Metabolomics-Guided Isolation of Anti-Trypanosomal Compounds from Endophytic Fungi of the Mangrove plant Avicennia Lanata

Author(s): Noor Wini Mazlan*, Rothwelle Tate, Yusnaini Md. Yusoff, Carol Clements, RuAngelie Edrada-Ebel*.

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 11 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Endophytic fungi have been explored not just for their ecological functions but also for their secondary metabolites as a new source of these pharmacologically active natural products. Accordingly, many structurally unique and biologically active compounds have been obtained from the cultures of endophytic fungi. Fusarium sp. and Lasiodiplodia theobromae were isolated from the root and stem of the mangrove plant Avicennia lanata, respectively, collected from Terengganu, Malaysia. High-resolution mass spectrometry and NMR spectroscopy were used as metabolomics profiling tools to identify and optimize the production of bioactive secondary metabolites in both strains at different growth stages and culture media. The spectral data was processed by utilizing Mzmine 2, a quantitative expression analysis software and an in house MS-Excel macro coupled with the Dictionary of Natural Products databases for dereplication studies. The investigation for the potential bioactive metabolites from a 15-day rice culture of Fusarium sp. yielded four 1,4- naphthoquinone with naphthazarin structures (1-4). On the other hand, the endophytic fungus L. theobromae grown on the 15-day solid rice culture produced dihydroisocoumarins (5-8). All the isolated compounds (1-8) showed significant activity against Trypanosoma brucei brucei with MIC values of 0.32-12.5 µM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing the lowest cytotoxicity of only 22.3% and 38.6% of the control values at 100 µg/mL, respectively. Structure elucidation of the isolated secondary metabolites was achieved using 2D-NMR and HRESI-MS as well as comparison with literature data.

Keywords: Endophytic fungi, dereplication, metabolomics, mass spectrometry, multivariate analysis, secondary metabolites.

[1]
Hyde, K.; Soytong, K. The fungal endophyte dilemma. Fungal Divers., 2008, 33, 163-173.
[2]
Nair, D.N.; Padmavathy, S. Impact of endophytic microorganisms on plants, environment and humans. ScientificWorldJournal, 2014, 2014250693
[http://dx.doi.org/10.1155/2014/250693] [PMID: 24587715]
[3]
Cribb, A.B.; Cribb, J.W. Marine fungi from Queensland; University of Queensland Press: Brisbane, 1955.
[4]
Kim, H.K.; Verpoorte, R. Sample preparation for plant metabolomics. Phytochem. Anal., 2010, 21(1), 4-13.
[http://dx.doi.org/10.1002/pca.1188] [PMID: 19904733]
[5]
Verpoorte, R.; Choi, Y.; Kim, H. NMR-based metabolomics at work in phytochemistry. Phytochem. Rev., 2007, 6(1), 3-14.
[http://dx.doi.org/10.1007/s11101-006-9031-3]
[6]
Nielsen, J.; Oliver, S. The next wave in metabolome analysis. Trends Biotechnol., 2005, 23(11), 544-546.
[http://dx.doi.org/10.1016/j.tibtech.2005.08.005] [PMID: 16154652]
[7]
Wolfender, J-L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A, 2015, 1382, 136-164.
[http://dx.doi.org/10.1016/j.chroma.2014.10.091] [PMID: 25464997]
[8]
Horning, E.C.; Horning, M.G. Metabolic profiles: chromatographic methods for isolation and characterization of a variety of metabolites in man. Methods Med. Res., 1970, 12, 369-371.
[PMID: 5432495]
[9]
Devaux, P.; Horning, M.; Horning, E. Benzyloxime derivatives of steroids: a new metabolic profile procedure for human urinary steroids human urinary steroids. Anal. Lett., 1971, 4(3), 151-160.
[http://dx.doi.org/10.1080/00032717108059686]
[10]
Grotewold, E. Plant metabolic diversity: a regulatory perspective. Trends Plant Sci., 2005, 10(2), 57-62.
[http://dx.doi.org/10.1016/j.tplants.2004.12.009] [PMID: 15708342]
[11]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[12]
Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics, 2001, 2(3), 155-168.
[http://dx.doi.org/10.1002/cfg.82] [PMID: 18628911]
[13]
Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A, 2007, 1158(1-2), 196-214.
[http://dx.doi.org/10.1016/j.chroma.2007.05.024] [PMID: 17540392]
[14]
Krug, D.; Zurek, G.; Revermann, O.; Vos, M.; Velicer, G.J.; Müller, R. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol., 2008, 74(10), 3058-3068.
