Natural Compounds Targeting Cancer Stem Cells: A Promising Resource for Chemotherapy

Author(s): Plabon K. Das, Tasnim Zahan, Md. Abdur Rakib, Jahan A. Khanam, Suja Pillai, Farhadul Islam*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 15 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer Stem Cells (CSCs) are the subpopulation of cancer cells which are directly involved in drug resistance, metastases to distant organ and cancer recurrence.

Methods: A systematic literature search was conducted through various electronic databases including, Pubmed, Scopus, Google scholar using the keywords "cancer stem cells" and "natural compounds" in the present study. Articles published between 1999 and 2019 were reviewed. All the expositions concerning CSCs associated cancer pathogenesis and therapy resistance, as well as targeting these properties of CSCs by natural compounds were selected for the current study.

Results: Natural compounds have always been thought as a rich source of biologically active principles, which target aberrantly activated signaling pathways and other modalities of CSCs, while tethering painful side effects commonly involved in the first-line and second-line chemo-radiotherapies. In this review, we have described the key signaling pathways activated in CSCs to maintain their survival and highlighted how natural compounds interrupt these signaling pathways to minimize therapy resistance, pathogenesis and cancer recurrence properties of CSCs, thereby providing useful strategies to treat cancer or aid in cancer therapy improvement. Like normal stem cells, CSCs rely on different signaling pathways and other properties for their maintenance. Therefore, the success of cancer treatment depends on the development of proper anti-neoplastic drugs capable of intercepting those signaling pathways as well as other properties of CSCs in order to eradicate this evasive subpopulation of cancer cells.

Conclusion: Compounds of natural origin might act as an outstanding source to design novel therapies against cancer stem cells.

Keywords: Natural compounds, cancer stem cells, signaling pathways, cancer therapy, therapy resistance, pathogenesis.

[1]
Khatun, M.; Habib, M.R.; Rabbi, M.A.; Amin, R.; Islam, M.F.; Nurujjaman, M.; Karim, M.R.; Rahman, M.H. Antioxidant, cytotoxic and antineoplastic effects of Carissa carandas Linn. leaves. Exp. Toxicol. Pathol., 2017, 69(7), 469-476.
[2]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[3]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[4]
Colak, S.; Medema, J.P. Cancer stem cells--important players in tumor therapy resistance. FEBS J., 2014, 281(21), 4779-4791.
[5]
White, A.C.; Lowry, W.E. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol., 2015, 25(1), 11-20.
[6]
O’Connor, M.L.; Xiang, D.; Shigdar, S.; Macdonald, J.; Li, Y.; Wang, T.; Pu, C.; Wang, Z.; Qiao, L.; Duan, W. Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett., 2014, 344(2), 180-187.
[7]
Geng, S.Q.; Alexandrou, A.T.; Li, J.J. Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett., 2014, 349(1), 1-7.
[8]
Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007, 1(3), 313-323.
[9]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[10]
Zuccarini, M.; Giuliani, P.; Ziberi, S.; Carluccio, M.; Iorio, P.D.; Caciagli, F.; Ciccarelli, R. The role of Wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes (Basel), 2018, 9(2), pii:E105.
[11]
Arend, R.C.; Londoño-Joshi, A.I.; Straughn Jr, J.M.; Buchsbaum, D.J. The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol. Oncol., 2013, 131(3), 772-779.
[12]
Janovská, P.; Bryja, V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br. J. Pharmacol., 2017, 174(24), 4701-4715.
[13]
Yin, L.; Velazquez, O.C.; Liu, Z.J. Notch signaling: emerging molecular targets for cancer therapy. Biochem. Pharmacol., 2010, 80(5), 690-701.
[14]
Bhardwaj, G.; Murdoch, B.; Wu, D.; Baker, D.P.; Williams, K.P.; Chadwick, K.; Ling, L.E.; Karanu, F.N.; Bhatia, M. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol., 2001, 2(2), 172-180.
