An Overview on Stem Cells in Tissue Regeneration

Author(s): Rajasekar Seetharaman, Anjum Mahmood, Prashant Kshatriya, Divyang Patel, Anand Srivastava*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 18 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Deteriorations in tissues and decline in organ functions, due to chronic diseases or with advancing age or sometimes due to infections or injuries, can severely compromise the quality of life of an individual. Regenerative medicine, a field of medical research focuses on replacing non-functional or dead cells or repairing or regenerating tissues and organs to restore normal functions of an impaired organ. Approaches used in regenerative therapy for achieving the objective employ a number of means which include soluble biomolecules, stem cell transplants, tissue engineering, gene therapy and reprogramming of cells according to target tissue types. Stem cells transplant and tissue regeneration methods for treating various diseases have rapidly grown in usage over the past decades or so. There are different types of stem cells such as mesenchymal, hematopoietic, embryonic, mammary, intestinal, endothelial, neural, olfactory, neural crest, testicular and induced pluripotent stem cells.

Methods: This review covers the recent advances in tissue regeneration and highlights the application of stem cell transplants in treating many life-threatening diseases or in improving quality of life.

Results: Remarkable progress in stem cell research has established that the cell-based therapy could be an option for treating diseases which could not be cured by conventional medical means till recent. Stem cells play major roles in regenerative medicine with its exceptional characteristics of self-renewal capacity and potential to differentiate into almost all types of cells of a body.

Conclusion: Vast number of reports on preclinical and clinical application of stem cells revealed its vital role in disease management and many pharmacological industries around the globe working to achieve effective stem cell based products.

Keywords: Stem cells, tissue regeneration, cell therapy, mesenchymal stem cells, regenerative medicine, chronic diseases.

[1]
Upadhyay RK. Role of regeneration in tissue repairing and therapies. J Regen Med Tissue Eng 2015; 4: 1.
[http://dx.doi.org/10.7243/2050-1218-4-1]
[2]
Heidary Rouchi A, Mahdavi-Mazdeh M. Regenerative medicine in organ and tissue transplantation: Shortly and practically achievable? Int J Organ Transplant Med 2015; 6(3): 93-8.
[PMID: 26306154]
[3]
Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016; 2016: 6940283.
[http://dx.doi.org/10.1155/2016/6940283] [PMID: 27516776]
[4]
Khan FA. Biotechnology in medicial. Sciences 2014.
[http://dx.doi.org/10.1201/b16905]
[5]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[6]
Pountos I, Giannoudis PV. Biology of mesenchymal stem cells. Injury 2005; 36(S3)(Suppl. 3): S8-S12.
[http://dx.doi.org/10.1016/j.injury.2005.07.028] [PMID: 16188553]
[7]
Pittenger M, Vanguri P, Simonetti D, Young R. Adult mesenchymal stem cells: Potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact 2002; 2(4): 309-20.
[PMID: 15758422]
[8]
Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40(6): 1275-84.
[http://dx.doi.org/10.1002/hep.20469] [PMID: 15562440]
[9]
Tropel P, Platet N, Platel JC, et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24(12): 2868-76.
[http://dx.doi.org/10.1634/stemcells.2005-0636] [PMID: 16902198]
[10]
Tong CK, Vellasamy S, Tan BC, et al. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol Int 2011; 35(3): 221-6.
[http://dx.doi.org/10.1042/CBI20100326] [PMID: 20946106]
[11]
Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50(5): 1522-32.
[http://dx.doi.org/10.1002/art.20269] [PMID: 15146422]
[12]
Soncini M, Vertua E, Gibelli L, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 2007; 1(4): 296-305.
[http://dx.doi.org/10.1002/term.40] [PMID: 18038420]
[13]
Peng L, Jia Z, Yin X, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 2008; 17(4): 761-73.
[http://dx.doi.org/10.1089/scd.2007.0217] [PMID: 18393634]
[14]
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109(1): 235-42.
