94-015-7658-1_21]
[19]
Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation J. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[20]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N_log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[21]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G.A. Smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[22]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1)014101
[http://dx.doi.org/10.1063/1.2408420]] [PMID: 17212484]
[23]
Jiang, X.; Wang, Y.; Xu, L.; Chen, G.; Wang, L. Substrate binding interferes with active site conformational dynamics in endoglucanase Cel5A from Thermobifida fusca. Biochem. Biophys. Res. Commun., 2017, 491(1), 236-240.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.086] [PMID: 28720496]
[24]
Kumari, R.; Kumar, R.; Lynn, A. Open Source Drug Discovery Consortium. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[25]
Hammes, G.G.; Chang, Y.C.; Oas, T.G. Conformational selection or induced fit: a flux description of reaction mechanism. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13737-13741.
[http://dx.doi.org/10.1073/pnas.0907195106] [PMID: 19666553]
[26]
Csermely, P.; Palotai, R.; Nussinov, R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci., 2010, 35(10), 539-546.
[http://dx.doi.org/10.1016/j.tibs.2010.04.009] [PMID: 20541943]
[27]
Ma, B.; Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol., 2010, 14(5), 652-659.
[http://dx.doi.org/10.1016/j.cbpa.2010.08.012] [PMID: 20822947]
[28]
McGowan, L.C.; Hamelberg, D. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover. Biophys. J., 2013, 104(1), 216-226.
[http://dx.doi.org/10.1016/j.bpj.2012.11.3815] [PMID: 23332074]
[29]
Zhao, D.; Li, L.; He, D.; Zhou, J. Molecular dynamics simula-tions of conformation changes of HIV-1 regulatory protein on grapheme. Appl. Surf. Sci., 2016, 377, 324-334.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.177]
[30]
Liu, X.; Speckhard, D.C.; Shepherd, T.R.; Sun, Y.J.; Hengel, S.R.; Yu, L.; Fowler, C.A.; Gakhar, L.; Fuentes, E.J. Distinct roles for conformational dynamics in protein-ligand interactions. Structure, 2016, 24(12), 2053-2066.
[http://dx.doi.org/10.1016/j.str.2016.08.019] [PMID: 27998539]
[31]
Khrustalev, V.V.; Khrustaleva, T.A.; Lelevich, S.V. Ethanol binding sites on proteins. J. Mol. Graph. Model., 2017, 78, 187-194.
[http://dx.doi.org/10.1016/j.jmgm.2017.10.017] [PMID: 29078103]
[32]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084.
[http://dx.doi.org/10.1021/jm100112j] [PMID: 20345171]
[33]
Kar, P.; Lipowsky, R.; Knecht, V. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. J. Phys. Chem. B, 2013, 117(19), 5793-5805.
[http://dx.doi.org/10.1021/jp3085292] [PMID: 23614718]
[34]
Mobley, D.L.; Dill, K.A. Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”. Structure, 2009, 17(4), 489-498.
[http://dx.doi.org/10.1016/j.str.2009.02.010] [PMID: 19368882]
[35]
Cioli, D.; Pica-Mattoccia, L.; Archer, S. Drug resistance in schistosomes.Parasitol. Today (Regul. Ed.). , 1993, p, pp. (5)162-166.
[http://dx.doi.org/10.1016/0169-4758(93)90138-6]
[36]
Agarwal, P.K.; Billeter, S.R.; Rajagopalan, P.T.; Benkovic, S.J.; Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2794-2799.
[http://dx.doi.org/10.1073/pnas.052005999] [PMID: 11867722]
[37]
Doshi, U.; Holliday, M.J.; Eisenmesser, E.Z.; Hamelberg, D. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Proc. Natl. Acad. Sci. USA, 2016, 113(17), 4735-4740.
[http://dx.doi.org/10.1073/pnas.1523573113] [PMID: 27071107]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 02 September, 2020
Page: [451 - 459]
Pages: 9
DOI: 10.2174/1573409915666190708103132
Price: $65

Article Metrics

PDF: 34
HTML: 1