[15]
Hu, Y.; Fu, L. Targeting cancer stem cells: A new therapy to cure cancer patients. Am. J. Cancer Res., 2012, 2(3), 340-356.
[16]
Oikonomou, E.; Anastasiou, M.; Siasos, G.; Androulakis, E.; Psyrri, A.; Toutouzas, K.; Tousoulis, D. Cancer therapeutics-related cardiovascular complications. Mechanisms, diagnosis and treatment. Curr. Pharm. Des., 2018, 24(37), 4424-4435.
[17]
Scicchitano, P.; Cameli, M.; Maiello, M.; Modesti, P.A.; Muiesan, M.L.; Novo, S.; Palmiero, P.; Saba, P.S.; Pedrinelli, R.; Ciccone, M.M.; di Studio Ipertensione, G. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods, 2014, 6, 11-32.
[18]
Scarpa, E.S.; Ninfali, P. Phytochemicals as innovative therapeutic tools against cancer stem cells. Int. J. Mol. Sci., 2015, 16(7), 15727-15742.
[19]
Taylor, W.F.; Jabbarzadeh, E. The use of natural products to target cancer stem cells. Am. J. Cancer Res., 2017, 7(7), 1588-1605.
[20]
Wang, Z.; Zhang, Y.; Banerjee, S.; Li, Y.; Sarkar, F.H. Retracted: Notch‐1 down‐regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer, 2006, 106(11), 2503-2513.
[21]
Pahlke, G.; Ngiewih, Y.; Kern, M.; Jakobs, S.; Marko, D.; Eisenbrand, G. Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. J. Agric. Food Chem., 2006, 54(19), 7075-7082.
[22]
Liu, S.; Dontu, G.; Wicha, M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res., 2005, 7(3), 86-95.
[23]
Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med., 2017, 23(10), 1124-1134.
[24]
Moghbeli, M.; Moghbeli, F.; Forghanifard, M.M.; Abbaszadegan, M.R. Cancer stem cell detection and isolation. Med. Oncol., 2014, 31(9), 69.
[25]
Dontu, G.; Abdallah, W.M.; Foley, J.M.; Jackson, K.W.; Clarke, M.F.; Kawamura, M.J.; Wicha, M.S. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev., 2003, 17(10), 1253-1270.
[26]
Islam, F.; Gopalan, V.; Smith, R.A.; Lam, A.K. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp. Cell Res., 2015, 335(1), 135-147.
[27]
Ma, L.; Lai, D.; Liu, T.; Cheng, W.; Guo, L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim. Biophys. Sin., 2010, 42(9), 593-602.
[28]
Grosse‐Gehling, P.; Fargeas, C.A.; Dittfeld, C.; Garbe, Y.; Alison, M.R.; Corbeil, D.; Kunz‐Schughart, L.A. CD133 as a biomarker for putative cancer stem cells in solid tumors: Limitations, problems and challenges. J. Pathol., 2013, 229(3), 355-378.
[29]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumors: Accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8(10), 755-768.
[30]
Eramo, A.; Lotti, F.; Sette, G.; Pilozzi, E.; Biffoni, M.; DiVirgilio, A.; Conticello, C.; Ruco, L.; Peschle, C.; De Maria, R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ., 2008, 15(3), 504-514.
[31]
Tirino, V.; Desiderio, V.; Paino, F.; Papaccio, G.; De Rosa, M. Methods for cancer stem cell detection and isolation. Methods Mol. Biol., 2012, 879, 513-529.
[32]
Ahmed, N.; Escalona, R.; Leung, D.; Chan, E.; Kannourakis, G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin. Cancer Biol., 2018, 53, 265-281.
[33]
da Silva-Diz, V.; Lorenzo-Sanz, L.; Bernat-Peguera, A.; Lopez-Cerda, M.; Muñoz, P. Cancer cell plasticity: Impact on tumor progression and therapy response. Semin. Cancer Biol., 2018, 53, 48-58.
[34]
Frank, N.Y.; Schatton, T.; Frank, M.H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest., 2010, 120(1), 41-50.
