Neurotoxicity of Pesticides: The Roadmap for the Cubic Mode of Action

Author(s): Bogdan Bumbăcilă, Mihai V. Putz*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 1 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Pesticides are used today on a planetary-wide scale. The rising need for substances with this biological activity due to an increasing consumption of agricultural and animal products and to the development of urban areas makes the chemical industry to constantly investigate new molecules or to improve the physicochemical characteristics, increase the biological activities and improve the toxicity profiles of the already known ones. Molecular databases are increasingly accessible for in vitro and in vivo bioavailability studies. In this context, structure-activity studies, by their in silico - in cerebro methods, are used to precede in vitro and in vivo studies in plants and experimental animals because they can indicate trends by statistical methods or biological activity models expressed as mathematical equations or graphical correlations, so a direction of study can be developed or another can be abandoned, saving financial resources, time and laboratory animals. Following this line of research the present paper reviews the Structure-Activity Relationship (SAR) studies and proposes a correlation between a topological connectivity index and the biological activity or toxicity made as a result of a study performed on 11 molecules of organophosphate compounds, randomly chosen, with a basic structure including a Phosphorus atom double bounded to an Oxygen atom or to a Sulfur one and having three other simple covalent bonds with two alkoxy (-methoxy or -ethoxy) groups and to another functional group different from the alkoxy groups. The molecules were packed on a cubic structure consisting of three adjacent cubes, respecting a principle of topological efficiency, that of occupying a minimal space in that cubic structure, a method that was called the Clef Method. The central topological index selected for correlation was the Wiener index, since it was possible this way to discuss different adjacencies between the nodes in the graphs corresponding to the organophosphate compounds molecules packed on the cubic structure; accordingly, "three dimensional" variants of these connectivity indices could be considered and further used for studying the qualitative-quantitative relationships for the specific molecule-enzyme interaction complexes, including correlation between the Wiener weights (nodal specific contributions to the total Wiener index of the molecular graph) and the biochemical reactivity of some of the atoms. Finally, when passing from SAR to Q(uantitative)-SAR studies, especially by the present advanced method of the cubic molecule (Clef Method) and its good assessment of the (neuro)toxicity of the studied molecules and of their inhibitory effect on the target enzyme - acetylcholinesterase, it can be seen that a predictability of the toxicity and activity of different analogue compounds can be ensured, facilitating the in vivo experiments or improving the usage of pesticides.

Keywords: Pesticides, toxicity, organophosphates, the clef method, cubic system, Wiener index, Wiener difference, cubic molecule.

[1]
Pinto, M.I.; Burrows, H.D.; Sontag, G.; Vale, C.; Noronha, J.P. Priority pesticides in sediments of European coastal lagoons: A review. Mar. Pollut. Bull., 2016, 112(1-2), 6-16.
[http://dx.doi.org/10.1016/j.marpolbul.2016.06.101] [PMID: 27389458]
[2]
Foodprint Issue. Pesticides in Our Food System. Available at:. http://www.sustainabletable.org/263/pesticides
[3]
Randall, C. National Pesticide Applicator Certification Core Manual; Randall, C.; Hock, W.; Hudak-Wise, C; Kasai, J., Ed.; National Association of State Departments of Agriculture Research Foundation: Washington, DC, 2013, pp. 1-25.
[4]
Smith, A.E.; Secoy, D.M. Forerunners of pesticides in classical Greece and Rome. J. Agric. Food Chem., 1975, 23(6), 1050-1055.
[http://dx.doi.org/10.1021/jf60202a004] [PMID: 1104693]
[5]
Smith, E.H.; Kennedy, G.G. History of Pesticides in: Encyclopedia of Pest Management; Pimentel, D., Ed.; Marcel Dekker, Inc.: New York, 2002, pp. 376-381.
[6]
Ridding the world of pops: a guide to the stockholm convention on persistent organic pollutants (pdf). United Nations Environment Programme. Available at: http://www.pops.int
[7]
Gilden, R.C.; Huffling, K.; Sattler, B. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs., 2010, 39(1), 103-110.