[http://dx.doi.org/10.1128/AEM.02863-07] [PMID: 18378661]
[15]
Wold, H. In Encyclopedia of Statistical Sciences; , 2004.
[16]
Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Control of neglected tropical diseases. N. Engl. J. Med., 2007, 357(10), 1018-1027.
[http://dx.doi.org/10.1056/NEJMra064142] [PMID: 17804846]
[17]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[18]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[19]
Gurnani, N.; Mehta, D.; Gupta, M.; Mehta, B. Natural products: source of potential drugs. Afr. J. Bas. & Appl. Sci. (Basel), 2014, 6(6), 171-186.
[http://dx.doi.org/10.5829/idosi.ajbas.2014.6.6.21983]
[20]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[21]
Ribeiro-Rodrigues, R.; dos Santos, W.G.; Zani, C.L.; Oliveira, A.B.; Snieckus, V.; Romanha, A.J. Growth inhibitory effect of naphthofuran and naphthofuranquinone derivatives on Trypanosoma cruzi epimastigotes. Bioorg. Med. Chem. Lett., 1995, 5(14), 1509-1512.
[http://dx.doi.org/10.1016/0960-894X(95)00248-R]
[22]
Morello, A.; Pavani, M.; Garbarino, J.A.; Chamy, M.C.; Frey, C.; Mancilla, J.; Guerrero, A.; Repetto, Y.; Ferreira, J. Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 1995, 112(2), 119-128.
[http://dx.doi.org/10.1016/0742-8413(95)02003-9] [PMID: 8788584]
[23]
Pérez-Castorena, A.L.; Arciniegas, A.; Villaseñor, J.L.; de Vivar, A.R. Furanoeremophilane derivatives from Psacalium beamanii. Rev. Soc. Quím. Méx., 2004, 48, 21-23.
[24]
Sayers, E.W.; Barrett, T.; Benson, D.A.; Bolton, E.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; Dicuccio, M.; Federhen, S.; Feolo, M.; Geer, L.Y.; Helmberg, W.; Kapustin, Y.; Landsman, D.; Lipman, D.J.; Lu, Z.; Madden, T.L.; Madej, T.; Maglott, D.R.; Marchler-Bauer, A.; Miller, V.; Mizrachi, I.; Ostell, J.; Panchenko, A.; Pruitt, K.D.; Schuler, G.D.; Sequeira, E.; Sherry, S.T.; Shumway, M.; Sirotkin, K.; Slotta, D.; Souvorov, A.; Starchenko, G.; Tatusova, T.A.; Wagner, L.; Wang, Y.; John Wilbur, W.; Yaschenko, E.; Ye, J. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2010, 38(Database issue), D5-D16.
[http://dx.doi.org/10.1093/nar/gkp967] [PMID: 19910364]
[25]
Taylor, D.L.; Houston, S. In:Fungal Genomics; , 2011, pp. 141-155.
[26]
Macintyre, L.; Zhang, T.; Viegelmann, C.; Martinez, I.J.; Cheng, C.; Dowdells, C.; Abdelmohsen, U.R.; Gernert, C.; Hentschel, U.; Edrada-Ebel, R. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar. Drugs, 2014, 12(6), 3416-3448.
[http://dx.doi.org/10.3390/md12063416] [PMID: 24905482]
[27]
Abdelmohsen, U.R.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.J.; Hentschel, U.; Edrada-Ebel, R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar. Drugs, 2014, 12(3), 1220-1244.
[http://dx.doi.org/10.3390/md12031220] [PMID: 24663112]
[28]
Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop., 1997, 68(2), 139-147.
[http://dx.doi.org/10.1016/S0001-706X(97)00079-X] [PMID: 9386789]
[29]
O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem., 2000, 267(17), 5421-5426.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01606.x] [PMID: 10951200]
[30]
Medentsev, A.; Baskunov, B.; Akimenko, V. Formation of naphthoquinone pigments by the fungus Fusarium decemcellulare and their influence on the oxidative metabolism of the producer. Biochemistry, 1988.
[31]
Tatum, J.H.; Baker, R.A. Naphthoquinones produced by Fusarium solani isolated from citrus. Phytochemistry, 1983, 22(2), 543-547.
[http://dx.doi.org/10.1016/0031-9422(83)83042-8]
[32]
Kimura, Y.; Shimada, A.; Nakajima, H.; Hamasaki, T. Structures of naphthoquinones produced by the fungus, Fusarium sp., and their biological activity toward pollen germination. Agric. Biol. Chem., 1988, 52(5), 1253-1259.