[35]
Islam, F.; Qiao, B.; Smith, R.A.; Gopalan, V.; Lam, A.K. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp. Mol. Pathol., 2015, 98(2), 184-191.
[36]
Singh, A.; Settleman, J.E. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[37]
Weng, D.; Penzner, J.H.; Song, B.; Koido, S.; Calderwood, S.K.; Gong, J. Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers. Breast Cancer Res., 2012, 14, R18.
[38]
Gillies, R.J.; Schomack, P.A.; Secomb, T.W.; Raghunand, N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia, 1999, 1(3), 197-207.
[39]
Lee, C.H.; Wu, Y.T.; Hsieh, H.C.; Yu, Y.; Alice, L.Y.; Chang, W.W. Epidermal growth factor/heat shock protein 27 pathway regulates vasculogenic mimicry activity of breast cancer stem/progenitor cells. Biochimie, 2014, 104, 117-126.
[40]
Liu, C.C.; Cai, D.L.; Sun, F.; Wu, Z.H.; Yue, B.; Zhao, S.L.; Wu, X.S.; Zhang, M.; Zhu, X.W.; Peng, Z.H.; Yan, D.W. FERMT1 mediates epithelial-mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene, 2017, 36(13), 1779-1792.
[41]
Castilla, C.; Congregado, B.; Chinchón, D.; Torrubia, F.J.; Japón, M.A.; Sáez, C. Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak. Endocrinology, 2006, 147(10), 4960-4967.
[42]
Li, X.; Lewis, M.T.; Huang, J.; Gutierrez, C.; Osborne, C.K.; Wu, M.F.; Hilsenbeck, S.G.; Pavlick, A.; Zhang, X.; Chamness, G.C.; Wong, H. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst., 2008, 100(9), 672-679.
[43]
Boumahdi, S.; Driessens, G.; Lapouge, G.; Rorive, S.; Nassar, D.; Le Mercier, M.; Delatte, B.; Caauwe, A.; Lenglez, S.; Nkusi, E.; Brohée, S.; Salmon, I.; Dubois, C.; del Marmol, V.; Fuks, F.; Beck, B.; Blanpain, C. SOX2 controls tumour initiation and cancer stem-cellfunctions in squamous-cell carcinoma. Nature, 2014, 511(7508), 246-250.
[44]
Chiou, S.H.; Yu, C.C.; Huang, C.Y.; Lin, S.C.; Liu, C.J.; Tsai, T.H.; Chou, S.H.; Chien, C.S.; Ku, H.H.; Lo, J.F. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin. Cancer Res., 2008, 14(13), 4085-4095.
[45]
Short, S.C.; Giampieri, S.; Worku, M.; Alcaide-German, M.; Sioftanos, G.; Bourne, S.; Lio, K.I.; Shaked-Rabi, M.; Martindale, C. Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells. Neuro-oncol., 2011, 13(5), 487-499.
[46]
Kiyohara, E.; Tamai, K.; Katayama, I.; Kaneda, Y. The combination of chemotherapy with HVJ-E containing Rad51 siRNA elicited diverse anti-tumor effects and synergistically suppressed melanoma. Gene Ther., 2012, 19(7), 734-741.
[47]
Haraguchi, N.; Utsunomiya, T.; Inoue, H.; Tanaka, F.; Mimori, K.; Barnard, G.F.; Mori, M. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 2006, 24(3), 506-513.
[48]
Tait, S.W.; Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 621-632.
[49]
Rongxin, S.; Pengfei, L.; Li, S.; Xiaochen, J.; Yihe, H. MicroRNA-340-5p suppresses osteosarcoma development by down-regulating the Wnt/β-catenin signaling pathway via targeting the STAT3 gene. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3), 982-991.
[50]
Chien, A.J.; Conrad, W.H.; Moon, R.T. A Wnt survival guide: From flies to human disease. J. Invest. Dermatol., 2009, 129(7), 1614-1627.
[51]
Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; Han, H.Y. (−)- Epigallocatechin-3-Gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Nutrients, 2017, 9(6), 572, piiE572.