[http://dx.doi.org/10.1111/j.1552-6909.2009.01092.x] [PMID: 20409108]
[8]
International code of conduct on the distribution and use of pesticides, revised version 2002. Available at: http://www.fao.org/docrep/005/y4544e/y4544e00.htm
[9]
National Pesticide Information Center. Types of Pesticides. Available at:. http://npic.orst.edu/ingred/ptype/index.html
[10]
Kamrin, M.A. Pesticide Profiles: toxicity, environmental impact, and fate; CRC Press: Boca Raton, Florida, 1997.
[http://dx.doi.org/10.1201/9781420049220]
[11]
Mula, J.; Raju, A.V.N.; Acharya, A. A retrospective study of incidence, clinical presentation and treatment outcome of organophosphorus poisoning in Konaseema region of Andhra Pradesh. J. Evid. Based Med. Health., 2016, 3(31), 1404-1406.
[http://dx.doi.org/10.18410/jebmh/2016/322]
[12]
Extension Entomology. UK college of Agriculture, Food and Environment. Available at: http://pest.ca.uky.edu/EXT/ukgh/Exposure.pdf
[13]
Alvarez-Munoz, D.; Llorca, M.; Blasco, J.; Barcelo, D. Contaminants in the marine environment in: Marine Ecotoxicology: Current Knowledge and Future Issues; Blasco, J.; Chapman, P.M.; Campana, O; Hampel, M., Ed.; Elsevier Inc.: London, 2016, pp. 2-8.
[14]
Linde, C.D. Student Intern Thesis, Enviromental Protection Agency, Department of Pesticide Regulation: Sacramento, California,, 1994.
[15]
Owen, L.A.; Pickering, K.T. An Introduction to Global Enviromental Issues, 2nd ed; Routledge: London, 1997.
[16]
Waxman, M.F. Agrochemical and Pesticide Safety Handbook; Lewis Publishers: Boca Raton, Florida, 1998.
[http://dx.doi.org/10.1201/9781420049251]
[17]
Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health, 2011, 8(5), 1402-1419.
[http://dx.doi.org/10.3390/ijerph8051402] [PMID: 21655127]
[18]
Moser, V.C.; Bushnell, P.J. In: Toxicology of Organophosphate & Carbamate Compounds; Gupta, R.C. Ed. Academic Press, San Diego, California, 2011; pp. 352-353Edgar.
[19]
Edgar, A.J. Natural toxicants as pesticides in: Pesticide Residues in Food and Drinking Water: Human Exposure and Risks; Hamilton, D; Crossley, S., Ed.; John Wiley & Sons: West Sussex, England, 2004, pp. 280-285.
[20]
Yassi, A. Basic Enviromental Health; Oxford University Press: Oxford, 2001.
[http://dx.doi.org/10.1093/acprof:oso/9780195135589.001.0001]
[21]
Lu, J.L. Risk factors to pesticide exposure and associated health symptoms among cut-flower farmers. Int. J. Environ. Health Res., 2005, 15(3), 161-169.
[http://dx.doi.org/10.1080/09603120500105638] [PMID: 16134479]
[22]
Gervais, J.A.; Luukinen, B.; Buhl, K.; Stone, D. Imidacloprid Technical Fact Sheet. Available at: http://npic.orst.edu/factsheets/archive/imidacloprid.html
[23]
Amdur, M.O.; Doull, J.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 4th ed; Pergamon Press, 1991.
[24]
Gorlinski, G. The History of Agriculture; Britannica Educational Publishing: London, 2013.
[25]
Francis Borgio, J.; Sahayaraj, K.; Alper Susurluk, I. Microbial Insecticides: Principles and Applications; Nova Publishers: USA, 2011.
[26]
Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 2006, 51, 45-66.
[http://dx.doi.org/10.1146/annurev.ento.51.110104.151146] [PMID: 16332203]
[27]
Pal, G.K.; Kumar, B. Antifungal activity of some common weed extracts against wilt causing fungi, Fusarium oxysporum. Curr. Disc., 2013, 2(1), 62-67.
[28]
Kiliç, A.; Akay, M.T. A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food Chem. Toxicol., 2008, 46(3), 1164-1170.
[http://dx.doi.org/10.1016/j.fct.2007.11.016] [PMID: 18191319]
[29]
Benhamou, N.; Lafontaine, P.J.; Nicole, M. Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 2012, 84(12), 1432-1444.