[http://dx.doi.org/10.1271/bbb1961.52.1253]
[33]
Arnstein, H.R.V.; Cook, A.H. Production of antibiotics by fungi. Part III. Javanicin. An antibacterial pigment from Fusarium javanicum. Journal of the Chemical Society; Resumed, 1947, pp. 1021-1028.
[34]
Chilton, W.S. Isolation and structure of norjavanicin. J. Org. Chem., 1968, 33(11), 4299-4300.
[http://dx.doi.org/10.1021/jo01275a074]
[35]
Kharwar, R.N.; Verma, V.C.; Kumar, A.; Gond, S.K.; Harper, J.K.; Hess, W.M.; Lobkovosky, E.; Ma, C.; Ren, Y.; Strobel, G.A. Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr. Microbiol., 2009, 58(3), 233-238.
[http://dx.doi.org/10.1007/s00284-008-9313-7] [PMID: 19018591]
[36]
Trisuwan, K.; Khamthong, N.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J. Nat. Prod., 2010, 73(9), 1507-1511.
[http://dx.doi.org/10.1021/np100282k] [PMID: 20815366]
[37]
Bentley, R.; Gatenbeck, S. Naphthoquinone biosynthesis in molds. The mechanism for formation of mollisin. Biochemistry, 1965, 4(6), 1150-1156.
[http://dx.doi.org/10.1021/bi00882a025] [PMID: 5840001]
[38]
Miersch, O.; Bohlmann, H.; Wasternack, C. Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry, 1999, 50(4), 517-523.
[http://dx.doi.org/10.1016/S0031-9422(98)00596-2]
[39]
Kobayashi, M.; Krishna, M.M.; Ishida, K.; Anjaneyulu, V. Marine Sterols. XXII. Occurrence of 3-oxo-4, 6, 8(14)- triunsaturated steroids in the sponge Dysidea herbacea. Chem. Pharm. Bull. (Tokyo), 1992, 40(1), 72-74.
[http://dx.doi.org/10.1248/cpb.40.72]
[40]
Fuchser, J.; Zeeck, A. Secondary Metabolites by Chemical screening, 34.-aspinolides and aspinonene/aspyrone co-metabolites, new pentaketides produced by Aspergillus ochraceus. Liebigs Ann., 1997, 1997(1), 87-95.
[http://dx.doi.org/10.1002/jlac.199719970114]
[41]
Quang, D.N.; Bach, D.D.; Hashimoto, T.; Asakawa, Y. Chemical constituents of the Vietnamese inedible mushroom Xylaria intracolorata. Nat. Prod. Res., 2006, 20(4), 317-321.
[http://dx.doi.org/10.1080/14786410600650354] [PMID: 16644525]
[42]
Asha, K.N.; Chowdhury, R.; Hasan, C.M.; Rashid, M.A. Steroids and polyketides from Uvaria hamiltonii stem bark. Acta Pharm., 2004, 54(1), 57-63.
[PMID: 15050045]
[43]
Oliveira, C.M.; Silva, G.H.; Regasini, L.O.; Zanardi, L.M.; Evangelista, A.H.; Young, M.C.; Bolzani, V.S.; Araujo, A.R. Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae). Z. Natforsch. C J. Biosci., 2009, 64(11-12), 824-830.
[http://dx.doi.org/10.1515/znc-2009-11-1212] [PMID: 20158153]
[44]
Feng, Z.; Nenkep, V.; Yun, K.; Zhang, D.; Choi, H.D.; Kang, J.S.; Son, B.W. Biotransformation of bioactive (-)-mellein by a marine isolate of bacterium Stappia sp. J. Microbiol. Biotechnol., 2010, 20(6), 985-987.
[http://dx.doi.org/10.4014/jmb.1002.02012] [PMID: 20622496]
[45]
Cole, R.J.; Moore, J.H.; Davis, N.D.; Kirksey, J.W.; Diener, U.L. 4-Hydroxymellein. New metabolite of Aspergillus ochraceus. J. Agric. Food Chem., 1971, 19(5), 909-911.
[http://dx.doi.org/10.1021/jf60177a003]
[46]
Sasaki, M.; Kaneko, Y.; Oshita, K.; Takamatsu, H.; Asao, Y.; Yokotsuka, T. Studies on the compounds produced by molds: Part VII. Isolation of isocoumarin compounds. Agric. Biol. Chem., 1970, 34(9), 1296-1300.
[http://dx.doi.org/10.1080/00021369.1970.10859767]
[47]
Hussain, H.; Krohn, K.; Schulz, B.; Draeger, S.; Nazir, M.; Saleem, M. Two new antimicrobial metabolites from the endophytic fungus, Seimatosporium sp. Nat. Prod. Commun., 2012, 7(3), 293-294.