[52]
Zhang, Q.; Li, X.T.; Chen, Y.; Chen, J.Q.; Zhu, J.Y.; Meng, Y.; Wang, X.Q.; Li, Y.; Geng, S.S.; Xie, C.F.; Wu, J.S. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother. Pharmacol., 2018, 81(6), 969-977.
[53]
Zhang, Y.; Chen, S.; Wei, C.; Rankin, G.O.; Ye, X.; Chen, Y.C. Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/β-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct., 2018, 9(1), 525-533.
[54]
Deng, S.; Wong, C.K.; Lai, H.C.; Wong, A.S. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget, 2017, 8(16), 25897-25914.
[55]
Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; Sun, D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res., 2010, 16(9), 2580-2590.
[56]
Wang, N.; Wang, Z.; Wang, Y.; Xie, X.; Shen, J.; Peng, C.; You, J.; Peng, F.; Tang, H.; Guan, X.; Chen, J. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget, 2015, 6(12), 9854-9876.
[57]
Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis, 2014, 35(11), 2544-2554.
[58]
Luo, K.; Chen, W.; Lung, W.; Wei, X.; Cheng, B.; Cai, Z.; Huang, W. EGCG inhibited bladder cancer SW780cell proliferation and migration both in vitro and in vivo via down-regulation of NF-kappa B and MMP-9. J. Nutr. Biochem., 2017, 41, 56-64.
[59]
Zhang, J.; Lei, Z.; Huang, Z.; Zhang, X.; Zhou, Y.; Luo, Z.; Zeng, W.; Su, J.; Peng, C.; Chen, X. Epigallocatechin-3-gallate (EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6activity. Oncotarget, 2016, 7(48), 79543-79557.
[60]
Li, M.; Li, J.J.; Gu, Q.H.; An, J.; Cao, L.M.; Yang, H.P.; Hu, C.P. EGCG induces lung cancerA549 cell apoptosis by regulating Ku70 acetylation. Oncol. Rep., 2016, 35(4), 2339-2347.
[61]
Lee, J.C.; Chung, L.C.; Chen, Y.J.; Feng, T.H.; Chen, W.T.; Juang, H.H. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett., 2015, 360(2), 310-318.
[62]
Cerezo-Guisado, M.I.; Zur, R.; Lorenzo, M.J.; Risco, A.; Martin-Serrano, M.A.; Alvarez-Barrientos, A.; Cuenda, A.; Centeno, F. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways inhuman colon cancer cell apoptosis induced by green tea EGCG. Food Chem. Toxicol., 2015, 84, 125-132.
[63]
Liang, J.; Hänsch, G.M.; Hübner, K.; Samstag, Y. Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv. Biol. Regul., 2019, 71, 79-87.
[64]
Koch, U.; Lehal, R.; Radtke, F. Stem cells living with a Notch. Development, 2013, 140(4), 689-704.
[65]
Androutsellis-Theotokis, A.; Leker, R.R.; Soldner, F.; Hoeppner, D.J.; Ravin, R.; Poser, S.W.; Rueger, M.A.; Bae, S.K.; Kittappa, R.; McKay, R.D. Notch signalling regulates stem cellnumbers in vitro and in vivo. Nature, 2006, 442(7104), 823-826.
[66]
Espinoza, I.; Pochampally, R.; Xing, F.; Watabe, K.; Miele, L. Notch signaling: Targeting cancer stem cells and epithelial-to-mesenchymal transition. OncoTargets Ther., 2013, 6, 1249-1259.
[67]
Wang, J.; Yan, Z.; Liu, X.; Che, S.; Wang, C.; Yao, W. Alpinetin targets glioma stem cells by suppressing Notch pathway. Tumor Biol., 2016, 37(7), 9243-8248.
[68]
Hyun, K.H.; Yoon, C.H.; Kim, R.K.; Lim, E.J.; An, S.; Park, M.J.; Hyun, J.W.; Suh, Y.; Kim, M.J.; Lee, S.J. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells. Toxicol. Appl. Pharmacol., 2011, 254(1), 32-40.