[http://dx.doi.org/10.1094/Phyto-84-1432]
[30]
Burges, H.D. Formulation of Microbial Biopesticides: beneficial microorganisms, nematodes and seed treatments; Kluwer Academic: Dordrecht, 1998.
[http://dx.doi.org/10.1007/978-94-011-4926-6]
[31]
Sarwar, M. Biopesticides: An Effective and Environmental Friendly Insect - Pests Inhibitor Line of Action. Int. J. Engin. Adv. Res. Technol., 2015, 1(2), 10-15.
[32]
Blankenship, J.D.; Spiering, M.J.; Wilkinson, H.H.; Fannin, F.F.; Bush, L.P.; Schardl, C.L. Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry, 2001, 58(3), 395-401.
[http://dx.doi.org/10.1016/S0031-9422(01)00272-2] [PMID: 11557071]
[33]
Cakmak, M.; Mayer, P.; Trauner, D. An efficient synthesis of loline alkaloids. Nat. Chem., 2011, 3(7), 543-545.
[http://dx.doi.org/10.1038/nchem.1072] [PMID: 21697875]
[34]
Neda, I.; Kaukorat, T. Fischer, A.K. Unusual stabilization of 1,2-diamino derivatives of quincorine and quincoridine by carbon dioxide: persistent crystalline prim-ammonium-carbamate salts and their reactivity towards isatoic acid anhydride. Eur. J. Org. Chem., 2003, 2003(19), 3784-3790.
[http://dx.doi.org/10.1002/ejoc.200300211]
[35]
Simon, M.; Csunderlik, C.; Cotarca, L.; Caproiu, M.T.; Neda, I.; Turoczi, M.C.; Volpicelli, R. Synthesis of new active O-nitrophenyl carbamates. Synth. Commun., 2005, 35(11), 1471-1479.
[http://dx.doi.org/10.1081/SCC-200057986]
[36]
Filimon, S.A.; Hrib, C.G.; Randoll, S.; Neda, I.; Jones, P.G.; Tamm, M. Quinine-derived imidazolidin-2-imine ligands: synthesis, coordination chemistry, and application in catalytic transfer hydrogenation. Z. Anorg. Allg. Chem., 2010, 636(5), 691-699.
[http://dx.doi.org/10.1002/zaac.200900485]
[37]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Franz, M.H.; Kelter, G.; Fiebig, H.; Neda, I. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein J. Org. Chem., 2013, 9, 2202-2215.
[http://dx.doi.org/10.3762/bjoc.9.259] [PMID: 24222789]
[38]
Mihorianu, M.; Heiko Franz, M.; Jones, P.G.; Freytag, M.; Kelter, G.; Fiebig, H-H.; Tamm, M.; Neda, I. N-Heterocyclic carbenes derived from imidazo-[1,5-a]pyridines related to natural products: synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes. Appl. Organomet. Chem., 2016, 30(7), 581-589.
[http://dx.doi.org/10.1002/aoc.3474]
[39]
Maftei, E.; Maftei, C.V.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H-H.; Tamm, M.; Neda, I. Trifluoromethylpyridine-substituted n-heterocyclic carbenes (NHC) related to natural products: synthesis, structure and potential antitumor activity of some corresponding gold(I), rhodium(I) and iridium(I). Complexes. Helv. Chim. Acta, 2016, 99(6), 469-481.
[http://dx.doi.org/10.1002/hlca.201500529]
[40]
Neda, I.; Kaukorat, T.; Schmutzler, R.; Niemeyer, U.; Kutscher, B.; Pohl, J.; Engel, J. Benzodiaza-, benzoxaza-, and benzodioxaphosphorinones - formation, reactivity, structure, and biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2002, 162(1), 81-218.
[http://dx.doi.org/10.1080/10426500008045221]
[41]
Neda, I.; Farkens, M.; Fischer, A.; Jones, P.G.; Schmutzler, R. Chemistry of the l,3,5-triaza-2-phosphinane-4,6-diones, Part V synthesis of phosphoryl(III) (λ4P) and thiophosphoryl(III) (λ4P) derivatives of 1,3,5-triaza-2-phosphinane-4,6-diones. Reactions with ketones. Z. Naturforsch, 1993, 48(7), 860-866.
