Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages

Author(s): Firoozeh Alavian*, Nasrin Shams

Journal Name: Current Clinical Pharmacology

Volume 15 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Over the past few decades, nanotechnology has dramatically advanced; from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to increase drug absorption through the mouth or nose in treating the stroke.

Objective: In this article, in addition to explaining pros and cons of oral and intra-nasal administration of nanoparticles in the brain ischemia treatment of animal models, the researchers introduce some articles in this field and briefly mentioned their work outcomes.

Methods: A number of relevant published articles 183 were initially collected from three popular databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the main purpose of the present work were removed from the study process. The present data set finally included 125 published articles.

Results: Direct delivery of the drug to the animal brain through the mouth and nose has more therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparticles complex can potentially improve the direct delivery of drugs to the CNS.

Conclusion: Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment.

Keywords: Nanoparticles, stroke, oral, intra-nasal, treatment, CNS, rat.

[1]
Control CfD, Prevention.. National diabetes fact sheet: National estimates and general in-formation on diabetes and prediabetes in the United States 2011 2011; 201(1): 2568-9.
[2]
Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol 2007; 6(2): 182-7.
[http://dx.doi.org/10.1016/S1474-4422(07)70031-5] [PMID: 17239805]
[3]
Alavian F, Hajizadeh S, Bigdeli MR, Javan M. The role of protein kinase C in ischemic tolerance induced by hyperoxia in rats with stroke. EXCLI J 2012; 11: 188-97.
[PMID: 27385957]
[4]
Alavian F, Ghiasvand S. Protective effects of jujube extract against permeability of Blood-Brain Barrier (BBB), and the activity of glutathione peroxidase and catalase in stroke model. Majallah-i Danishkadah-i Pizishki-i Isfahan 2018; 36(475): 379-85.
[5]
Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77(4): 491-502.
[http://dx.doi.org/10.1016/0092-8674(94)90212-7] [PMID: 7910522]
[6]
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 2003; 6(2): 252-73.
[PMID: 12935438]
[7]
Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 2009; 71(2): 251-6.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[8]
Lao F, Chen L, Li W, et al. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 2009; 3(11): 3358-68.
[http://dx.doi.org/10.1021/nn900912n] [PMID: 19839607]
[9]
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev 2016; 116(4): 2602-63.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[10]
Pathak Y. Recent Developments in nanoparticulate drug delivery systems drug delivery nanoparticles formulation and characterization. CRC Press 2016; pp. 19-33.
[11]
Warheit DB. Nanoparticles. Mater Today 2004; 7(2): 32-5.
[http://dx.doi.org/10.1016/S1369-7021(04)00081-1]
[12]
Alavian F. Drug Abuse Treatment through gene manipulation using nanomedicine. Curr Pharmacogenomics Person Med 2018; 16(182): 1-10.
[13]
Petkar KC, Chavhan SS, Agatonovik-Kustrin S, Sawant K. Nanostructured materials in drug and gene delivery: A review of the state of the art
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i2.10]
[14]
Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2(1): 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[15]
Kittelson DB. Engines and nanoparticles: A review. J Aerosol Sci 1998; 29(5-6): 575-88.
[http://dx.doi.org/10.1016/S0021-8502(97)10037-4]
[16]
Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006; 5(1): 561-73.
[17]
Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites-A review. Prog Polym Sci 2013; 38(8): 1232-61.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.02.003]
[18]
Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 2011; 40(3): 1647-71.
[http://dx.doi.org/10.1039/C0CS00018C] [PMID: 21082078]
[19]
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007; 2(3): 107-18.
[http://dx.doi.org/10.1007/s11468-007-9031-1]
[20]
Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets 2015; 16(14): 1671-81.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[21]