[69]
Kallifatidis, G.; Labsch, S.; Rausch, V.; Mattern, J.; Gladkich, J.; Moldenhauer, G.; Büchler, M.W.; Salnikov, A.V.; Herr, I. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther., 2011, 19(1), 188-195.
[70]
Kaushik, G.; Venugopal, A.; Ramamoorthy, P.; Standing, D.; Subramaniam, D.; Umar, S.; Jensen, R.A.; Anant, S.; Mammen, J.M. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol. Carcinog., 2015, 54(12), 1710-1721.
[71]
McMahon, A.P.; Ingham, P.W.; Tabin, C.J. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol., 2003, 53, 1-114.
[72]
Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev., 2008, 22(18), 2454-2472.
[73]
Kobune, M.; Takimoto, R.; Murase, K.; Iyama, S.; Sato, T.; Kikuchi, S.; Kawano, Y.; Miyanishi, K.; Sato, Y.; Niitsu, Y.; Kato, J. Drug resistance is dramatically restored by hedgehog inhibitors in CD34+ leukemic cells. Cancer Sci., 2009, 100(5), 948-955.
[74]
Sun, M.; Zhang, N.; Wang, X.; Li, Y.; Qi, W.; Zhang, H.; Li, Z.; Yang, Q. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell Biosci., 2016, 6, 44.
[75]
Rodova, M.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One, 2012, 7(9)e46083
[76]
Fan, P.; Fan, S.; Wang, H.; Mao, J.; Shi, Y.; Ibrahim, M.M.; Ma, W.; Yu, X.; Hou, Z.; Wang, B.; Li, L. Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway. Stem Cell Res. Ther., 2013, 4(6), 146.
[77]
Zhu, J.; Wang, H.; Sun, Q.; Ji, X.; Zhu, L.; Cong, Z.; Zhou, Y.; Liu, H.; Zhou, M. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer, 2013, 13, 380.
[78]
Yang, F.; Nam, S.; Zhao, R.; Tian, Y.; Liu, L.; Horne, D.A.; Jove, R. A novel synthetic derivative of the natural product berbamine inhibits cell viability and inducesapoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling. Cancer Biol. Ther., 2013, 14(11), 1024-1031.
[79]
Mongre, R.K.; Sodhi, S.S.; Ghosh, M.; Kim, J.H.; Kim, N.; Park, Y.H.; Kim, S.J.; Heo, Y.J.; Sharma, N.; Jeong, D.K. The novel inhibitor BRM270 downregulates tumorigenesis by suppression of NF-κB signaling cascade in MDR-induced stem like cancer-initiating cells. Int. J. Oncol., 2015, 46(6), 2573-2585.
[80]
Lau, A.; Villeneuve, N.F.; Sun, Z.; Wong, P.K.; Zhang, D.D. Dual roles of Nrf2 in cancer. Pharmacol. Res., 2008, 58(5-6), 262-270.
[81]
Fabrizio, F.P.; Costantini, M.; Copetti, M.; la Torre, A.; Sparaneo, A.; Fontana, A.; Poeta, L.; Gallucci, M.; Sentinelli, S.; Graziano, P.; Parente, P.; Pompeo, V.; De Salvo, L.; Simone, G.; Papalia, R.; Picardo, F.; Balsamo, T.; Flammia, G.P.; Trombetta, D.; Pantalone, A.; Kok, K.; Paranita, F.; Muscarella, L.A.; Fazio, V.M. Keap1/Nrf2 pathway in kidney cancer: Frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma. Oncotarget, 2017, 8(7), 11187-11198.
[82]
Almeida, M.; Soares, M.; Ramalhinho, A.C.; Moutinho, J.F.; Breitenfeld, L. Prognosis of hormone-dependent breast cancer seems to be influenced by KEAP1, NRF2 and GSTM1 genetic polymorphisms. Mol. Biol. Rep., 2019, 1-12.