[http://dx.doi.org/10.1515/znb-1993-0702]
[42]
Kadyrov, A.A.; Neda, I.; Kaukorat, T.; Sonnenburg, R.; Fischer, A.; Jones, P.G.; Schmutzler, R. New phospholene and phosphepine derivatives from λ3-phosphorus compounds and hexafluoroacetone or perfluorinated α-diketones. Eur. J. Inorg. Chem., 1996, 129(6), 725-732.
[http://dx.doi.org/10.1002/cber.19961290620]
[43]
Neda, I.; Melnicky, C.; Vollbrecht, A.; Schmutzler, R. An unusual N-alkylation reaction during the oxidative addition of hexafluoroacetone and tetrachloro-o-benzoquinone to P-bis(2-chloroethyl)amino-substituted λ3P-compounds. Synthesis, 1996, 4, 473-474.
[http://dx.doi.org/10.1055/s-1996-4233]
[44]
Neda, I.; Farkens, M.; Fischer, A.; Jones, P.G.; Schmutzler, R. Zur chemie der 4,6-dioxo-1,3,5,2-triazaphosphinane, teil iii. darstellung von 4,6-dioxo-1,3,5,23-, 4,6-dioxo- 1,3,5,24- und 4,6-dioxo-1,3,5,25-triazaphosphinanen. Z. Naturforsch., 1993, 48(4), 443-451.
[http://dx.doi.org/10.1515/znb-1993-0408]
[45]
Matthews, G.A.; Bateman, R.P.; Miller, P.C.H. Pesticide Application Methods, 4th ed; John Wiley&Sons: London, 2014.
[http://dx.doi.org/10.1002/9781118351284]
[46]
Lacey, L.; Kaya, H. Field Manual of Techniques in Invertebrate Pathology, 2nd ed; Kluwer Academic: Dordrecht, 2007.
[http://dx.doi.org/10.1007/978-1-4020-5933-9]
[47]
Tomé, H.V.; Barbosa, W.F.; Martins, G.F.; Guedes, R.N.; Guedes, R.N.C. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere, 2015, 124, 103-109.
[http://dx.doi.org/10.1016/j.chemosphere.2014.11.038] [PMID: 25496737]
[48]
Sarwar, M. The killer chemicals for control of agriculture insect pests: the botanical insecticides. Int. J. Chem. Bimol. Sci., 2015, 1(3), 123-128.
[49]
Crickmore, N. Beyond the spore--past and future developments of Bacillus thuringiensis as a biopesticide. J. Appl. Microbiol., 2006, 101(3), 616-619.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02936.x] [PMID: 16907811]
[50]
Pigott, C.R.; Ellar, D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev., 2007, 71(2), 255-281.
[http://dx.doi.org/10.1128/MMBR.00034-06] [PMID: 17554045]
[51]
Perez-Guerrero, S.; Aldebis, H.K.; Vargas-Osuna, E. Toxicity of six Bacillus thuringiensis Cry proteins against the olive moth Prays oleae. Bull. Insectol., 2012, 65(1), 119-122.
[52]
Moazami, N. Biotechnology - Biopesticide production, encyclopedia of life support systems (EOLSS); EOLSS Publishers Co.: Paris, France, 2007.
[53]
Francis, B.J.; Sahayaraj, K.; Alper, S.I. Microbial Insecticides: Principles and Applications; Nova Publishers: USA, 2011.
[54]
Levine, E.; Oloumi-Sadeghi, H.; Fisher, J.R. Discovery of multiyear diapause in Illinois and South Dakota Northern corn rootworm (Coleoptera: Cerambycidae) eggs and incidence of the prolonged diapause trait in Illinois. J. Econ. Entomol., 1992, 85, 262-267.
[http://dx.doi.org/10.1093/jee/85.1.262]
[55]
Onstad, D.W. Insect Resistance Management; Elsevier: Amsterdam, 2008.
[http://dx.doi.org/10.1016/B978-012373858-5.50016-2]
[56]
Service, R.F. Agriculture. What happens when weed killers stop killing? Science, 2013, 341(6152), 1329-1336.