[http://dx.doi.org/10.1046/j.1365-2141.2000.01986.x] [PMID: 10848804]
[15]
Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol 2001; 153(5): 1133-40.
[http://dx.doi.org/10.1083/jcb.153.5.1133] [PMID: 11381097]
[16]
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 2016; 25(5): 829-48.
[http://dx.doi.org/10.3727/096368915X689622] [PMID: 26423725]
[17]
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9(1): 204.
[http://dx.doi.org/10.1186/ar2116] [PMID: 17316462]
[18]
Sun Q, Zhang Z, Sun Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis 2014; 1(1): 113-9.
[http://dx.doi.org/10.1016/j.gendis.2014.07.003] [PMID: 25642448]
[19]
Armiñán A, Gandía C, García-Verdugo JM, et al. Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. J Am Coll Cardiol 2010; 55(20): 2244-53.
[http://dx.doi.org/10.1016/j.jacc.2009.08.092] [PMID: 20466205]
[20]
Kuraitis D, Ruel M, Suuronen EJ. Mesenchymal stem cells for cardiovascular regeneration. Cardiovasc Drugs Ther 2011; 25(4): 349-62.
[http://dx.doi.org/10.1007/s10557-011-6311-y] [PMID: 21637968]
[21]
Mahmood A, Pandya H, Seetharaman R, Patel D, Srivastava A. Cardiovascular diseases: Recent developments in regenerative medicine. J Stem Cell Res Ther 2017; 3(2): 00095.
[22]
Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 2014; 168(1): 88-95.
[http://dx.doi.org/10.1016/j.ahj.2014.03.022] [PMID: 24952864]
[23]
Liang J, Zhang H, Hua B, et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 2010; 69(8): 1423-9.
[http://dx.doi.org/10.1136/ard.2009.123463] [PMID: 20650877]
[24]
Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 2009; 106(33): 14022-7.
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[25]
Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308(22): 2369-79.
[http://dx.doi.org/10.1001/jama.2012.25321] [PMID: 23117550]
[26]
Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: The C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 2013; 61(23): 2329-38.
[http://dx.doi.org/10.1016/j.jacc.2013.02.071] [PMID: 23583246]
[27]
Abbott A. Doubts over heart stem-cell therapy. Nature 2014; 509(7498): 15-6.
[http://dx.doi.org/10.1038/509015a] [PMID: 24784193]
[28]
Natsumeda M, Florea V, Rieger AC, et al. A combination of allogeneic stem cells promotes cardiac regeneration. J Am Coll Cardiol 2017; 70(20): 2504-15.
[http://dx.doi.org/10.1016/j.jacc.2017.09.036] [PMID: 29145950]
[29]
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238(1): 265-72.
[http://dx.doi.org/10.1006/excr.1997.3858] [PMID: 9457080]
[30]
Im GI. Endogenous cartilage repair by recruitment of stem cells. Tissue Eng Part B Rev 2016; 22(2): 160-71.
[http://dx.doi.org/10.1089/ten.teb.2015.0438] [PMID: 26559963]
[31]
Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52(8): 2521-9.
[http://dx.doi.org/10.1002/art.21212] [PMID: 16052568]
[32]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[http://dx.doi.org/10.1091/mbc.e02-02-0105] [PMID: 12475952]
[33]
Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE. Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif 2012; 45(2): 111-20.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00804.x] [PMID: 22260253]
[34]
Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O’Brien FJ, Kelly DJ. Coupling freshly isolated CD44(+) infrapatellar fat pad-derived stromal cells with a TGF-beta3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater 2015; 4(7): 1043-53.
[http://dx.doi.org/10.1002/adhm.201400687] [PMID: 25656563]
[35]
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 2016; 7: 42.