[83]
Zhang, H.S.; Zhang, Z.G.; Du, G.Y.; Sun, H.L.; Liu, H.Y.; Zhou, Z.; Gou, X.M.; Wu, X.H.; Yu, X.Y.; Huang, Y.H. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J. Cell. Mol. Med., 2019, 23(5), 3451-3463.
[84]
Zhang, B.; Ma, Z.; Tan, B.; Lin, N. Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung. Expert Opin. Ther. Targets, 2019, 23(3), 241-250.
[85]
Pan, S.T.; Qin, Y.; Zhou, Z.W.; He, Z.X.; Zhang, X.; Yang, T.; Yang, Y.X.; Wang, D.; Zhou, S.F.; Qiu, J.X. Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells. Drug Des. Devel. Ther., 2015, 9, 5511-5551.
[86]
Siveen, K.S.; Uddin, S.; Mohammad, R.M. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol. Cancer, 2017, 16(1), 13.
[87]
Yang, F.; Nam, S.; Brown, C.E.; Zhao, R.; Starr, R.; Horne, D.A.; Malkas, L.H.; Jove, R.; Hickey, R.J. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One, 2014, 9(4)e94443
[88]
Yang, F.; Nam, S.; Zhao, R.; Tian, Y.; Liu, L.; Horne, D.A.; Jove, R. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling. Cancer Biol. Ther., 2013, 14(11), 1024-1031.
[89]
Deng, R.; Wang, X.; Liu, Y.; Yan, M.; Hanada, S.; Xu, Q.; Zhang, J.; Han, Z.; Chen, W.; Zhang, P. A new gamboge derivative Compound 2 inhibits cancer stem‐like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma. J. Cell. Mol. Med., 2013, 17(11), 1422-1433.
[90]
Yu, S.L.; Chen, H.Y.; Chang, G.C.; Chen, C.Y.; Chen, H.W.; Singh, S.; Cheng, C.L.; Yu, C.J.; Lee, Y.C.; Chen, H.S.; Su, T.J. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell, 2008, 13(1), 48-57.
[91]
Seike, M.; Goto, A.; Okano, T.; Bowman, E.D.; Schetter, A.J.; Horikawa, I.; Mathe, E.A.; Jen, J.; Yang, P.; Sugimura, H.; Gemma, A. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12085-12090.
[92]
Iorio, M.V.; Casalini, P.; Tagliabue, E.; Menard, S.; Croce, C.M. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur. J. Cancer, 2008, 44(18), 2753-2759.
[93]
Zhu, K.; Ding, H.; Wang, W.; Liao, Z.; Fu, Z.; Hong, Y.; Zhou, Y.; Zhang, C.Y.; Chen, X. Tumor-suppressive miR-218-5p inhibits cancer cell proliferation and migration via EGFR in non-small cell lung cancer. Oncotarget, 2016, 7(19), 28075-28085.
[94]
Zhang, S.; Hong, Z.; Li, Q.; Lei, J.; Huang, H.; Liu, Q. Effect of MicroRNA-218 on the viability, apoptosis and invasion of renal cell carcinoma cells under hypoxia by targeted downregulation of CXCR7 expression. Biomed. Pharmacother., 2016, 80, 213-219.
[95]
Kumamoto, T.; Seki, N.; Mataki, H.; Mizuno, K.; Kamikawaji, K.; Samukawa, T.; Koshizuka, K.; Goto, Y.; Inoue, H. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int. J. Oncol., 2016, 49(5), 1870-1880.
[96]
Yang, P.Y.; Hsieh, P.L.; Wang, T.H.; Yu, C.C.; Lu, M.Y.; Liao, Y.W.; Lee, T.H.; Peng, C.Y. Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget, 2017, 8(3), 4196.
[97]
Tu, D.G.; Yu, Y.; Lee, C.H.; Kuo, Y.L.; Lu, Y.C.; Tu, C.W.; Chang, W.W. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol. Lett., 2016, 11(4), 2934-2940.