[http://dx.doi.org/10.1126/science.341.6152.1329] [PMID: 24052282]
[57]
Calvert, G.M.; Karnik, J.; Mehler, L.; Beckman, J.; Morrissey, B.; Sievert, J.; Barrett, R.; Lackovic, M.; Mabee, L.; Schwartz, A.; Mitchell, Y.; Moraga-McHaley, S. Acute pesticide poisoning among agricultural workers in the United States, 1998-2005. Am. J. Ind. Med., 2008, 51(12), 883-898.
[http://dx.doi.org/10.1002/ajim.20623] [PMID: 18666136]
[58]
Feldmann, R.J.; Maibach, H.I. Percutaneous penetration of some pesticides and herbicides in man. Toxicol. Appl. Pharmacol., 1974, 28(1), 126-132.
[http://dx.doi.org/10.1016/0041-008X(74)90137-9] [PMID: 4853576]
[59]
Spencer, P.S.; Schaumburg, H.H.; Ludolph, A.C. Experimental and Clinical Neurotoxicology; Oxford University Press: Oxford, 2000.
[60]
Anthony, D.C.; Montine, T.J.; Valentine, W.M.; Graham, D.G. Casarett and Doull’s Toxicology. The Basic Science of Poisons; Klaassen, C.D., Ed.; McGraw-Hill: New York, 2001, pp. 535-563.
[61]
Costa, L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta, 2006, 366(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cca.2005.10.008] [PMID: 16337171]
[62]
Ricceri, L.; Markina, N.; Valanzano, A.; Fortuna, S.; Cometa, M.F.; Meneguz, A.; Calamandrei, G. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol. Appl. Pharmacol., 2003, 191(3), 189-201.
[http://dx.doi.org/10.1016/S0041-008X(03)00229-1] [PMID: 13678652]
[63]
Ecobichon, D.J. Handbook of Pesticide Toxicology; Krieger, R., Ed.; Academic Press: San Diego, 2001, pp. 1087-1106.
[http://dx.doi.org/10.1016/B978-012426260-7/50055-0]
[64]
He, F.; Wang, S.; Liu, L.; Chen, S.; Zhang, Z.; Sun, J. Clinical manifestations and diagnosis of acute pyrethroid poisoning. Arch. Toxicol., 1989, 63(1), 54-58.
[http://dx.doi.org/10.1007/BF00334635] [PMID: 2742502]
[65]
Bruckner, J.; Warren, D.A. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th ed; Klaassen, C., Ed.; McGraw-Hill: New York, 2001, pp. 981-1052.
[66]
Moser, V.C.; Chanda, S.M.; Mortensen, S.R.; Padilla, S. Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol. Sci., 1998, 46(2), 211-222.
[http://dx.doi.org/10.1093/toxsci/46.2.211] [PMID: 10048124]
[67]
Sultatos, L.G. Mammalian toxicology of organophosphorus pesticides. J. Toxicol. Environ. Health, 1994, 43(3), 271-289.
[http://dx.doi.org/10.1080/15287399409531921] [PMID: 7966438]
[68]
Rozman, K.K.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th ed; Klaassen, C., Ed.; McGraw-Hill: New York, 2001, pp. 82-96.
[69]
Can, A. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides. Toxicol. Lett., 2014, 230(3), 434-443.
[http://dx.doi.org/10.1016/j.toxlet.2014.08.016] [PMID: 25149906]
[70]
Doull, J.; Borzelleca, J.F.; Becker, R.; Daston, G.; DeSesso, J.; Fan, A.; Fenner-Crisp, P.; Holsapple, M.; Holson, J.; Craig Llewellyn, G.; MacGregor, J.; Seed, J.; Walls, I.; Woo, Y.T.; Olin, S. Framework for use of toxicity screening tools in context-based decision-making. Food Chem. Toxicol., 2007, 45(5), 759-796.
[http://dx.doi.org/10.1016/j.fct.2006.10.025] [PMID: 17215066]
[71]
Putz, M.V.; Ori, O.; Cataldo, F.; Putz, A-M. Parabolic reactivity “coloring” molecular topology: application to carcinogenic PAHs. Curr. Org. Chem., 2013, 17(23), 2816-2830.
[http://dx.doi.org/10.2174/13852728113179990128]
[72]
Karcher, W.; Devillers, J. Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Enviromental Chemistry and Toxicology; Kluwer Academic Publishers: Dordrecht, Netherlands, 1990.