[http://dx.doi.org/10.1186/s13287-016-0299-y] [PMID: 26983784]
[36]
Kuo TK, Hung SP, Chuang CH, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells Gastroenterology 2008; 134(7): 2111- 2121, 2121e1-2121e3
[http://dx.doi.org/10.1053/j.gastro.2008.03.015] [PMID: 18455168]
[37]
El-Ansary M, Abdel-Aziz I, Mogawer S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev 2012; 8(3): 972-81.
[http://dx.doi.org/10.1007/s12015-011-9322-y] [PMID: 21989829]
[38]
Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 2012; 27(s2)(Suppl. 2): 112-20.
[http://dx.doi.org/10.1111/j.1440-1746.2011.07024.x] [PMID: 22320928]
[39]
Peng L, Xie DY, Lin BL, et al. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology 2011; 54(3): 820-8.
[http://dx.doi.org/10.1002/hep.24434] [PMID: 21608000]
[40]
Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 2014; 311(1): 62-73.
[http://dx.doi.org/10.1001/jama.2013.282909] [PMID: 24247587]
[41]
Pokrywczynska M, Jundzill A, Rasmus M, et al. Understanding the role of mesenchymal stem cells in urinary bladder regeneration-a preclinical study on a porcine model. Stem Cell Res Ther 2018; 9(1): 328.
[http://dx.doi.org/10.1186/s13287-018-1070-3] [PMID: 30486856]
[42]
Katagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head Face Med 2016; 12: 5.
[http://dx.doi.org/10.1186/s13005-016-0101-5] [PMID: 26772731]
[43]
Brown SG, Harman RJ, Black LL. Adipose-derived stem cell therapy for severe muscle tears in working German shepherds: two case reports. Stem Cell Discovery 2012; 2(2): 41-4.
[http://dx.doi.org/10.4236/scd.2012.22007]
[44]
Levit RD, Landázuri N, Phelps EA, et al. Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2013; 2(5): e000367.
[http://dx.doi.org/10.1161/JAHA.113.000367] [PMID: 24113327]
[45]
Byun JW, Kim HJ, Na K, et al. Bone marrow-derived mesenchymal stem cells prevent alopecia areata development through the inhibition of NKG2D expression: A pilot study. Exp Dermatol 2017; 26(6): 532-5.
[http://dx.doi.org/10.1111/exd.13255] [PMID: 27892603]
[46]
Song JY, Kang HJ, Hong JS, et al. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages. Sci Rep 2017; 7(1): 9412.
[http://dx.doi.org/10.1038/s41598-017-09827-5] [PMID: 28842625]
[47]
Benavides OM, Brooks AR, Cho SK, Petsche Connell J, Ruano R, Jacot JG. In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells. J Biomed Mater Res A 2015; 103(8): 2645-53.
[http://dx.doi.org/10.1002/jbm.a.35402] [PMID: 25631778]
[48]
Wolfrum K, Wang Y, Prigione A, Sperling K, Lehrach H, Adjaye J. The LARGE principle of cellular reprogramming: lost, acquired and retained gene expression in foreskin and amniotic fluid-derived human iPS cells. PLoS One 2010; 5(10): e13703.
[http://dx.doi.org/10.1371/journal.pone.0013703] [PMID: 21060825]
[49]
Nagaishi K, Mizue Y, Chikenji T, et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep 2017; 7(1): 8484.
[http://dx.doi.org/10.1038/s41598-017-08921-y] [PMID: 28814814]
[50]
Gu F, Wang D, Zhang H, et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 2014; 33(11): 1611-9.
[http://dx.doi.org/10.1007/s10067-014-2754-4] [PMID: 25119864]
[51]
Wang D, Li J, Zhang Y, et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 2014; 16(2): R79.
[http://dx.doi.org/10.1186/ar4520] [PMID: 24661633]
[52]
Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 2005; 352(20): 2069-81.
[http://dx.doi.org/10.1056/NEJMoa042604] [PMID: 15901860]
[53]
Jurga M, Lipkowski AW, Lukomska B, et al. Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods 2009; 15(3): 365-72.