[98]
Ouyang, W.C.; Liao, Y.W.; Chen, P.N.; Lu, K.H.; Yu, C.C.; Hsieh, P.L. Hinokitiol suppresses cancer stemness and oncogenicity in glioma stem cells by Nrf2 regulation. Cancer Chemother. Pharmacol., 2017, 80(2), 411-419.
[99]
Hu, F.W.; Yu, C.C.; Hsieh, P.L.; Liao, Y.W.; Lu, M.Y.; Chu, P.M. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget, 2017, 8(55), 93912.
[100]
Yin, Y.; Chen, C.; Chen, J.; Zhan, R.; Zhang, Q.; Xu, X.; Li, D.; Li, M. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell. Signal., 2017, 35, 154-162.
[101]
Kwon, T.; Zhang, J.J.; Sharma, N.; Gera, M.; Ghosh, M.; Kim, N.; Cho, S.K.; Lee, D.S.; Park, Y.H.; Jeong, D.K. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression. BMC Complement. Altern. Med., 2017, 17(1), 304.
[102]
Dorn, D.C.; Kou, C.A.; Png, K.J.; Moore, M.A. The effect of cantharidins on leukemic stem cells. Int. J. Cancer, 2009, 124(9), 2186-2199.
[103]
Tin, A.S.; Park, A.H.; Sundar, S.N.; Firestone, G.L. Essential role of the cancer stem/progenitor cell marker nucleostemin for indole-3-carbinol anti-proliferative responsiveness in human breast cancer cells. BMC Biol., 2014, 12(1), 72.
[104]
Li, J.; Liu, R.; Yang, Y.; Huang, Y.; Li, X.; Liu, R.; Shen, X. Triptolide-induced in vitro and in vivo cytotoxicity in human breast cancer stem cells and primary breast cancer cells. Oncol. Rep., 2014, 31(5), 2181-2186.
[105]
Gernapudi, R.; Yao, Y.; Zhang, Y.; Wolfson, B.; Roy, S.; Duru, N.; Eades, G.; Yang, P.; Zhou, Q. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res. Treat., 2015, 150(3), 685-695.
[106]
Harford-Wright, E.; Bidère, N.; Gavard, J. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability. Oncotarget, 2016, 7(41), 66865.
[107]
Ruíz, G.; Valencia-González, H.A.; León-Galicia, I.; García-Villa, E.; García-Carrancá, A.; Gariglio, P. Inhibition of RAD51 by siRNA and resveratrol sensitizes cancer stem cells derived from HeLa cell cultures to apoptosis. Stem Cells Int., 2018, 20182493869
[108]
Pandey, P.R.; Okuda, H.; Watabe, M.; Pai, S.K.; Liu, W.; Kobayashi, A.; Xing, F.; Fukuda, K.; Hirota, S.; Sugai, T.; Wakabayashi, G. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res. Treat., 2011, 130(2), 387-398.
[109]
Kamalidehghan, B.; Ghafouri-Fard, S.; Motevaseli, E.; Ahmadipour, F. Inhibition of human prostate cancer (PC-3) cells and targeting of PC-3-derived prostate cancer stem cells with koenimbin, a natural dietary compound from Murraya koenigii (L) Spreng. Drug Des. Devel. Ther., 2018, 12, 1119.
[110]
Ahmadipour, F.; Noordin, M.I.; Mohan, S.; Arya, A.; Paydar, M.; Looi, C.Y.; Keong, Y.S.; Siyamak, E.N.; Fani, S.; Firoozi, M.; Yong, C.L.; Sukari, M.A.; Kamalidehghan, B. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: Inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44(+)/CD24(-/low)): An in vitro study. Drug Des. Devel. Ther., 2015, 9, 1193-1208.
[111]
Fong, D.; Yeh, A.; Naftalovich, R.; Choi, T.H.; Chan, M.M. Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: Towards targeting of cancer stem cells with phytochemicals. Cancer Lett., 2010, 293(1), 65-72.