Ferro-Flores G, Ocampo-García BE, Santos-Cuevas CL, Morales-Avila E, Azorín-Vega E. Multifunctional radiolabeled nanoparticles for targeted therapy. Curr Med Chem 2014; 21(1): 124-38.
[http://dx.doi.org/10.2174/09298673113209990218] [PMID: 23992338]
[22]
Jiskoot W, van Schie RM, Carstens MG, Schellekens H. Immunological risk of injectable drug delivery systems. Pharm Res 2009; 26(6): 1303-14.
[http://dx.doi.org/10.1007/s11095-009-9855-9] [PMID: 19247815]
[23]
Li M, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 2010; 4(11): 6303-17.
[http://dx.doi.org/10.1021/nn1018818] [PMID: 20945925]
[24]
Patel J, Patel A. Toxicity of Nanomaterials on the Liver, Kidney, and Spleen. CRC Press: Boca Raton, FL 2015.
[25]
Donaldson K, Tran L, Jimenez LA, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2(1): 10.
[http://dx.doi.org/10.1186/1743-8977-2-10] [PMID: 16242040]
[26]
Lamprecht A, Schäfer U, Lehr C-M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res 2001; 18(6): 788-93.
[http://dx.doi.org/10.1023/A:1011032328064] [PMID: 11474782]
[27]
Park MV, Neigh AM, Vermeulen JP, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011; 32(36): 9810-7.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.085] [PMID: 21944826]
[28]
Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles - known and unknown health risks. J Nanobiotechnology 2004; 2(1): 12.
[http://dx.doi.org/10.1186/1477-3155-2-12] [PMID: 15588280]
[29]
Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 2013; 8: 3255-69.
[PMID: 24023514]
[30]
Cho M, Cho W-S, Choi M, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 2009; 189(3): 177-83.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.017] [PMID: 19397964]
[31]
De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008; 29(12): 1912-9.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[32]
Ong W-Y, Shalini S-M, Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem 2014; 21(37): 4247-56.
[http://dx.doi.org/10.2174/0929867321666140716103130] [PMID: 25039773]
[33]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[34]
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004; 303(5665): 1818-22.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[35]
Ting Y, Jiang Y, Ho C-T, Huang Q. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 2014; 7: 112-28.
[http://dx.doi.org/10.1016/j.jff.2013.12.010]
[36]
Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 2013; 85(3 Pt A): 339-45.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.005] [PMID: 23454202]
[37]
Ahmad N, Ahmad R, Naqvi AA, et al. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int J Biol Macromol 2016; 91: 640-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.001] [PMID: 27264648]
[38]
Zhang J, Han X, Li X, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine 2012; 7: 4299-310.
[http://dx.doi.org/10.2147/IJN.S32385] [PMID: 22915851]
[39]
Yadav A, Sunkaria A, Singhal N, Sandhir R. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018; 112: 239-54.
[http://dx.doi.org/10.1016/j.neuint.2017.08.001] [PMID: 28782592]
[40]
Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One 2013; 8(4) e57735
[http://dx.doi.org/10.1371/journal.pone.0057735] [PMID: 23620721]
[41]
Mutoh T, Mutoh T, Taki Y, Ishikawa T. Therapeutic potential of natural product-based oral nanomedicines for stroke prevention. J Med Food 2016; 19(6): 521-7.
[http://dx.doi.org/10.1089/jmf.2015.3644] [PMID: 27136062]
[42]
Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 2014; 21(2): 75-86.
[http://dx.doi.org/10.3109/10717544.2013.838713] [PMID: 24102636]
[43]
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379(1): 146-57.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019] [PMID: 19555750]
[44]
Ahmad N, Umar S, Ashafaq M, et al. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma 2013; 250(6): 1327-38.
[http://dx.doi.org/10.1007/s00709-013-0516-9] [PMID: 23784381]
[45]
des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116(1): 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[46]
Shahbazi M-A, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 2013; 14(1): 28-56.
[http://dx.doi.org/10.2174/138920013804545133] [PMID: 22497568]
[47]
Müller RH, Rühl D, Runge SA. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int J Pharm 1996; 144(1): 115-21.