[http://dx.doi.org/10.1089/ten.tec.2008.0485] [PMID: 19719393]
[54]
Ehrhart J, Darlington D, Kuzmin-Nichols N, et al. Biodistribution of infused human umbilical cord blood cells in Alzheimer’s disease-like murine model. Cell Transplant 2016; 25(1): 195-9.
[http://dx.doi.org/10.3727/096368915X689604] [PMID: 26414627]
[55]
Saether EE, Chamberlain CS, Aktas E, Leiferman EM, Brickson SL, Vanderby R. Primed Mesenchymal Stem Cells Alter and Improve Rat Medial Collateral Ligament Healing. Stem Cell Rev 2016; 12(1): 42-53.
[http://dx.doi.org/10.1007/s12015-015-9633-5] [PMID: 26530282]
[56]
Aktas E, Chamberlain CS, Saether EE, et al. Immune modulation with primed mesenchymal stem cells delivered via biodegradable scaffold to repair an achilles tendon segmental defect. J Orthop Res 2016; 35(2): 269-80.
[http://dx.doi.org/10.1002/jor.23258] [PMID: 27061844]
[57]
Comella K, Parlo M, Daly R, Dominessy K. First-in-man intravenous implantation of stromal vascular fraction in psoriasis: a case study. Int Med Case Rep J 2018; 11: 59-64.
[http://dx.doi.org/10.2147/IMCRJ.S163612] [PMID: 29606893]
[58]
Lee YS, Sah SK, Lee JH, Seo KW, Kang KS, Kim TY. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochem Biophys Rep 2016; 9: 281-8.
[http://dx.doi.org/10.1016/j.bbrep.2016.10.002] [PMID: 28956015]
[59]
Seetharaman R, Mahmood A, Kshatriya P, Patel D, Srivastava A. Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study. Case Rep Dermatol Med 2019; 20198309103.
[http://dx.doi.org/10.1155/2019/8309103] [PMID: 31186972]
[60]
Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 2004; 114(6): 765-74.
[http://dx.doi.org/10.1172/JCI200421686] [PMID: 15372100]
[61]
Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 2017; 7(1): 16214.
[http://dx.doi.org/10.1038/s41598-017-15376-8] [PMID: 29176667]
[62]
Sen B, Xie Z, Uzer G, et al. Intranuclear actin regulates osteogenesis. Stem Cells 2015; 33(10): 3065-76.
[http://dx.doi.org/10.1002/stem.2090] [PMID: 26140478]
[63]
Gaballa S, Palmisiano N, Alpdogan O, et al. A two-step haploidentical versus a two-step matched related allogeneic myeloablative peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2016; 22(1): 141-8.
[http://dx.doi.org/10.1016/j.bbmt.2015.09.017] [PMID: 26415558]
[64]
Gupta S, Lodha P, Karthick MS, Tandulwadkar SR. Role of Autologous Bone Marrow-Derived Stem Cell Therapy for Follicular Recruitment in Premature Ovarian Insufficiency: Review of Literature and a Case Report of World’s First Baby with Ovarian Autologous Stem Cell Therapy in a Perimenopausal Woman of Age 45 Year. J Hum Reprod Sci 2018; 11(2): 125-30.
[http://dx.doi.org/10.4103/jhrs.JHRS_57_18] [PMID: 30158807]
[65]
Paradells S, Zipancic I, Martínez-Losa MM, et al. Lipoic acid and bone marrow derived cells therapy induce angiogenesis and cell proliferation after focal brain injury. Brain Inj 2015; 29(3): 380-95.
[http://dx.doi.org/10.3109/02699052.2014.973448] [PMID: 25384090]
[66]
Kaigler D, Pagni G, Park CH, et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 2013; 22(5): 767-77.