[112]
Yu, Y.; Kanwar, S.S.; Patel, B.B.; Nautiyal, J.; Sarkar, F.H.; Majumdar, A.P. Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Transl. Oncol., 2009, 2(4), 321-328.
[113]
Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785.
[114]
Bao, B.; Ali, S.; Kong, D.; Sarkar, S.H.; Wang, Z.; Banerjee, S.; Aboukameel, A.; Padhye, S.; Philip, P.A.; Sarkar, F.H. Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One, 2011, 6(3)e17850
[115]
Peng, Y.; He, G.; Tang, D.; Xiong, L.; Wen, Y.; Miao, X.; Hong, Z.; Yao, H.; Chen, C.; Yan, S.; Lu, L.; Yang, Y.; Li, Q.; Deng, X. Lovastatin inhibits cancer stem cells and sensitizes to chemo-and photodynamic therapy in nasopharyngeal carcinoma. J. Cancer, 2017, 8(9), 1655.
[116]
Hothi, P.; Martins, T.J.; Chen, L.; Deleyrolle, L.; Yoon, J.G.; Reynolds, B.; Foltz, G. High-throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget, 2012, 3(10), 1124.
[117]
Zhao, D.; Yao, C.; Chen, X.; Xia, H.; Zhang, L.; Liu, H.; Jiang, X.; Dai, Y.; Liu, J. The fruits of Maclura pomifera extracts inhibits glioma stem-like cell growth and invasion. Neurochem. Res., 2013, 38(10), 2105-2113.
[118]
Leong, K.H.; Mahdzir, M.A.; Din, M.F.; Awang, K.; Tanaka, Y.; Kulkeaw, K.; Ishitani, T.; Sugiyama, D. Induction of intrinsic apoptosis in leukaemia stem cells and in vivo zebrafish model by betulonic acid isolated from Walsura pinnata Hassk (Meliaceae). Phytomedicine, 2017, 26, 11-21.
[119]
Sam, S.; Sam, M.R.; Esmaeillou, M.; Safaralizadeh, R. Effective targeting survivin, caspase-3 and microRNA-16-1 expression by methyl-3-pentyl-6-methoxyprodigiosene triggers apoptosis in colorectal cancer stem-like cells. Pathol. Oncol. Res., 2016, 22(4), 715-723.
[120]
Tang, S.N.; Singh, C.; Nall, D.; Meeker, D.; Shankar, S.; Srivastava, R.K. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J. Mol. Signal., 2010, 5(1), 14.
[121]
Jeon, H.Y.; Park, C.G.; Ham, S.W.; Choi, S.H.; Lee, S.Y.; Kim, J.Y.; Seo, S.; Jin, X.; Kim, J.K.; Eun, K.; Kim, E.J. BRM270, a Compound from natural plant extracts, inhibits glioblastoma stem cell properties and glioblastoma recurrence. J. Med. Food, 2017, 20(9), 838-845.
[122]
Kwon, T.; Chandimali, N.; Zhang, J.J.; Kim, N.; Bak, Y.; Yoon, D.Y.; Yu, D.Y.; Lee, J.C.; Gera, M.; Ghosh, M.; Park, Y.H. BRM270 inhibits cancer stem cell maintenance via microRNA regulation in chemoresistant A549 lung adenocarcinoma cells. Cell Death Dis., 2018, 9(2), 244.
[123]
Lugnani, F.; Simone, G.; Biava, P.M.; Ablin, R.J. The role of neuroendocrine cells in prostate cancer: a comprehensive review of current literature and subsequent rationale to broaden and integrate current treatment modalities. Curr. Med. Chem., 2014, 21(9), 1082-1092.
[124]
Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; Wang, S.; Wu, J.; Wang, Y.; Li, Z.; Liu, J.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 2004, 10(12), 1344-1351.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 15
Year: 2019
Page: [1796 - 1808]
Pages: 13
DOI: 10.2174/1871520619666190704111714
Price: $65

Article Metrics

PDF: 30
HTML: 4
EPUB: 2
PRC: 1