[73]
Estrada, E. Physicochemical interpretation of molecular connectivity indices. J. Phys. Chem. A, 2002, 106(39), 9085-9091.
[http://dx.doi.org/10.1021/jp026238m]
[74]
Kier, L.B.; Hall, L.W. The meaning of molecular connectivity: a bimolecular accessibility model. Croat. Chem. Acta, 2002, 75(2), 371-382.
[75]
Camarda, K.V.; Maranas, C.D. Optimization in polymer design using connectivity indices. Ind. Eng. Chem. Res., 1999, 38(5), 1884-1892.
[http://dx.doi.org/10.1021/ie980682n]
[76]
Gutman, I.; Tošović, J.; Radenković, S.; Marković, S. On atom-bond connectivity index and its chemical applicability. Indian J. Chem., 2012, 51(5), 690-694.
[77]
Shobha, J.; Yadav, M.; Paradkar, L.; Anuraj, N.S.; Sharma, S. QSAR studies on bacterial growth by using connectivity type topological indices. Oxid. Commun., 2011, 34(3), 640-649.
[78]
Estrada, E.; Rodriguez, L. Edge-connectivity indices in QSPR/QSAR studies. 1. comparison to other topological indices in QSPR Studies. J. Chem. Inf. Comput. Sci., 1999, 39(6), 1037-1040.
[http://dx.doi.org/10.1021/ci990030p]
[79]
Sabljić, A.; Protić, M. Molecular connectivity: a novel method for prediction of bioconcentration factor of hazardous chemicals. Chem. Biol. Interact., 1982, 42(3), 301-310.
[http://dx.doi.org/10.1016/0009-2797(82)90074-6] [PMID: 7151232]
[80]
Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci., 1997, 37(2), 273-282.
[http://dx.doi.org/10.1021/ci960049h]
[81]
Putz, M.V.; Tudoran, M.A.; Ori, O. Topological organic chemistry: from distance matrix to timisoara eccentricity. Curr. Org. Chem., 2015, 19(3), 249-273.
[http://dx.doi.org/10.2174/1385272819666141216230705]
[82]
Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem., 2009, 46, 1252-1270.
[http://dx.doi.org/10.1007/s10910-008-9515-z]
[83]
Putz, M.V.; Dudaș, N.A. Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives’ anti-HIV action. Struct. Chem., 2013, 24(6), 1873-1893.
[http://dx.doi.org/10.1007/s11224-013-0249-6]
[84]
Putz, M.V.; Dudaş, N.A. Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines. Molecules, 2013, 18(8), 9061-9116.
[http://dx.doi.org/10.3390/molecules18089061] [PMID: 23903183]
[85]
Li, X.; Yu, Q.; Zhu, L. An improved molecular connectivity index. Science in China Series B., 2000, 43(3), 288-294.
[http://dx.doi.org/10.1007/BF02969524]
[86]
Diudea, M.V. Phenylenic and naphthylenic tori. Fuller. Nanotub. Carbon Nanostruct., 2002, 10, 273-292.
[http://dx.doi.org/10.1081/FST-120016450]
[87]
Klavžar, S.; Gutman, I.; Rajapakse, A. Wiener number of pericondensed benzenoid hydrocarbons. Croat. Chem. Acta, 1997, 70(4), 979-999.
[88]
Koorepazan-Moftakhar, F.; Ashrafi, A.R.; Ori, O.; Putz, M.V. Topological invariants of nanocones and fullerenes. Curr. Org. Chem., 2015, 19, 1-9.
[http://dx.doi.org/10.2174/1385272819666141216230152]
[89]
Koorepazan-Moftakhar, F.; Ashrafi, A.R.; Ori, O.; Putz, M.V. Sphericality of some classes of fullerenes measured by topology in: Fullerenes: Chemistry, Natural Sources and Technological Applications; Ellis, S.B., Ed.; Nova Science Publishers, 2014, pp. 285-304.
[90]
Bonchev, D.; Balaban, A.T.; Mekenyan, O. Generalization of the graph center concept and derived topological centric indices. J. Chem. Inf. Comput. Sci., 1980, 20(2), 106-113.