[http://dx.doi.org/10.3727/096368912X652968] [PMID: 22776413]
[67]
Gubareva EA, Sjöqvist S, Gilevich IV, et al. Orthotopic transplantation of a tissue engineered diaphragm in rats. Biomaterials 2016; 77(77): 320-35.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.020] [PMID: 26618750]
[68]
Li T, Lewallen M, Chen S, Yu W, Zhang N, Xie T. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells. Cell Res 2013; 23(6): 788-802.
[http://dx.doi.org/10.1038/cr.2013.48] [PMID: 23567557]
[69]
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 2012; 379(9817): 713-20.
[http://dx.doi.org/10.1016/S0140-6736(12)60028-2] [PMID: 22281388]
[70]
Li Y, Tsai YT, Hsu CW, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 2012; 18(18): 1312-9.
[http://dx.doi.org/10.2119/molmed.2012.00242] [PMID: 22895806]
[71]
Shroff G, Gupta R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci 2015; 22(4): 208-16.
[http://dx.doi.org/10.5214/ans.0972.7531.220404] [PMID: 26526627]
[72]
Zhou S, Flamier A, Abdouh M, et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142(19): 3294-306.
[http://dx.doi.org/10.1242/dev.125385] [PMID: 26443633]
[73]
Sluch VM, Davis CHO, Ranganathan V, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep 2015; 5: 16595.
[http://dx.doi.org/10.1038/srep16595] [PMID: 26563826]
[74]
Shiba Y, Fernandes S, Zhu WZ, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489(7415): 322-5.
[http://dx.doi.org/10.1038/nature11317] [PMID: 22864415]
[75]
Fernandes S, Chong JJH, Paige SL, et al. Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports 2015; 5(5): 753-62.
[http://dx.doi.org/10.1016/j.stemcr.2015.09.011] [PMID: 26607951]
[76]
Vedantham V. New approaches to biological pacemakers: links to sinoatrial node development. Trends Mol Med 2015; 21(12): 749-61.
[http://dx.doi.org/10.1016/j.molmed.2015.10.002] [PMID: 26611337]
[77]
Haideri SS, McKinnon AC, Taylor AH, et al. Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury. NPJ Regen Med 2017; 2: 14.
[http://dx.doi.org/10.1038/s41536-017-0017-0] [PMID: 29302350]
[78]
Zhu Y, Wu X, Liang Y, et al. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol 2016; 16(1): 78.
[http://dx.doi.org/10.1186/s12896-016-0306-5] [PMID: 27829414]
[79]
Tsai Y, Lu B, Bakondi B, et al. Human iPSC-derived neural progenitors preserve vision in an AMD-like model. Stem Cells 2015; 33(8): 2537-49.
[http://dx.doi.org/10.1002/stem.2032] [PMID: 25869002]
[80]
Yang J, Cai B, Glencer P, Li Z, Zhang X, Li X. Induced pluripotent stem cells and outer retinal disease. Stem Cells Int 2016; 2016: 2850873.
[http://dx.doi.org/10.1155/2016/2850873] [PMID: 26880948]
[81]
Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Reports 2015; 5(6): 1109-18.
[http://dx.doi.org/10.1016/j.stemcr.2015.10.009] [PMID: 26584543]
[82]
Zhu S, Russ HA, Wang X, et al. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 2016; 7: 10080.
[http://dx.doi.org/10.1038/ncomms10080] [PMID: 26733021]
[83]
Shafa M, Ionescu LI, Vadivel A, et al. Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury. Cytotherapy 2018; 20(1): 108-25.
[http://dx.doi.org/10.1016/j.jcyt.2017.09.003] [PMID: 29056548]
[84]
Kambal A, Mitchell G, Cary W, et al. Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. Mol Ther 2011; 19(3): 584-93.
[http://dx.doi.org/10.1038/mt.2010.269] [PMID: 21119622]
[85]
Jiang Z, Han Y, Cao X. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cell Mol Immunol 2014; 11(1): 17-24.