[http://dx.doi.org/10.1177/1934578X1200700305] [PMID: 22545398]
[48]
Findlay, J.A.; Buthelezi, S.; Lavoie, R.; Peña-Rodriguez, L.; Miller, J.D. Bioactive isocoumarins and related metabolites from conifer endophytes. J. Nat. Prod., 1995, 58(11), 1759-1766.
[http://dx.doi.org/10.1021/np50125a021] [PMID: 8594154]
[49]
Aldridge, D.; Galt, S.; Giles, D.; Turner, W. Metabolites of Lasiodiplodia theobromae. Journal of the Chemical Society C. Organic, 1971, 1623-1627
[http://dx.doi.org/10.1039/j39710001623]
[50]
Montenegro, T.G.C.; Rodrigues, F.A.R.; Jimenez, P.C.; Angelim, A.L.; Melo, V.M.M.; Rodrigues Filho, E.; de Oliveira, Mda.C.; Costa-Lotufo, L.V. Cytotoxic activity of fungal strains isolated from the ascidian Eudistoma vannamei. Chem. Biodivers., 2012, 9(10), 2203-2209.
[http://dx.doi.org/10.1002/cbdv.201100366] [PMID: 23081920]
[51]
Camarda, L.; Merlini, L.; Nasini, G. Metabolites of Cercospora. Taiwapyrone, an α-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry, 1976, 15(4), 537-539.
[http://dx.doi.org/10.1016/S0031-9422(00)88966-9]
[52]
Garson, M.J.; Staunton, J.; Jones, P.G. New polyketide metabolites from Aspergillus melleus: structural and stereochemical studies. J. Chem. Soc., Perkin Trans. 1, 1984, 1021-1026.
[http://dx.doi.org/10.1039/p19840001021]
[53]
Holker, J.S.; Simpson, T.J. Studies on fungal metabolites. Part 2. Carbon-13 nuclear magnetic resonance biosynthetic studies on pentaketide metabolites of Aspergillus melleus: 3-(1, 2-epoxypropyl)-5, 6-dihydro-5-hydroxy-6-methyl- pyran-2-one and mellein. J. Chem. Soc., Perkin Trans. 1, 1981, 1397-1400
[http://dx.doi.org/10.1039/p19810001397]
[54]
Devys, M.; Barbier, M.; Bousquet, J-F.; Kollmann, A. Isolation of the (-)-(3R)-5-hydroxymellein from the fungus Septoria nodorum. Phytochemistry, 1994, 35(3), 825-826.
[http://dx.doi.org/10.1016/S0031-9422(00)90617-4]
[55]
Venkatasubbaiah, P.; Chilton, W.S. Phytotoxins of Botryosphaeria obtusa. J. Nat. Prod., 1990, 53(6), 1628-1630.
[http://dx.doi.org/10.1021/np50072a044]
[56]
Djoukeng, J.D.; Polli, S.; Larignon, P.; Abou-Mansour, E. Identification of phytotoxins from Botryosphaeria obtusa, a pathogen of black dead arm disease of grapevine. Eur. J. Plant Pathol., 2009, 124(2), 303-308.
[http://dx.doi.org/10.1007/s10658-008-9419-6]
[57]
Schulz, B.; Sucker, J.; Aust, H.J.; Krohn, K.; Ludewig, K.; Jones, P.G.; Döring, D. Biologically active secondary metabolites of endophytic Pezicula species. Mycol. Res., 1995, 99(8), 1007-1015.
[http://dx.doi.org/10.1016/S0953-7562(09)80766-1]
[58]
Nishikawa, H. Biochemistry of filamentous fungi. II: a metabolic product of Aspergillus melleus Yukawa. Part I. Nippon Nogeikagaku Kaishi, 1933, 9(7-9), 107-109.
[59]
Poch, G.K.; Gloer, J.B. Helicascolides A and B: new lactones from the marine fungus Helicascus kanaloanus. J. Nat. Prod., 1989, 52(2), 257-260.
[http://dx.doi.org/10.1021/np50062a006] [PMID: 2746255]
[60]
Parisi, A.; Piattelli, M.; Tringali, C.; Di San Lio, G.M. Identification of the phytotoxin mellein in culture fluids of Phoma tracheiphila. Phytochemistry, 1993, 32(4), 865-867.
[http://dx.doi.org/10.1016/0031-9422(93)85221-C]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 11
Year: 2020
Page: [1815 - 1835]
Pages: 21
DOI: 10.2174/0929867326666190704130105
Price: $65

Article Metrics

PDF: 17
HTML: 1