[http://dx.doi.org/10.1016/S0378-5173(96)04731-X]
[48]
Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990; 42(12): 821-6.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07033.x] [PMID: 1983142]
[49]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[50]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[51]
Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 1998; 168(2): 221-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[52]
Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm 2014; 87(3): 433-44.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[53]
Martins SM, Sarmento B, Nunes C, Lúcio M, Reis S, Ferreira DC. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 2013; 85(3 Pt A): 488-502.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.011] [PMID: 23994244]
[54]
Kakkar V, Mishra AK, Chuttani K, Kaur IP. Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain. Int J Pharm 2013; 448(2): 354-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.046] [PMID: 23558314]
[55]
Kakkar V, Kaur IP. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 2011; 49(11): 2906-13.
[http://dx.doi.org/10.1016/j.fct.2011.08.006] [PMID: 21889563]
[56]
Kakkar V, Kaur IP. Antidepressant activity of Curcumin loaded Solid Lipid Nanoparticles (C-SLNs) in mice. Am J Pharm Res 2012; 2(3): 729-36.
[57]
Virgili M, Contestabile A. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett 2000; 281(2-3): 123-6.
[http://dx.doi.org/10.1016/S0304-3940(00)00820-X] [PMID: 10704758]
[58]
Gülçin İ. Antioxidant properties of resveratrol: a structure–activity insight. Innov Food Sci Emerg Technol 2010; 11(1): 210-8.
[http://dx.doi.org/10.1016/j.ifset.2009.07.002]
[59]
Tosun I, Inkaya AN. Resveratrol as a health and disease benefit agent. Food Rev Int 2009; 26(1): 85-101.
[http://dx.doi.org/10.1080/87559120802525459]
[60]
Gupta C, Sharma G, Chan D. Resveratrol: A chemo-preventative agent with diverse applications. Prakash D, Sharma G. Phytochemicals of Nutraceutical Importance.. 2014; pp. 47-60.
[61]
Jardim FR, de Rossi FT, Nascimento MX, et al. Resveratrol and brain mitochondria: A review. Mol Neurobiol 2018; 55(3): 2085-101.
[http://dx.doi.org/10.1007/s12035-017-0448-z] [PMID: 28283884]
[62]
Novakovic A, Gojkovic-Bukarica L, Peric M, et al. The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery. J Pharmacol Sci 2006; 101(1): 85-90.
[http://dx.doi.org/10.1254/jphs.FP0050863] [PMID: 16682785]
[63]
Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 2006; 11(3): 217-25.
[PMID: 18651034]
[64]
Shigematsu S, Ishida S, Hara M, et al. Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radic Biol Med 2003; 34(7): 810-7.
[http://dx.doi.org/10.1016/S0891-5849(02)01430-2] [PMID: 12654468]
[65]
Chun-Fu W, Jing-Yu Y, Fang W, Xiao-Xiao W. Resveratrol: Botanical origin, pharmacological activity and applications. Chin J Nat Med 2013; 11(1): 1-15.
[66]
Bellaver B, Souza DG, Souza DO, Quincozes-Santos A. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol In Vitro 2014; 28(4): 479-84.
[http://dx.doi.org/10.1016/j.tiv.2014.01.006] [PMID: 24462605]
[67]
Shin JA, Lee H, Lim Y-K, Koh Y, Choi JH, Park E-M. Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 2010; 227(1-2): 93-100.
[http://dx.doi.org/10.1016/j.jneuroim.2010.06.017] [PMID: 20655115]
[68]
Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 2012; 158(2): 182-93.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.083] [PMID: 21978644]
[69]
Davidov-Pardo G, McClements DJ. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci Technol 2014; 38(2): 88-103.
[http://dx.doi.org/10.1016/j.tifs.2014.05.003]
[70]
Sandhir R, Yadav A, Sunkaria A, Singhal N. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89: 209-26.
[http://dx.doi.org/10.1016/j.neuint.2015.08.011] [PMID: 26315960]
[71]
Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnology 2016; 14(1): 27.
[http://dx.doi.org/10.1186/s12951-016-0177-x] [PMID: 27061902]
[72]
Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 2007; 59(6): 454-77.
[http://dx.doi.org/10.1016/j.addr.2007.04.011] [PMID: 17570559]
[73]
Jose S, Anju SS, Cinu TA, Aleykutty NA, Thomas S, Souto EB. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm 2014; 474(1-2): 6-13.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.003] [PMID: 25102112]