[http://dx.doi.org/10.1038/cmi.2013.62] [PMID: 24336163]
[86]
Sandrasaigaran P, Vidyadaran S, Ramasamy R. Human umbilical cord tissue serves as an ideal reservoir of mesenchymal stem cells as compare to the full term umbilical cord blood. Regenerative Research 2015; 4(1): 5-12.
[87]
Marmotti A, Mattia S, Castoldi F, et al. Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: An in vitro study. Stem Cells Int 2017; 2017: 1732094.
[http://dx.doi.org/10.1155/2017/1732094] [PMID: 29358953]
[88]
Enderami SE, Soleimani M, Mortazavi Y, Nadri S, Salimi A. Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol 2018; 233(5): 4327-37.
[http://dx.doi.org/10.1002/jcp.26266] [PMID: 29150935]
[89]
Ojaghi M, Soleimanifar F, Kazemi A, et al. Electrospun poly-l-lactic acid/polyvinyl alcohol nanofibers improved insulin-producing cell differentiation potential of human adipose-derived mesenchymal stem cells. J Cell Biochem 2019; 120(6): 9917-26.
[http://dx.doi.org/10.1002/jcb.28274] [PMID: 30548348]
[90]
Piran M, Enderami SE, Piran M, Sedeh HS, Seyedjafari E, Ardeshirylajimi A. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals 2017; 46: 23-8.
[http://dx.doi.org/10.1016/j.biologicals.2016.12.004] [PMID: 28017506]
[91]
Seetharaman R, Srivastava A. Mesenchymal Stem Cells Derived Paracrine Factors: An Alternative Approach in Regenerative Therapy. Ann Stem Cell Res Ther 2019; 3(1): 1030.
[92]
Chen YC, Chang YW, Tan KP, Shen YS, Wang YH, Chang CH. Can mesenchymal stem cells and their conditioned medium assist inflammatory chondrocytes recovery? PLoS One 2018; 13(11): e0205563.
[http://dx.doi.org/10.1371/journal.pone.0205563] [PMID: 30462647]
[93]
Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 2019; 67: 268-80.
[http://dx.doi.org/10.1016/j.intimp.2018.12.001] [PMID: 30572251]
[94]
Sugiyama T, Nagasawa T. Bone marrow niches for hematopoietic stem cells and immune cells. Inflamm Allergy Drug Targets 2012; 11(3): 201-6.
[http://dx.doi.org/10.2174/187152812800392689] [PMID: 22452607]
[95]
Shetty P, Cooper K, Viswanathan C. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci 2010; 4(1): 14-24.
[http://dx.doi.org/10.4103/0973-6247.59386] [PMID: 20376261]
[96]
Gang EJ, Hong SH, Jeong JA, et al. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004; 321(1): 102-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.111] [PMID: 15358221]
[97]
Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014; 32(6): 1408-19.
[http://dx.doi.org/10.1002/stem.1681] [PMID: 24578244]
[98]
Harichandan A, Bühring HJ. Prospective isolation of human MSC. Best Pract Res Clin Haematol 2011; 24(1): 25-36.
[http://dx.doi.org/10.1016/j.beha.2011.01.001] [PMID: 21396590]
[99]
Harichandan A, Sivasubramaniyan K, Bühring HJ. Prospective isolation and characterization of human bone marrow-derived MSCs. Adv Biochem Eng Biotechnol 2013; 129: 1-17.
[PMID: 22825720]
[100]
Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells 2015; 7(2): 470-6.
[http://dx.doi.org/10.4252/wjsc.v7.i2.470] [PMID: 25815130]
[101]
Sivasubramaniyan K, Harichandan A, Schumann S, et al. Prospective isolation of mesenchymal stem cells from human bone marrow using novel antibodies directed against Sushi domain containing 2. Stem Cells Dev 2013; 22(13): 1944-54.