[http://dx.doi.org/10.1021/ci60022a011]
[91]
Bonchev, D.; Mekenyan, O. A topological approach to the calculation of the π-electron energy and energy gap of infinite conjugated polymers. Zeitschrift für Naturforschung, 1980, 35(7), 739-747.
[http://dx.doi.org/10.1515/zna-1980-0713]
[92]
Ori, O.; Cataldo, F.; Vukičević, D.; Graovac, A. Wiener way to dimensionality. Iranian Journal of Mathematical Chemistry, 2010, 1(2), 5-15.
[93]
Bumbacila, B. Topological modeling of steric interactions in QSAR studies., PhD Thesis (West University of Timisoara, Prof. Mihai V. Putz supervisor)., 2018.
[94]
Routt Reigart, J.; Roberts, J.R. Recognition and Management of Pesticide Poisonings, 5th ed; Environmental Protection Agency: Washington, D.C., 1999.
[95]
Anthony, D.C.; Montine, T.J.; Valentine, W.M.; Graham, D.G. Casarett and Doull’s Toxicology. The Basic Science of Poisons; Klaassen, C.D., Ed.; McGraw-Hill: New York, 2001, pp. 535-563.
[96]
Costa, L.G. Organophosphorus compounds In: Recent Advances in Nervous System Toxicology; Galli, C.L.; Manzo, L.; Spencer; P.S., eds.; Plenum Publishing Corp.: New York., 1988; pp. 203-246.
[http://dx.doi.org/10.1007/978-1-4613-0887-4_11]
[97]
Lotti, M. Experimental and Clinical Neurotoxicology; Spencer, P.S.; Schaumburg, H.H; Ludolph, A.C., Ed.; Oxford University Press: Oxford, 2000, pp. 898-925.
[98]
Lotti, M. Clinical toxicology of anticholinesterase agents in humans in: Handbook of Pesticide Toxicology; Krieger, R., Ed.; Academic Press: San Diego, 2001, pp. 1043-1085.
[http://dx.doi.org/10.1016/B978-012426260-7.50054-9]
[99]
Senanayake, N.; Karalliedde, L. Neurotoxic effects of organophosphorus insecticides. An intermediate syndrome. N. Engl. J. Med., 1987, 316(13), 761-763.
[http://dx.doi.org/10.1056/NEJM198703263161301] [PMID: 3029588]
[100]
Lotti, M. The pathogenesis of organophosphate polyneuropathy. Crit. Rev. Toxicol., 1991, 21(6), 465-487.
[http://dx.doi.org/10.3109/10408449209089884] [PMID: 1666291]
[101]
Lotti, M.; Moretto, A. Organophosphate-induced delayed polyneuropathy. Toxicol. Rev., 2005, 24(1), 37-49.
[http://dx.doi.org/10.2165/00139709-200524010-00003] [PMID: 16042503]
[102]
Johnson, M.K. The target for initiation of delayed neurotoxicity by organophosphorus esters: biochemical studies and toxicological applications. Rev. Biochem. Toxicol., 1982, 4, 141-212.
[103]
Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR - Hydrophobic, Electronic, and Steric Constants; American Chemical Society: Washington, DC, 1995.
[104]
Wagner, S.L. Chemistry, Biochemistry and Toxicology of Pesticides; Witt, J.M., Ed.; Oregon State University Cooperative Extension Service: Corvallis, OR, 1989, pp. 125-153.
[105]
Gallo, M.A.; Lawryk, N.J. Handbook of Pesticide Toxicology; Academic Press: New York, NY, 1991.
[106]
Berg, G.L. Farm chemicals handbook; Meister Publishing Company: Willoughby, Ohio, 1986.
[107]
Kidd, H.; Hartley, D., Eds.; The agrochemicals handbook; Royal Society of Chemistry: Nottingham, England, 1983, pp. 123-180.
[108]
The Agrochemicals Handbook; The University of Nottingham: England, 1983.
[109]
Worthing, C.R. The Pesticide Manual: A World Compendium, 7th ed; The British Crop Protection Council, 1983.
[110]
Meister, R.T.; Berg, G.L.; Sine, C.; Meister, S.; Poplyk, J. Farm Chemicals Handbook. Pesticide dictionary; Meister Publishing Co., 1983.