[74]
Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 2011; 589(17): 4125-36.
[http://dx.doi.org/10.1113/jphysiol.2011.210294] [PMID: 21646410]
[75]
Cicero AF, Vitale G, Savino G, Arletti R. Panax notoginseng (Burk.) effects on fibrinogen and lipid plasma level in rats fed on a high-fat diet. Phytother Res 2003; 17(2): 174-8.
[http://dx.doi.org/10.1002/ptr.1262] [PMID: 12601683]
[76]
Zhao G-R, Xiang Z-J, Ye T-X, Yuan Y-J, Guo Z-X. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem 2006; 99(4): 767-74.
[http://dx.doi.org/10.1016/j.foodchem.2005.09.002]
[77]
Ng TB. Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 2006; 58(8): 1007-19.
[http://dx.doi.org/10.1211/jpp.58.8.0001] [PMID: 16872547]
[78]
Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs 2014; 23(4): 523-39.
[http://dx.doi.org/10.1517/13543784.2014.892582] [PMID: 24555869]
[79]
Wang T, Guo R, Zhou G, et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J Ethnopharmacol 2016; 188: 234-58.
[http://dx.doi.org/10.1016/j.jep.2016.05.005] [PMID: 27154405]
[80]
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng saponins for treating coronary artery disease: A functional and mechanistic overview. Front Pharmacol 2017; 8: 702.
[http://dx.doi.org/10.3389/fphar.2017.00702] [PMID: 29089889]
[81]
Kim D-H. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2012; 36(1): 1-15.
[http://dx.doi.org/10.5142/jgr.2012.36.1.1] [PMID: 23717099]
[82]
Lee J, Lee E, Kim D, Lee J, Yoo J, Koh B. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol 2009; 122(1): 143-8.
[http://dx.doi.org/10.1016/j.jep.2008.12.012] [PMID: 19146939]
[83]
Kim H, Lee JH, Kim JE, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res 2018; 42(3): 361-9.
[http://dx.doi.org/10.1016/j.jgr.2017.12.003] [PMID: 29983618]
[84]
Qiu J, Cai G, Liu X, Ma D. αvβ3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother 2017; 96: 1418-26.
[http://dx.doi.org/10.1016/j.biopha.2017.10.086] [PMID: 29079344]
[85]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[86]
Sahoo SK, Misra R, Parveen S. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine in Cancer: Pan Stanford 2017; 75(1): 73-124.
[87]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[88]
Zhang J, Guan P, Wang T, Chang D, Jiang T, Wang S. Freeze-dried liposomes as potential carriers for ocular administration of cytochrome c against selenite cataract formation. J Pharm Pharmacol 2009; 61(9): 1171-8.
[http://dx.doi.org/10.1211/jpp.61.09.0006] [PMID: 19703366]
[89]
Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules 2010; 16(1): 251-80.
[http://dx.doi.org/10.3390/molecules16010251] [PMID: 21193847]
[90]
Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 2012; 9(9): 498-509.
[http://dx.doi.org/10.1038/nrclinonc.2012.120] [PMID: 22850752]
[91]
Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001; 56(9): 683-7.
[http://dx.doi.org/10.1016/S0014-827X(01)01111-9] [PMID: 11680812]
[92]
Hassimotto NMA, Genovese MI, Lajolo FM. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric Food Chem 2005; 53(8): 2928-35.
[http://dx.doi.org/10.1021/jf047894h] [PMID: 15826041]
[93]
Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3): 325-37.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[94]
Perez-Vizcaino F, Duarte J, Andriantsitohaina R. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res 2006; 40(10): 1054-65.
[http://dx.doi.org/10.1080/10715760600823128] [PMID: 17015250]
[95]
Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 1995; 33(12): 1061-80.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[96]
Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993; 342(8878): 1007-11.
[http://dx.doi.org/10.1016/0140-6736(93)92876-U] [PMID: 8105262]
[97]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283-318.
[PMID: 11356986]
[98]
Olivier J-C. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1): 108-19.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
[99]
Zhao LX, Liu AC, Yu SW, et al. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. Biol Pharm Bull 2013; 36(8): 1263-70.
[http://dx.doi.org/10.1248/bpb.b12-00769] [PMID: 23902970]
[100]
Zhou F, Wang L, Liu P, et al. Puerarin protects brain tissue against cerebral ischemia/reperfusion injury by inhibiting the inflammatory response. Neural Regen Res 2014; 9(23): 2074-80.