[http://dx.doi.org/10.1089/scd.2012.0584] [PMID: 23406305]
[102]
Sivasubramaniyan K, Lehnen D, Ghazanfari R, et al. Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci 2012; 1266: 94-106.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06551.x] [PMID: 22901261]
[103]
Battula VL, Treml S, Bareiss PM, et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 2009; 94(2): 173-84.
[http://dx.doi.org/10.3324/haematol.13740] [PMID: 19066333]
[104]
Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 2000; 28(6): 707-15.
[http://dx.doi.org/10.1016/S0301-472X(00)00160-0] [PMID: 10880757]
[105]
Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006; 7: 14.
[http://dx.doi.org/10.1186/1471-2121-7-14] [PMID: 16529651]
[106]
Bradley MB, Cairo MS. Stem cell transplantation for pediatric lymphoma: past, present and future. Bone Marrow Transplant 2008; 41(2): 149-58.
[http://dx.doi.org/10.1038/sj.bmt.1705948] [PMID: 18084337]
[107]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[108]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[109]
Liu Z, Lu SJ, Lu Y, et al. Transdifferentiation of human hair follicle mesenchymal stem cells into red blood cells by OCT4. Stem Cells Int 2015; 2015: 389628.
[http://dx.doi.org/10.1155/2015/389628] [PMID: 25755671]
[110]
Mfopou JK, Chen B, Sui L, Sermon K, Bouwens L. Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes 2010; 59(9): 2094-101.
[http://dx.doi.org/10.2337/db10-0439] [PMID: 20805383]
[111]
Hosseini FS, Soleimanifar F, Aidun A, et al. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. J Cell Physiol 2019; 234(7): 11537-44.
[http://dx.doi.org/10.1002/jcp.27807] [PMID: 30478907]
[112]
Kehtari M, Beiki B, Zeynali B, et al. Decellularized Wharton’s jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J Cell Biochem 2019; 120(4): 6683-97.
[http://dx.doi.org/10.1002/jcb.27965] [PMID: 30417406]
[113]
Mansour RN, Barati G, Soleimani M, et al. Generation of high-yield insulin producing cells from human-induced pluripotent stem cells on polyethersulfone nanofibrous scaffold Artif Cells Nanomed Biotechnol 2018; 46(sup1): 733-9
[http://dx.doi.org/10.1080/21691401.2018.1434663]
[114]
Nazari B, Soleimani M, Ebrahimi-Barough S, et al. Overexpression of miR-219 promotes differentiation of human induced pluripotent stem cells into pre-oligodendrocyte. J Chem Neuroanat 2018; 91: 8-16.
[http://dx.doi.org/10.1016/j.jchemneu.2018.03.001] [PMID: 29530791]
[115]
Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014; 20(8): 857-69.
[http://dx.doi.org/10.1038/nm.3653] [PMID: 25100531]
[116]
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4(1-2): 7-25.
[PMID: 747780]
[117]
Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208(2): 261-71.
[http://dx.doi.org/10.1084/jem.20101688] [PMID: 21282381]
[118]
Fujisaki J, Wu J, Carlson AL, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 2011; 474(7350): 216-9.
[http://dx.doi.org/10.1038/nature10160] [PMID: 21654805]
[119]
Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116(23): 4815-28.
[http://dx.doi.org/10.1182/blood-2009-11-253534] [PMID: 20713966]
[120]
Heazlewood SY, Neaves RJ, Williams B, Haylock DN, Adams TE, Nilsson SK. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res (Amst) 2013; 11(2): 782-92.
[http://dx.doi.org/10.1016/j.scr.2013.05.007] [PMID: 23792434]
[121]
Olson TS, Caselli A, Otsuru S, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 2013; 121(26): 5238-49.
[http://dx.doi.org/10.1182/blood-2012-10-463414] [PMID: 23667055]
[122]
Tamma R, Ribatti D. Bone niches, hematopoietic stem cells, and vessel formation. Int J Mol Sci 2017; 18(1): 151.