[111]
R. E. Clinical toxicology of commercial products, 5th ed; Williams and Wilkins: Baltimore, MD, 1984.
[112]
Summary of acute dermal toxicity study on chlorpyrifos in Fischer 344 rats; Dow Chemical: Indianapolis, IN, 1986.
[113]
Hayes, W.J.; Laws, E.R. Handbook of Pesticide Toxicology; Academic Press, Inc.: NY, 1990.
[114]
Meister, R.T. Farm Chemicals Handbook ’92; Meister Publishing Company: Willoughby, OH, 1992.
[115]
MSDS for Methyl Parathion; OHS Inc.: Secaucus, NJ, 1991.
[116]
Hazardous Substance Databank. TOXNET, Medlars management Section, 1992.
[117]
Bethesda, M.D.; Philip, H. Fate and Exposure Data for Organic Chemicals. Pesticides; Lewis Publishers: Chelsea, MI, 1991.
[118]
Guthion (azinphos methyl): Organophosphorus insecticide. Res Rev., 1974, 51, 123-180.
[119]
Clayton, G.D.; Clayton, F.E. Patty’s industrial hygiene and toxicology, 3rd ed; John Wiley and Sons: New York, 1981.
[120]
Hartley, D.; Kidd, H. The agrochemicals handbook; Royal Society of Chemistry: Nottingham, England, 1983.
[121]
Hayes, W.J. The pesticide manual: A world compendium; Worthing, C.R., Ed.; The British Crop Protection Council: Croydon, England, 1985, pp. 78-109.
[122]
Berteau, P.E.; Deen, W.A. A comparison of oral and inhalation toxicities of four insecticides to mice and rats. Bull. Environ. Contam. Toxicol., 1978, 19(1), 113-120.
[http://dx.doi.org/10.1007/BF01685774] [PMID: 75750]
[123]
Weeks, M.H.; Lawson, M.A.; Angerhofer, R.A.; Davenport, C.D.; Pennington, N.E. Preliminary assessment of the acute toxicity of malathion in animals. Arch. Environ. Contam. Toxicol., 1977, 6(1), 23-31.
[http://dx.doi.org/10.1007/BF02097746] [PMID: 907373]
[124]
Bumbăcilă, B.; Putz, M.V. Clef topo-toxicity by cubic representations of organophosphates. Fuller. Nanotub. Carbon Nanostruct., 2019, 27(2), 167-188.
[http://dx.doi.org/10.1080/1536383X.2018.1550746]
[125]
Katzung, B.G. Basic and clinical pharmacology: Introduction to autonomic pharmacology, 8th ed; The McGraw Hill Companies, 2001.
[126]
Quinn, D.M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., 1987, 87(5), 955-979.
[http://dx.doi.org/10.1021/cr00081a005]
[127]
Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 1991, 253(5022), 872-879.
[http://dx.doi.org/10.1126/science.1678899] [PMID: 1678899]
[128]
Oliveira, R.; Ciro, A.; de Assis, S.; Cristina, H. AChE inhibition as a biomarker for pollutants contamination in tropical aquatic ecosystems.Recent Trends in the Acetylcholinesterase System; Parveen, M; Kumar, S., Ed.; IOS Press, 2005, pp. 103-124.
[129]
Peter, J.V.; Sudarsan, T.I.; Moran, J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med., 2014, 18(11), 735-745.
[http://dx.doi.org/10.4103/0972-5229.144017] [PMID: 25425841]
[130]
Prashant, T.; Shubhangi, D.; Mukesh-Pratap, S.; Rahul, M.; Anish, C. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis., 2017, 3(5), 413-420.
[http://dx.doi.org/10.1016/S2222-1808(13)60094-8]
[131]
Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed; John Wiley and Sons, 2007.
[http://dx.doi.org/10.1002/9780470134955]
[132]
Kasagami, T.; Miyamoto, T.; Yamamoto, I. Activated transformations of organophosphorus insecticides in the case of non-AChE inhibitory oxons. Pest Manag. Sci., 2002, 58(11), 1107-1117.
[http://dx.doi.org/10.1002/ps.546] [PMID: 12449529]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 1
Year: 2020
Published on: 18 February, 2020
Page: [54 - 77]
Pages: 24
DOI: 10.2174/0929867326666190704142354
Price: $65

Article Metrics

PDF: 27
HTML: 5