[http://dx.doi.org/10.4103/1673-5374.147934] [PMID: 25657724]
[101]
Tian F, Xu L-H, Zhao W, Tian L-J, Ji X-L. The optimal therapeutic timing and mechanism of puerarin treatment of spinal cord ischemia-reperfusion injury in rats. J Ethnopharmacol 2011; 134(3): 892-6.
[http://dx.doi.org/10.1016/j.jep.2011.01.055] [PMID: 21296138]
[102]
Liu G, Liu Z, Yuan S. Recent advances in methods of puerarin biotransformation. Mini Rev Med Chem 2016; 16(17): 1392-402.
[http://dx.doi.org/10.2174/1389557516666160505114456] [PMID: 27145856]
[103]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[104]
Agüeros M, Ruiz-Gatón L, Vauthier C, et al. Combined hydroxypropyl-β-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 2009; 38(4): 405-13.
[http://dx.doi.org/10.1016/j.ejps.2009.09.010] [PMID: 19765652]
[105]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[106]
Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 2014; 45(8): 711-29.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.020] [PMID: 25482528]
[107]
Gil ES, Li J, Xiao H, Lowe TL. Quaternary ammonium β-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. Biomacromolecules 2009; 10(3): 505-16.
[http://dx.doi.org/10.1021/bm801026k] [PMID: 19216528]
[108]
Tao HQ, Meng Q, Li MH, et al. HP-β-CD-PLGA nanoparticles improve the penetration and bioavailability of puerarin and enhance the therapeutic effects on brain ischemia-reperfusion injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386(1): 61-70.
[http://dx.doi.org/10.1007/s00210-012-0804-5] [PMID: 23192284]
[109]
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[110]
Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[111]
Dhuria SV, Hanson LR, Frey WH II. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010; 99(4): 1654-73.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[112]
Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000; 11(1): 1-18.
[http://dx.doi.org/10.1016/S0928-0987(00)00087-7] [PMID: 10913748]
[113]
Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today 2002; 7(18): 967-75.
[http://dx.doi.org/10.1016/S1359-6446(02)02452-2] [PMID: 12546871]
[114]
Johnson PH, Quay SC. Advances in nasal drug delivery through tight junction technology. Expert Opin Drug Deliv 2005; 2(2): 281-98.
[http://dx.doi.org/10.1517/17425247.2.2.281] [PMID: 16296754]
[115]
Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 2007; 96(3): 473-83.
[http://dx.doi.org/10.1002/jps.20718] [PMID: 17117404]
[116]
Illum L. Nasal drug delivery--possibilities, problems and solutions. J Control Release 2003; 87(1-3): 187-98.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[117]
Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid Med Cell Longev 2018; 2018 6241017
[http://dx.doi.org/10.1155/2018/6241017]
[118]
Al-Dhabi NA, Arasu MV, Park CH, Park SU. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J 2015; 14: 59-63.
[PMID: 26535031]
[119]
Choi J-H, Kim D-W, Park S-E, et al. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J Biosci Bioeng 2015; 120(2): 181-6.
[http://dx.doi.org/10.1016/j.jbiosc.2014.12.012] [PMID: 25777266]
[120]
Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 2010; 62(1): 28-41.
[http://dx.doi.org/10.1016/j.addr.2009.10.003] [PMID: 19874862]
[121]
Ding Y, Qiao Y, Wang M, et al. Enhanced neuroprotection of acetyl-11-keto-β-boswellic acid (AKBA)-loaded O-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol Neurobiol 2016; 53(6): 3842-53.
[http://dx.doi.org/10.1007/s12035-015-9333-9] [PMID: 26162321]
[122]
Sarvaiya J, Agrawal YK. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72: 454-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[123]
Ameeduzzafar AJ, Ali J, Bhatnagar A, Kumar N, Ali A. Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. Int J Biol Macromol 2014; 65: 479-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.002] [PMID: 24530326]
[124]
Yu G, Liu L, Zhang P, Li Y. Protective effect of Curcumin on chronic cerebral ischemia by altering expression of α-synuclein in 2VO model. Mol Neurodegener 2012; 7: S33.
[http://dx.doi.org/10.1186/1750-1326-7-S1-S33]
[125]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2020
Page: [20 - 29]
Pages: 10
DOI: 10.2174/1574884714666190704115345

Article Metrics

PDF: 27
HTML: 5
EPUB: 1
PRC: 1