[http://dx.doi.org/10.3390/ijms18010151] [PMID: 28098778]
[123]
Bardelli S, Moccetti M. Remodeling the human adult stem cell niche for regenerative medicine applications. Stem Cells Int 2017; 2017: 6406025.
[http://dx.doi.org/10.1155/2017/6406025] [PMID: 29090011]
[124]
Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The modulatable stem cell niche: Tissue interactions during hair and feather follicle regeneration. J Mol Biol 2016; 428(7): 1423-40.
[http://dx.doi.org/10.1016/j.jmb.2015.07.009] [PMID: 26196442]
[125]
Vishwakarma A, Karp J. Biology and Engineering of Stem Cell Niches. 1st ed. Academic Press 2017.
[126]
dos Santos F, Andrade PZ, Eibes G, da Silva CL, Cabral JM. Ex vivo expansion of human mesenchymal stem cells on microcarriers. Methods Mol Biol 2011; 698: 189-98.
[http://dx.doi.org/10.1007/978-1-60761-999-4_15] [PMID: 21431520]
[127]
Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol Sin 2013; 34(6): 747-54.
[http://dx.doi.org/10.1038/aps.2013.50] [PMID: 23736003]
[128]
Lye KL, Nordin N, Vidyadaran S, Thilakavathy K. Mesenchymal stem cells: From stem cells to sarcomas. Cell Biol Int 2016; 40(6): 610-8.
[http://dx.doi.org/10.1002/cbin.10603] [PMID: 26992453]
[129]
Mohseny AB, Szuhai K, Romeo S, et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol 2009; 219(3): 294-305.
[http://dx.doi.org/10.1002/path.2603] [PMID: 19718709]
[130]
Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res 2012; 22(1): 62-77.
[http://dx.doi.org/10.1038/cr.2011.157] [PMID: 21931359]
[131]
He L, Zheng Y, Wan Y, Song J. A shorter telomere is the key factor in preventing cultured human mesenchymal stem cells from senescence escape. Histochem Cell Biol 2014; 142(3): 257-67.
[http://dx.doi.org/10.1007/s00418-014-1210-5] [PMID: 24658836]
[132]
Yu FX, Hu WJ, He B, Zheng YH, Zhang QY, Chen L. Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion. World J Surg Oncol 2015; 13: 52.
[http://dx.doi.org/10.1186/s12957-015-0465-1] [PMID: 25890096]
[133]
Lin PP, Wang Y, Lozano G. Mesenchymal stem cells and the origin of ewing’s sarcoma. Sarcoma 2011; 2011: 276463.
[http://dx.doi.org/10.1155/2011/276463] [PMID: 20953407]
[134]
Carvajal R, Meyers P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am 2005; 19(3): 501-25.
[http://dx.doi.org/10.1016/j.hoc.2005.03.004] [PMID: 15939194]
[135]
Boeuf S, Kunz P, Hennig T, et al. A chondrogenic gene expression signature in mesenchymal stem cells is a classifier of conventional central chondrosarcoma. J Pathol 2008; 216(2): 158-66.
[http://dx.doi.org/10.1002/path.2389] [PMID: 18702172]
[136]
David E, Blanchard F, Heymann MF, et al. The bone niche of chondrosarcoma: a sanctuary for drug resistance, tumour growth and also a source of new therapeutic targets. Sarcoma 2011; 2011: 932451.
[http://dx.doi.org/10.1155/2011/932451] [PMID: 21647363]
[137]
Naka N, Takenaka S, Araki N, et al. Synovial sarcoma is a stem cell malignancy. Stem Cells 2010; 28(7): 1119-31.
[http://dx.doi.org/10.1002/stem.452] [PMID: 20518020]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 18
Year: 2019
Published on: 04 September, 2019
Page: [2086 - 2098]
Pages: 13
DOI: 10.2174/1381612825666190705211705
Price: $65

Article Metrics

PDF: 54
HTML: 11